Example #1
0
def add_phonemes():
    data_path = os.environ['FUEL_DATA_PATH']
    data_path = os.path.join(data_path,'blizzard/')
    save_name = "sp_blizzard_80h_phon.hdf5"
    phon_file = "tbptt_blizzard_80h.hdf5"
    data_file = "sp_blizzard_80h.hdf5"

    save_path = os.path.join(data_path, save_name)
    phon_path = os.path.join(data_path, phon_file)
    data_path = os.path.join(data_path, data_file)

    resulth5 = h5py.File(save_path, mode='w')
    phonh5 = h5py.File(phon_path, mode = 'r')
    datah5 = h5py.File(data_path, mode = 'r')

    sp_h5 = resulth5.create_dataset(
                'sp', (TOTAL_ROWS, 512, 257), dtype='float32')
    f0_h5 = resulth5.create_dataset(
                'f0', (TOTAL_ROWS, 512), dtype='float32')

    phon_h5 = resulth5.create_dataset(
                'phonemes', (TOTAL_ROWS, 512), dtype = 'int16')

    f0_h5[:] = datah5['f0'][:]
    phon_h5[:] = phonh5['phonemes'][:,::64]

    n_times = 100
    idx = chunkIt(range(TOTAL_ROWS), n_times)

    for num_indx, indx in enumerate(idx):
        print num_indx, 100
        sp_h5[indx] = datah5['sp'][indx]

    cont = TOTAL_ROWS
    end_train = int(.9*cont)
    end_valid = int(.95*cont)
    end_test = cont

    split_dict = {
        'train': {'sp': (0, end_train),
                  'f0': (0, end_train),
                  'phonemes': (0, end_train)},
        'valid': {'sp': (end_train, end_valid),
                  'f0': (end_train, end_valid),
                  'phonemes': (end_train, end_valid)},
        'test': {'sp': (end_valid, end_test),
                 'f0': (end_valid, end_test),
                 'phonemes': (end_valid, end_test)}
        }

    resulth5.attrs['split'] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()

    phonh5.close()
    datah5.close()
Example #2
0
def add_phonemes():
    data_path = os.environ["FUEL_DATA_PATH"]
    data_path = os.path.join(data_path, "blizzard/")
    save_name = "sp_blizzard_80h_phon.hdf5"
    phon_file = "tbptt_blizzard_80h.hdf5"
    data_file = "sp_blizzard_80h.hdf5"

    save_path = os.path.join(data_path, save_name)
    phon_path = os.path.join(data_path, phon_file)
    data_path = os.path.join(data_path, data_file)

    resulth5 = h5py.File(save_path, mode="w")
    phonh5 = h5py.File(phon_path, mode="r")
    datah5 = h5py.File(data_path, mode="r")

    sp_h5 = resulth5.create_dataset("sp", (TOTAL_ROWS, 512, 257), dtype="float32")
    f0_h5 = resulth5.create_dataset("f0", (TOTAL_ROWS, 512), dtype="float32")

    phon_h5 = resulth5.create_dataset("phonemes", (TOTAL_ROWS, 512), dtype="int16")

    f0_h5[:] = datah5["f0"][:]
    phon_h5[:] = phonh5["phonemes"][:, ::64]

    n_times = 100
    idx = chunkIt(range(TOTAL_ROWS), n_times)

    for num_indx, indx in enumerate(idx):
        print num_indx, 100
        sp_h5[indx] = datah5["sp"][indx]

    cont = TOTAL_ROWS
    end_train = int(0.9 * cont)
    end_valid = int(0.95 * cont)
    end_test = cont

    split_dict = {
        "train": {"sp": (0, end_train), "f0": (0, end_train), "phonemes": (0, end_train)},
        "valid": {"sp": (end_train, end_valid), "f0": (end_train, end_valid), "phonemes": (end_train, end_valid)},
        "test": {"sp": (end_valid, end_test), "f0": (end_valid, end_test), "phonemes": (end_valid, end_test)},
    }

    resulth5.attrs["split"] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()

    phonh5.close()
    datah5.close()
Example #3
0
def process_chunk(num_chunk):
    # Total number of rows
    TOTAL_ROWS = 105856
    n_times = 50
    n_process = 11  # 7 for briaree
    files_per_batch = 25
    num_files = n_process * n_times * files_per_batch

