def transform_vol(invol, xfm, space_defining): invol = bg.unzip_file(invol) # in case zipped xfm = bg.unzip_file(xfm) # in case zipped space_defining = bg.unzip_file(space_defining) # in case zipped pp.apply_transform_onefile(xfm, invol) pp.reslice(space_defining, invol) rinvol = pp.prefix_filename(invol, prefix='r') bg.remove_files([invol]) bg.zip_files([space_defining]) return rinvol
def transform_vol(invol, xfm, space_defining): invol = bg.unzip_file(invol)# in case zipped xfm = bg.unzip_file(xfm)# in case zipped space_defining = bg.unzip_file(space_defining)# in case zipped pp.apply_transform_onefile(xfm, invol) pp.reslice(space_defining, invol) rinvol = pp.prefix_filename(invol, prefix='r') bg.remove_files([invol]) bg.zip_files([space_defining]) return rinvol
aparc = glob(globstr) if not len(aparc) > 0: logging.error('NO aparcaseg for %s' % globstr) continue aparc = aparc[0] caparc = bg.copy_file(aparc, roidir) caparc = bg.unzip_file(caparc) # in case zipped globstr = '%s/coreg_mri2fdg/*.mat*' % pth xfm = pp.find_single_file(globstr) if xfm is None: logging.error('NO transform for %s' % globstr) continue cxfm = bg.copy_file(xfm, roidir) cxfm = bg.unzip_file(cxfm) # in case zipped pp.apply_transform_onefile(cxfm, caparc) pp.reslice(dat, caparc) raparc = pp.prefix_filename(caparc, prefix='r') data = pp.nibabel.load(dat).get_data() meand = pp.mean_from_labels(roid, raparc, data) alld[subid] = meand ###write to file _, roifname = os.path.split(roifile) outf = os.path.join(userhome, 'roivalues_%s_%s_%s' % (tracer, cleantime, roifname)) fid = open(outf, 'w+') fid.write('SUBID,') rois = sorted(meand.keys()) roiss = ','.join(rois) fid.write(roiss)
shutil.rmtree(coregdir) continue cbrainmask = bg.copy_file(brainmask, coregdir) cbrainmask = bg.unzip_file(cbrainmask) # aparc aseg globstr = os.path.join(basedir, 'anatomy', '*aparc_aseg.nii*') aparc = pp.find_single_file(globstr) if aparc is None: logging.error('%s not found. skipping' % globstr) shutil.rmtree(coregdir) continue caparc = bg.copy_file(aparc, coregdir) caparc = bg.unzip_file(caparc) # cerebellum globstr = os.path.join(pth, 'ref_region', 'grey_cerebellum.nii*') cere = pp.find_single_file(globstr) if cere is None: logging.error('%s not found. skipping' % globstr) shutil.rmtree(coregdir) continue ccere = bg.copy_file(cere, coregdir) ccere = bg.unzip_file(ccere) # have all out files, coreg xfm = os.path.join(coregdir, 'mri_to_pet.mat') corgout = pp.invert_coreg(cbrainmask, mean_20min, xfm) pp.reslice(mean_20min, cbrainmask) pp.apply_transform_onefile(xfm, ccere) pp.reslice(mean_20min, ccere) pp.apply_transform_onefile(xfm, caparc) pp.reslice(mean_20min, caparc)
cbrainmask = bg.unzip_file(cbrainmask) # aparc aseg globstr = os.path.join(basedir, 'anatomy', '*aparc_aseg.nii*') aparc = pp.find_single_file(globstr) if aparc is None: logging.error('%s not found. skipping'%globstr) shutil.rmtree(coregdir) continue caparc = bg.copy_file(aparc, coregdir) caparc = bg.unzip_file(caparc) # cerebellum globstr = os.path.join(pth, 'ref_region', 'grey_cerebellum.nii*') cere = pp.find_single_file(globstr) if cere is None: logging.error('%s not found. skipping'%globstr) shutil.rmtree(coregdir) continue ccere = bg.copy_file(cere, coregdir) ccere = bg.unzip_file(ccere) # have all out files, coreg xfm = os.path.join(coregdir, 'mri_to_pet.mat') corgout = pp.invert_coreg(cbrainmask, mean_20min,xfm) pp.reslice(mean_20min, cbrainmask) pp.apply_transform_onefile(xfm, ccere) pp.reslice(mean_20min, ccere) pp.apply_transform_onefile(xfm, caparc) pp.reslice(mean_20min, caparc)
