def _build_query(self, query_dict, limit=None, offset=None, shards=None): if shards is not None: if self._available_shards is None: self._load_available_shards() shard_specs = [] for shard in shards: if shard not in self._available_shards: raise EsgfSearchException('Shard %s is not available' % shard) else: for port, suffix in self._available_shards[shard]: # suffix should be ommited when querying shard_specs.append('%s:%s/solr' % (shard, port)) shard_str = ','.join(shard_specs) else: shard_str = None full_query = MultiDict({ 'format': RESPONSE_FORMAT, 'limit': limit, 'distrib': 'true' if self.distrib else 'false', 'offset': offset, 'shards': shard_str, }) full_query.extend(query_dict) # Remove all None valued items full_query = MultiDict(item for item in full_query.items() if item[1] is not None) return full_query
def send_query(self, query_dict, limit=None, offset=None): """ Generally not to be called directly by the user but via SearchContext instances. :param query_dict: dictionary of query string parameers to send. :return: ElementTree instance (TODO: think about this) """ full_query = MultiDict({ 'format': RESPONSE_FORMAT, 'limit': limit, 'distrib': 'true' if self.distrib else 'false', 'offset': offset, 'shards': ','.join(self.shards) if self.shards else None, }) full_query.extend(query_dict) # Remove all None valued items full_query = MultiDict(item for item in full_query.items() if item[1] is not None) query_url = '%s?%s' % (self.url, urllib.urlencode(full_query)) log.debug('Query request is %s' % query_url) response = urllib2.urlopen(query_url) ret = json.load(response) return ret
def build_constraint_dict(constraints): c_dict = MultiDict() if constraints: for constrain in constraints.split(','): if ':' in constrain.strip(): key, value = constrain.split(':', 1) c_dict.add(key, value) return c_dict
def __init__(self, connection, constraints, search_type=TYPE_DATASET, latest=None, facets=None, fields=None, from_timestamp=None, to_timestamp=None, replica=None): """ :param connection: The SearchConnection :param constraints: A dictionary of initial constraints :param type: One of TYPE_* constants defining the document type to search for :param facets: The list of facets for which counts will be retrieved and constraints be validated against. Or None to represent all facets. :param fields: A list of field names to return in search responses :param replica: A boolean defining whether to return master records or replicas, or None to return both. :param latest: A boolean defining whether to return only latest verisons or only non-latest versions, or None to return both. """ self.connection = connection self.__facet_counts = None self.__hit_count = None # Constraints self.freetext_constraint = None self.facet_constraints = MultiDict() self.temporal_constraint = (None, None) self.geosplatial_constraint = None self._update_constraints(constraints) # Search configuration parameters self.timestamp_range = (from_timestamp, to_timestamp) search_types = [TYPE_DATASET, TYPE_FILE, TYPE_AGGREGATION] if search_type not in search_types: raise EsgfSearchException('search_type must be one of %s' % ','.join(search_types)) self.search_type = search_type self.latest = latest self.facets = facets self.fields = fields self.replica = replica
def convert_constraints(url): """ converts esgf search query to constraints parameter. TODO: constraints parameter should have the same structure as the esgf query. """ # FROM: project=CMIP5&time_frequency=mon&variable=tas,tasmax,tasmin # TO: project:CORDEX,experiment:historical,experiment:rcp26 parsed_url = urlparse(url) constraints = MultiDict() for qpart in parsed_url.query.split('&'): key, value = qpart.split('=') for val in value.split(','): constraints.add(key.strip(), val.strip()) converted = ','.join(["{0[0]}:{0[1]}".format(c) for c in constraints.items()]) return converted
def convert_constraints(url): """ converts esgf search query to constraints parameter. TODO: constraints parameter should have the same structure as the esgf query. """ # FROM: project=CMIP5&time_frequency=mon&variable=tas,tasmax,tasmin # TO: project:CORDEX,experiment:historical,experiment:rcp26 parsed_url = urlparse(url) constraints = MultiDict() for qpart in parsed_url.query.split('&'): key, value = qpart.split('=') for val in value.split(','): constraints.add(key.strip(), val.strip()) converted = ','.join( ["{0[0]}:{0[1]}".format(c) for c in constraints.iteritems()]) return converted