    # total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    const = num_files * num_chunk
    indx_mp = range(num_files)

    indx_mp = [x + const for x in indx_mp]
    indx_mp = [x for x in indx_mp if x < TOTAL_ROWS]
    num_files = len(indx_mp)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    data_path = os.environ["FUEL_DATA_PATH"]
    data_path = os.path.join(data_path, "blizzard/")
    file_name = "tbptt_blizzard_80h.hdf5"
    save_name = "chunk_{}.hdf5".format(num_chunk)
    hdf5_path = os.path.join(data_path, file_name)

    save_dir = os.environ["RESULTS_DIR"]
    if "blizzard" not in save_dir:
        save_dir = os.path.join(save_dir, "blizzard/")
    save_path = os.path.join(save_dir, save_name)
    resulth5 = h5py.File(save_path, mode="w")

    h5file = h5py.File(hdf5_path, mode="r")
    raw_data = h5file["features"]

    # Prepare output file

    # Hardcoded values
    mgc_h5 = resulth5.create_dataset("mgc", (num_files, 512, 35), dtype="float32")
    f0_h5 = resulth5.create_dataset("f0", (num_files, 512), dtype="float32")

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 10 == 0:
                print ("Reading row %i of %i" % (n + 1, len(x)))
            results.append(wav2mgcf0(f))

        return q.put((i, results))

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print ("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(target=process_batch, args=(q, raw_data[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        results_list = [q.get() for i in xrange(n_process)]
        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list for x in small_list]

        # mgcc, f0 = zip(*results_list)

        # Add to hdf5 file
        for mgc, f0 in results_list:
            mgc_h5[cont] = mgc
            f0_h5[cont] = f0
            cont += 1

        print "total time: ", (time.time() - total_time) / 60.0
        sys.stdout.flush()

    resulth5.flush()
    resulth5.close()
    h5file.close()
Example #4
0
def convert_to_spectrum():
    # ipdb.set_trace()
    data_path = os.environ["FUEL_DATA_PATH"]
    data_path = os.path.join(data_path, "blizzard/")
    data_name = "mgc_blizzard_80h.hdf5"
    save_name = "sp_blizzard_80h.hdf5"

    save_path = os.path.join(data_path, save_name)
    resulth5 = h5py.File(save_path, mode="w")

    sp_h5 = resulth5.create_dataset("sp", (TOTAL_ROWS, 512, 257), dtype="float32")
    f0_h5 = resulth5.create_dataset("f0", (TOTAL_ROWS, 512), dtype="float32")

    means = []
    stds = []
    cont = 0

    hdf5_path = os.path.join(data_path, data_name)
    h5file = h5py.File(hdf5_path, mode="r")
    mgc = h5file["mgc"]
    f0 = h5file["f0"]

    # Check next line
    f0_h5[:] = f0[:]

    import time

    alpha = 0.4
    stage = 2
    gamma = -1.0 / stage
    frame_window = 512

    # TOTAL_ROWS = 5000#138368
    n_times = 100
    n_process = 7  # marge
    # files_per_batch = 100
    # num_files = n_process*n_times*files_per_batch

    # total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    # const = num_files*num_chunk
    indx_mp = range(TOTAL_ROWS)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 10 == 0:
                print ("Reading row %i of %i" % (n + 1, len(x)))
            # Check if same results
            f = f.astype("float64").copy(order="C")
            results.append(numpy.apply_along_axis(SPTK.mgc2sp, 1, f, alpha, gamma, frame_window).real)
        return q.put((i, results))

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print ("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(target=process_batch, args=(q, mgc[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        results_list = [q.get() for i in xrange(n_process)]
        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list for x in small_list]