caparc = bg.copy_file(aparc, coreg_dir) xfm_file = pp.make_transform_name(cpet, cmri) logging.info("coreg %s" % (subid)) corg_out = pp.invert_coreg(cmri, cpet, xfm_file) if not corg_out.runtime.returncode == 0: logging.warning(corg_out.runtime.stderr) continue apply_out = pp.apply_transform_onefile(xfm_file, cpons) if not apply_out.runtime.returncode == 0: logging.warning(apply_out.runtime.stderr) continue apply_out = pp.apply_transform_onefile(xfm_file, caparc) if not apply_out.runtime.returncode == 0: logging.warning(apply_out.runtime.stderr) continue rout_mri = pp.reslice(cpet, cmri) if not rout_mri.runtime.returncode == 0: logging.warning(rout_mri.runtime.stderr) else: rmri = pp.prefix_filename(cmri, prefix="r") _, rmri_nme = os.path.split(rmri) new_rmri = rmri_nme.replace("rbr", "rfdg_br") newmri = bg.copy_file(rmri, "%s/anatomy/%s" % (sub, new_rmri)) if newmri: bg.remove_files([cmri, rmri]) rout_pons = pp.reslice(cpet, cpons) if not rout_pons.runtime.returncode == 0: logging.warning(rout_pons.runtime.stderr) else: rpons = pp.prefix_filename(cpons, prefix="r") newpons = bg.copy_file(rpons, "%s/ref_region" % (tracerdir))
aparc = glob(globstr) if not len(aparc)>0: logging.error('NO aparcaseg for %s'%globstr) continue aparc = aparc[0] caparc = bg.copy_file(aparc, roidir) caparc = bg.unzip_file(caparc)# in case zipped globstr = '%s/coreg_mri2fdg/*.mat*'%pth xfm = pp.find_single_file(globstr) if xfm is None: logging.error('NO transform for %s'%globstr) continue cxfm = bg.copy_file(xfm, roidir) cxfm = bg.unzip_file(cxfm)# in case zipped pp.apply_transform_onefile(cxfm, caparc) pp.reslice(dat, caparc) raparc = pp.prefix_filename(caparc, prefix='r') data = pp.nibabel.load(dat).get_data() meand = pp.mean_from_labels(roid, raparc, data) alld[subid] = meand ###write to file _, roifname = os.path.split(roifile) outf = os.path.join(userhome, 'roivalues_%s_%s_%s'%(tracer, cleantime, roifname)) fid =open(outf, 'w+') fid.write('SUBID,') rois = sorted(meand.keys())
caparc = bg.copy_file(aparc, coreg_dir) xfm_file = pp.make_transform_name(cpet, cmri) logging.info('coreg %s' % (subid)) corg_out = pp.invert_coreg(cmri, cpet, xfm_file) if not corg_out.runtime.returncode == 0: logging.warning(corg_out.runtime.stderr) continue apply_out = pp.apply_transform_onefile(xfm_file, cpons) if not apply_out.runtime.returncode == 0: logging.warning(apply_out.runtime.stderr) continue apply_out = pp.apply_transform_onefile(xfm_file, caparc) if not apply_out.runtime.returncode == 0: logging.warning(apply_out.runtime.stderr) continue rout_mri = pp.reslice(cpet, cmri) if not rout_mri.runtime.returncode == 0: logging.warning(rout_mri.runtime.stderr) else: rmri = pp.prefix_filename(cmri, prefix='r') _, rmri_nme = os.path.split(rmri) new_rmri = rmri_nme.replace('rbr', 'rfdg_br') newmri = bg.copy_file(rmri, '%s/anatomy/%s' % (sub, new_rmri)) if newmri: bg.remove_files([cmri, rmri]) rout_pons = pp.reslice(cpet, cpons) if not rout_pons.runtime.returncode == 0: logging.warning(rout_pons.runtime.stderr) else: rpons = pp.prefix_filename(cpons, prefix='r') newpons = bg.copy_file(rpons, '%s/ref_region' % (tracerdir))