        # Add to hdf5 file
        for sp in results_list:
            sp_h5[cont] = sp.astype("float32")
            cont += 1

        print "total time: ", (time.time() - total_time) / 60.0
        sys.stdout.flush()

    cont = TOTAL_ROWS
    end_train = int(0.9 * cont)
    end_valid = int(0.95 * cont)
    end_test = cont

    split_dict = {
        "train": {"sp": (0, end_train), "f0": (0, end_train)},
        "valid": {"sp": (end_train, end_valid), "f0": (end_train, end_valid)},
        "test": {"sp": (end_valid, end_test), "f0": (end_valid, end_test)},
    }

    resulth5.attrs["split"] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()
Example #5
0
    for n, f in enumerate(data_files):
        if n % 10 == 0:
            print("Reading file %i of %i" % (n + 1, len(data_files)))
        try:
            di = wavfile.read(f)[1]
            if len(di.shape) > 1:
                di = di[:, 0]
            results.append(di)
        except:
            pass
    return q.put((i, results))


n_times = 10
n_process = 8
indx_mp = chunkIt(file_list, n_times)

size_per_iteration = [len(x) for x in indx_mp]
indx_mp = [chunkIt(x, n_process) for x in indx_mp]

size_first_iteration = [len(x) for x in indx_mp[0]]

features = h5file.create_dataset(
    'features', (len(file_list), ),
    dtype=h5py.special_dtype(vlen=numpy.dtype('int16')))

phonemes = h5file.create_dataset(
    'phonemes', (len(file_list), ),
    dtype=h5py.special_dtype(vlen=numpy.dtype('int16')))

import ipdb
Example #6
0
    results = []
    for n, f in enumerate(data_files):
        if n % 10 == 0:
            print("Reading file %i of %i" % (n+1, len(data_files)))
        try:
            di = wavfile.read(f)[1]
            if len(di.shape) > 1:
                di = di[:, 0]
            results.append(di)
        except:
            pass
    return q.put((i, results))

n_times = 10
n_process = 8
indx_mp = chunkIt(file_list, n_times)

size_per_iteration = [len(x) for x in indx_mp]
indx_mp = [chunkIt(x, n_process) for x in indx_mp]

size_first_iteration = [len(x) for x in indx_mp[0]]

features = h5file.create_dataset(
            'features', (len(file_list),),
            dtype=h5py.special_dtype(vlen=numpy.dtype('int16')))

phonemes = h5file.create_dataset(
            'phonemes', (len(file_list),),
            dtype=h5py.special_dtype(vlen=numpy.dtype('int16')))

Example #7
0
def process_chunk(num_chunk):
    #Total number of rows
    TOTAL_ROWS = 105856
    n_times = 50
    n_process = 11 # 7 for briaree
    files_per_batch = 25
    num_files = n_process*n_times*files_per_batch

    #total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    const = num_files*num_chunk
    indx_mp = range(num_files)

    indx_mp = [x + const for x in indx_mp]
    indx_mp = [x for x in indx_mp if x < TOTAL_ROWS]
    num_files = len(indx_mp)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    data_path = os.environ['FUEL_DATA_PATH']
    data_path = os.path.join(data_path,'blizzard/')
    file_name = "tbptt_blizzard_80h.hdf5"
    save_name = "chunk_{}.hdf5".format(num_chunk)
    hdf5_path = os.path.join(data_path, file_name)

    save_dir = os.environ['RESULTS_DIR']
    if 'blizzard' not in save_dir:
      save_dir = os.path.join(save_dir,'blizzard/')
    save_path = os.path.join(save_dir, save_name)
    resulth5 = h5py.File(save_path, mode='w')

    h5file = h5py.File(hdf5_path, mode='r')
    raw_data = h5file['features']

    # Prepare output file

    #Hardcoded values
    mgc_h5 = resulth5.create_dataset(
                'mgc', (num_files, 512, 35), dtype='float32')
    f0_h5 = resulth5.create_dataset(
                'f0', (num_files, 512), dtype='float32')

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 10 == 0:
                print("Reading row %i of %i" % (n+1, len(x)))
            results.append(wav2mgcf0(f))

        return q.put((i, results))

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(
                target=process_batch,
                args=(q, raw_data[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        results_list = [q.get() for i in xrange(n_process)]
        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list
                          for x in small_list]

        #mgcc, f0 = zip(*results_list)

        # Add to hdf5 file
        for mgc, f0 in results_list:
            mgc_h5[cont] = mgc
            f0_h5[cont] = f0
            cont += 1

        print "total time: ", (time.time()-total_time)/60.
        sys.stdout.flush()

    resulth5.flush()
    resulth5.close()
    h5file.close()
Example #8
0
def convert_to_spectrum():
    #ipdb.set_trace()
    data_path = os.environ['FUEL_DATA_PATH']
    data_path = os.path.join(data_path,'blizzard/')
    data_name = "mgc_blizzard_80h.hdf5"
    save_name = "sp_blizzard_80h.hdf5"

    save_path = os.path.join(data_path, save_name)
    resulth5 = h5py.File(save_path, mode='w')

    sp_h5 = resulth5.create_dataset(
                'sp', (TOTAL_ROWS, 512, 257), dtype='float32')
    f0_h5 = resulth5.create_dataset(
                'f0', (TOTAL_ROWS, 512), dtype='float32')

    means = []
    stds  = []
    cont = 0

    hdf5_path = os.path.join(data_path, data_name)
    h5file = h5py.File(hdf5_path, mode='r')
    mgc = h5file['mgc']
    f0 = h5file['f0']

    #Check next line
    f0_h5[:] =  f0[:]

    import time

    alpha = 0.4
    stage = 2
    gamma = -1.0 / stage
    frame_window = 512

    #TOTAL_ROWS = 5000#138368
    n_times = 100
    n_process = 7 # marge
    #files_per_batch = 100
    #num_files = n_process*n_times*files_per_batch

    #total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    #const = num_files*num_chunk
    indx_mp = range(TOTAL_ROWS)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 10 == 0:
                print("Reading row %i of %i" % (n+1, len(x)))
            # Check if same results
            f = f.astype('float64').copy(order = 'C')
            results.append(
                numpy.apply_along_axis(SPTK.mgc2sp, 1, f, alpha, gamma, frame_window).real)
        return q.put((i, results))

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(
                target=process_batch,
                args=(q, mgc[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        results_list = [q.get() for i in xrange(n_process)]
        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list
                          for x in small_list]

        # Add to hdf5 file
        for sp in results_list:
            sp_h5[cont] = sp.astype('float32')
            cont += 1

        print "total time: ", (time.time()-total_time)/60.
        sys.stdout.flush()

    cont = TOTAL_ROWS
    end_train = int(.9*cont)
    end_valid = int(.95*cont)
    end_test = cont

    split_dict = {
        'train': {'sp': (0, end_train),
                  'f0': (0, end_train)},
        'valid': {'sp': (end_train, end_valid),
                  'f0': (end_train, end_valid)},
        'test': {'sp': (end_valid, end_test),
                 'f0': (end_valid, end_test)}
        }

    resulth5.attrs['split'] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()
Example #9
0
def process_chunk(num_chunk):
    #Total number of rows
    TOTAL_ROWS = 138368
    n_times = 800
    n_process = 10 #14 
    files_per_batch = 20
    num_files = n_process*n_times*files_per_batch

    #total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    const = num_files*num_chunk
    indx_mp = range(num_files)

    indx_mp = [x + const for x in indx_mp]
    indx_mp = [x for x in indx_mp if x < TOTAL_ROWS]
    num_files = len(indx_mp)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    data_path = os.environ['FUEL_DATA_PATH'] 
    data_path = os.path.join(data_path,'blizzard/')
    file_name = "tbptt_blizzard.hdf5"
    save_name = "chunk_{}.hdf5".format(num_chunk)
    hdf5_path = os.path.join(data_path, file_name)

    save_dir = os.environ['RESULTS_DIR']
    if 'blizzard' not in save_dir:
      save_dir = os.path.join(save_dir,'blizzard/')
    save_path = os.path.join('/Tmp/sotelo', save_name)
    resulth5 = h5py.File(save_path, mode='w')

    h5file = h5py.File(hdf5_path, mode='r')
    raw_data = h5file['features']

    # Prepare output file

    #Hardcoded values
    amplitude = resulth5.create_dataset(
                'amplitude', (num_files, 326, 401), dtype='float32')
    phase = resulth5.create_dataset(
                'phase', (num_files, 326, 401), dtype='float32')

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 1 == 0:
                print("Reading row %i of %i" % (n+1, len(x)))
            d = f.astype('float32') / (2 ** 15)
            #Sample_rate = 16000
            sample_rate = 16000
            x_a = stft(d, sample_rate, 0.050, 0.025)[:,:401]
            results.append([abs(x_a), numpy.angle(x_a)])
        return q.put((i, results))

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(
                target=process_batch,
                args=(q, raw_data[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        print "Waiting for results..."
        results_list = [q.get() for i in xrange(n_process)]
        print "Results found!"

        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list
                          for x in small_list]

        # Add to hdf5 file
        # for spec in results_list:
        #     print "inputing data: ", cont
        #     amplitude[cont] = spec[0]
        #     phase[cont] = spec[1]
        #     cont += 1
        len_res = len(results_list)
        all_amplitude = numpy.array([x[0] for x in results_list])
        all_phase = numpy.array([x[1] for x in results_list])

        amplitude[cont:(cont+len_res)] = all_amplitude
        phase[cont:(cont+len_res)] = all_phase
        cont += len_res

        print "total time: ", (time.time()-total_time)/60.
        #sys.stdout.flush()

    end_train = int(.9*cont)
    end_valid = int(.95*cont)
    end_test = cont

    split_dict = {
        'train': {'amplitude': (0, end_train),
                  'phase': (0, end_train)},
        'valid': {'amplitude': (end_train, end_valid),
                  'phase': (end_train, end_valid)},
        'test': {'amplitude': (end_valid, end_test),
                 'phase': (end_valid, end_test)}
        }

    resulth5.attrs['split'] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()
Example #10
0
def process_chunk(num_chunk):
    #Total number of rows
    TOTAL_ROWS = 36212
    n_times = 30
    n_process = 14  # 7 for briaree
    files_per_batch = 10
    num_files = n_process * n_times * files_per_batch

    #total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    const = num_files * num_chunk
    indx_mp = range(num_files)

    indx_mp = [x + const for x in indx_mp]
    indx_mp = [x for x in indx_mp if x < TOTAL_ROWS]

    all_indx = indx_mp
    num_files = len(indx_mp)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    data_path = os.environ['FUEL_DATA_PATH']
    data_path = os.path.join(data_path, 'blizzard/')
    file_name = "raw_blizzard_80h.hdf5"
    save_name = "chunk_{}_sentence.hdf5".format(num_chunk)
    hdf5_path = os.path.join(data_path, file_name)

    save_dir = os.environ['RESULTS_DIR']
    if 'blizzard' not in save_dir:
        save_dir = os.path.join(save_dir, 'blizzard/')
    save_path = os.path.join(save_dir, save_name)
    resulth5 = h5py.File(save_path, mode='w')

    h5file = h5py.File(hdf5_path, mode='r')
    raw_data = h5file['features']

    #Hardcoded values
    mgc_h5 = resulth5.create_dataset(
        'mgc', (num_files, ),
        dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    mgc_shape_h5 = resulth5.create_dataset(
        'mgc_shapes', (num_files, 2), dtype='int32')

    mgc_h5.dims.create_scale(mgc_shape_h5, 'shapes')
    mgc_h5.dims[0].attach_scale(mgc_shape_h5)

    mgc_shape_labels = resulth5.create_dataset(
        'mgc_shape_labels', (2, ), dtype='S7')
    mgc_shape_labels[...] = [
        'time_step'.encode('utf8'), 'mgc_frequency'.encode('utf8')
    ]
    mgc_h5.dims.create_scale(mgc_shape_labels, 'shape_labels')
    mgc_h5.dims[0].attach_scale(mgc_shape_labels)

    sp_h5 = resulth5.create_dataset(
        'spectrum', (num_files, ),
        dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    sp_shape_h5 = resulth5.create_dataset(
        'sp_shapes', (num_files, 2), dtype='int32')

    sp_h5.dims.create_scale(sp_shape_h5, 'shapes')
    sp_h5.dims[0].attach_scale(sp_shape_h5)

    sp_shape_labels = resulth5.create_dataset(
        'sp_shape_labels', (2, ), dtype='S7')
    sp_shape_labels[...] = [
        'time_step'.encode('utf8'), 'sp_frequency'.encode('utf8')
    ]
    sp_h5.dims.create_scale(sp_shape_labels, 'shape_labels')
    sp_h5.dims[0].attach_scale(sp_shape_labels)

    vs_h5 = resulth5.create_dataset(
        'voicing_str', (num_files, ),
        dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    vs_shape_h5 = resulth5.create_dataset(
        'vs_shapes', (num_files, 2), dtype='int32')

    vs_h5.dims.create_scale(vs_shape_h5, 'shapes')
    vs_h5.dims[0].attach_scale(vs_shape_h5)

    vs_shape_labels = resulth5.create_dataset(
        'vs_shape_labels', (2, ), dtype='S7')
    vs_shape_labels[...] = [
        'time_step'.encode('utf8'), 'vs_frequency'.encode('utf8')
    ]
    vs_h5.dims.create_scale(vs_shape_labels, 'shape_labels')
    vs_h5.dims[0].attach_scale(vs_shape_labels)

    f0_h5 = resulth5.create_dataset(
        'f0', (num_files, ),
        dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    transcripts = resulth5.create_dataset(
        'transcripts', (num_files, ),
        dtype=h5py.special_dtype(vlen=numpy.dtype('int16')))

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 1 == 0:
                print("Reading row %i of %i" % (n + 1, len(x)))

            mgc, f0, vs = wav2mgcf0(f)
            f = mgc.astype('float64').copy(order='C')
            sp = numpy.apply_along_axis(SPTK.mgc2sp, 1, f, alpha, gamma,
                                        frame_window).real
            results.append((mgc, f0, vs, sp))

        return q.put((i, results))

    transcripts[...] = [h5file['transcripts'][indx] for indx in all_indx]

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(
                target=process_batch,
                args=(q, raw_data[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        results_list = [q.get() for i in xrange(n_process)]
        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list for x in small_list]

        #mgcc, f0 = zip(*results_list)

        # Add to hdf5 file
        for mgc, f0, vs, sp in results_list:
            mgc_h5[cont] = mgc.flatten()
            sp_h5[cont] = sp.flatten()
            vs_h5[cont] = vs.flatten()
            mgc_shape_h5[cont] = numpy.array(mgc.shape)
            sp_shape_h5[cont] = numpy.array(sp.shape)
            vs_shape_h5[cont] = numpy.array(vs.shape)
            f0_h5[cont] = f0
            cont += 1

        print "total time: ", (time.time() - total_time) / 60.
        sys.stdout.flush()

    split_dict = {
        'all': {
            'mgc': (0, num_files),
            'f0': (0, num_files),
            'transcripts': (0, num_files),
            'spectrum': (0, num_files),
            'voicing_str': (0, num_files)
        }
    }

    resulth5.attrs['split'] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()
    h5file.close()
Example #11
0
def process_chunk(num_chunk):
    #Total number of rows
    TOTAL_ROWS = 36212
    n_times = 30
    n_process = 14 # 7 for briaree
    files_per_batch = 10
    num_files = n_process*n_times*files_per_batch

    #total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    const = num_files*num_chunk
    indx_mp = range(num_files)

    indx_mp = [x + const for x in indx_mp]
    indx_mp = [x for x in indx_mp if x < TOTAL_ROWS]

    all_indx = indx_mp
    num_files = len(indx_mp)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    data_path = os.environ['FUEL_DATA_PATH']
    data_path = os.path.join(data_path,'blizzard/')
    file_name = "raw_blizzard_80h.hdf5"
    save_name = "chunk_{}_sentence.hdf5".format(num_chunk)
    hdf5_path = os.path.join(data_path, file_name)

    save_dir = os.environ['RESULTS_DIR']
    if 'blizzard' not in save_dir:
      save_dir = os.path.join(save_dir,'blizzard/')
    save_path = os.path.join(save_dir, save_name)
    resulth5 = h5py.File(save_path, mode='w')

    h5file = h5py.File(hdf5_path, mode='r')
    raw_data = h5file['features']

    #Hardcoded values
    mgc_h5 = resulth5.create_dataset(
                'mgc', (num_files,),
                dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    mgc_shape_h5 = resulth5.create_dataset(
                'mgc_shapes', (num_files,2), dtype = 'int32')

    mgc_h5.dims.create_scale(mgc_shape_h5, 'shapes')
    mgc_h5.dims[0].attach_scale(mgc_shape_h5)

    mgc_shape_labels = resulth5.create_dataset(
        'mgc_shape_labels', (2,), dtype='S7')
    mgc_shape_labels[...] = [
        'time_step'.encode('utf8'),
        'mgc_frequency'.encode('utf8')]
    mgc_h5.dims.create_scale(
        mgc_shape_labels, 'shape_labels')
    mgc_h5.dims[0].attach_scale(mgc_shape_labels)

    sp_h5 = resulth5.create_dataset(
                'spectrum', (num_files,),
                dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    sp_shape_h5 = resulth5.create_dataset(
                'sp_shapes', (num_files,2), dtype = 'int32')

    sp_h5.dims.create_scale(sp_shape_h5, 'shapes')
    sp_h5.dims[0].attach_scale(sp_shape_h5)

    sp_shape_labels = resulth5.create_dataset(
        'sp_shape_labels', (2,), dtype='S7')
    sp_shape_labels[...] = [
        'time_step'.encode('utf8'),
        'sp_frequency'.encode('utf8')]
    sp_h5.dims.create_scale(
        sp_shape_labels, 'shape_labels')
    sp_h5.dims[0].attach_scale(sp_shape_labels)

    vs_h5 = resulth5.create_dataset(
                'voicing_str', (num_files,),
                dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    vs_shape_h5 = resulth5.create_dataset(
                'vs_shapes', (num_files,2), dtype = 'int32')

    vs_h5.dims.create_scale(vs_shape_h5, 'shapes')
    vs_h5.dims[0].attach_scale(vs_shape_h5)

    vs_shape_labels = resulth5.create_dataset(
        'vs_shape_labels', (2,), dtype='S7')
    vs_shape_labels[...] = [
        'time_step'.encode('utf8'),
        'vs_frequency'.encode('utf8')]
    vs_h5.dims.create_scale(
        vs_shape_labels, 'shape_labels')
    vs_h5.dims[0].attach_scale(vs_shape_labels)

    f0_h5 = resulth5.create_dataset(
            'f0', (num_files, ),
            dtype=h5py.special_dtype(vlen=numpy.dtype('float32')))

    transcripts = resulth5.create_dataset(
            'transcripts', (num_files,),
            dtype=h5py.special_dtype(vlen=numpy.dtype('int16')))

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 1 == 0:
                print("Reading row %i of %i" % (n+1, len(x)))
            
            mgc, f0, vs = wav2mgcf0(f)
            f = mgc.astype('float64').copy(order = 'C')
            sp = numpy.apply_along_axis(SPTK.mgc2sp, 1, f, alpha, gamma, frame_window).real
            results.append((mgc, f0, vs, sp))

        return q.put((i, results))

    transcripts[...] = [h5file['transcripts'][indx] for indx in all_indx]

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(
                target=process_batch,
                args=(q, raw_data[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        results_list = [q.get() for i in xrange(n_process)]
        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list
                          for x in small_list]

        #mgcc, f0 = zip(*results_list)

        # Add to hdf5 file
        for mgc, f0, vs, sp in results_list:
            mgc_h5[cont] = mgc.flatten()
            sp_h5[cont] = sp.flatten()
            vs_h5[cont] = vs.flatten()
            mgc_shape_h5[cont] = numpy.array(mgc.shape)
            sp_shape_h5[cont] = numpy.array(sp.shape)
            vs_shape_h5[cont] = numpy.array(vs.shape)
            f0_h5[cont] = f0
            cont += 1

        print "total time: ", (time.time()-total_time)/60.
        sys.stdout.flush()

    split_dict = {
        'all': {'mgc': (0, num_files),
                'f0': (0, num_files),
                'transcripts': (0, num_files),
                'spectrum': (0, num_files),
                'voicing_str': (0, num_files)}
        }

    resulth5.attrs['split'] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()
    h5file.close()
Example #12
0
def process_chunk(num_chunk):
    #Total number of rows
    TOTAL_ROWS = 138368
    n_times = 800
    n_process = 10  #14
    files_per_batch = 20
    num_files = n_process * n_times * files_per_batch

    #total_chunks = numpy.ceil(TOTAL_ROWS/float(num_files))

    const = num_files * num_chunk
    indx_mp = range(num_files)

    indx_mp = [x + const for x in indx_mp]
    indx_mp = [x for x in indx_mp if x < TOTAL_ROWS]
    num_files = len(indx_mp)
    indx_mp = chunkIt(indx_mp, n_times)
    indx_mp = [chunkIt(x, n_process) for x in indx_mp]

    data_path = os.environ['FUEL_DATA_PATH']
    data_path = os.path.join(data_path, 'blizzard/')
    file_name = "tbptt_blizzard.hdf5"
    save_name = "chunk_{}.hdf5".format(num_chunk)
    hdf5_path = os.path.join(data_path, file_name)

    save_dir = os.environ['RESULTS_DIR']
    if 'blizzard' not in save_dir:
        save_dir = os.path.join(save_dir, 'blizzard/')
    save_path = os.path.join('/Tmp/sotelo', save_name)
    resulth5 = h5py.File(save_path, mode='w')

    h5file = h5py.File(hdf5_path, mode='r')
    raw_data = h5file['features']

    # Prepare output file

    #Hardcoded values
    amplitude = resulth5.create_dataset('amplitude', (num_files, 326, 401),
                                        dtype='float32')
    phase = resulth5.create_dataset('phase', (num_files, 326, 401),
                                    dtype='float32')

    def process_batch(q, x, i):
        results = []
        for n, f in enumerate(x):
            if n % 1 == 0:
                print("Reading row %i of %i" % (n + 1, len(x)))
            d = f.astype('float32') / (2**15)
            #Sample_rate = 16000
            sample_rate = 16000
            x_a = stft(d, sample_rate, 0.050, 0.025)[:, :401]
            results.append([abs(x_a), numpy.angle(x_a)])
        return q.put((i, results))

    total_time = time.time()
    cont = 0
    for time_step in xrange(n_times):
        print("Time step %i" % (time_step))
        q = Queue()

        process_list = []
        results_list = []

        for i_process in xrange(n_process):
            this_process = Process(
                target=process_batch,
                args=(q, raw_data[indx_mp[time_step][i_process]], i_process))
            process_list.append(this_process)
            process_list[i_process].start()

        print "Waiting for results..."
        results_list = [q.get() for i in xrange(n_process)]
        print "Results found!"

        results_list = sorted(results_list, key=lambda x: x[0])
        _, results_list = zip(*results_list)

        results_list = [x for small_list in results_list for x in small_list]

        # Add to hdf5 file
        # for spec in results_list:
        #     print "inputing data: ", cont
        #     amplitude[cont] = spec[0]
        #     phase[cont] = spec[1]
        #     cont += 1
        len_res = len(results_list)
        all_amplitude = numpy.array([x[0] for x in results_list])
        all_phase = numpy.array([x[1] for x in results_list])

        amplitude[cont:(cont + len_res)] = all_amplitude
        phase[cont:(cont + len_res)] = all_phase
        cont += len_res

        print "total time: ", (time.time() - total_time) / 60.
        #sys.stdout.flush()

    end_train = int(.9 * cont)
    end_valid = int(.95 * cont)
    end_test = cont

    split_dict = {
        'train': {
            'amplitude': (0, end_train),
            'phase': (0, end_train)
        },
        'valid': {
            'amplitude': (end_train, end_valid),
            'phase': (end_train, end_valid)
        },
        'test': {
            'amplitude': (end_valid, end_test),
            'phase': (end_valid, end_test)
        }
    }

    resulth5.attrs['split'] = H5PYDataset.create_split_array(split_dict)

    resulth5.flush()
    resulth5.close()