def __init__(self, connection, constraints, search_type=None, latest=None, facets=None, fields=None, from_timestamp=None, to_timestamp=None, replica=None, shards=None): """ :param connection: The SearchConnection :param constraints: A dictionary of initial constraints :param search_type: One of TYPE_* constants defining the document type to search for. Overrides SearchContext.DEFAULT_SEARCH_TYPE :param facets: The list of facets for which counts will be retrieved and constraints be validated against. Or None to represent all facets. :param fields: A list of field names to return in search responses :param replica: A boolean defining whether to return master records or replicas, or None to return both. :param latest: A boolean defining whether to return only latest verisons or only non-latest versions, or None to return both. :param shards: list of shards to restrict searches to. Should be from the list self.connection.get_shard_list() :param from_timestamp: Date-time string to specify start of search range (e.g. "2000-01-01T00:00:00Z"). :param to_timestamp: Date-time string to specify end of search range (e.g. "2100-12-31T23:59:59Z"). """ self.connection = connection self.__facet_counts = None self.__hit_count = None if search_type is None: search_type = self.DEFAULT_SEARCH_TYPE # Constraints self.freetext_constraint = None self.facet_constraints = MultiDict() self.temporal_constraint = [from_timestamp, to_timestamp] self.geosplatial_constraint = None self._update_constraints(constraints) # Search configuration parameters self.timestamp_range = (from_timestamp, to_timestamp) search_types = [TYPE_DATASET, TYPE_FILE, TYPE_AGGREGATION] if search_type not in search_types: raise EsgfSearchException('search_type must be one of %s' % ','.join(search_types)) self.search_type = search_type self.latest = latest self.facets = facets self.fields = fields self.replica = replica self.shards = shards
def _build_query(self): """ Build query string parameters as a dictionary. """ query_dict = MultiDict({"query": self.freetext_constraint, "type": self.search_type, "latest": self.latest, "facets": self.facets, "fields": self.fields, "replica": self.replica, }) query_dict.extend(self.facet_constraints) #!TODO: encode datetime #start, end = self.temporal_constraint #query_dict.update(start=start, end=end) return query_dict
def _build_query(self): """ Build query string parameters as a dictionary. """ query_dict = MultiDict({ "query": self.freetext_constraint, "type": self.search_type, "latest": self.latest, "facets": self.facets, "fields": self.fields, "replica": self.replica, }) query_dict.extend(self.facet_constraints) #!TODO: encode datetime #start, end = self.temporal_constraint #query_dict.update(start=start, end=end) return query_dict
def _split_constraints(self, constraints): """ Divide a constraint dictionary into 4 types of constraints: 1. Freetext query 2. Facet constraints 3. Temporal constraints 4. Geospatial constraints :return: A dictionary of the 4 types of constraint. """ # local import to prevent circular importing from .connection import query_keyword_type constraints_split = dict( (kw, MultiDict()) for kw in QUERY_KEYWORD_TYPES) for kw, val in constraints.items(): constraint_type = query_keyword_type(kw) constraints_split[constraint_type][kw] = val return constraints_split
def test_view_list_not_list(self): from pyesgf.multidict import MultiDict d = MultiDict() self.assertRaises(TypeError, d.view_list, 42)
class SearchContext(object): """ Instances of this class represent the state of a current search. It exposes what facets are available to select and the facet counts if they are available. Subclasses of this class can restrict the search options. For instance FileSearchContext, DatasetSerachContext or CMIP5SearchContext SearchContext instances are connected to SearchConnection instances. You normally create SearchContext instances via one of: 1. Calling SearchConnection.new_context() 2. Calling SearchContext.constrain() :ivar constraints: A dictionary of facet constraints currently in effect. constraint[facet_name] = [value, value, ...] """ def __init__(self, connection, constraints, search_type=TYPE_DATASET, latest=None, facets=None, fields=None, from_timestamp=None, to_timestamp=None, replica=None): """ :param connection: The SearchConnection :param constraints: A dictionary of initial constraints :param type: One of TYPE_* constants defining the document type to search for :param facets: The list of facets for which counts will be retrieved and constraints be validated against. Or None to represent all facets. :param fields: A list of field names to return in search responses :param replica: A boolean defining whether to return master records or replicas, or None to return both. :param latest: A boolean defining whether to return only latest verisons or only non-latest versions, or None to return both. """ self.connection = connection self.__facet_counts = None self.__hit_count = None # Constraints self.freetext_constraint = None self.facet_constraints = MultiDict() self.temporal_constraint = (None, None) self.geosplatial_constraint = None self._update_constraints(constraints) # Search configuration parameters self.timestamp_range = (from_timestamp, to_timestamp) search_types = [TYPE_DATASET, TYPE_FILE, TYPE_AGGREGATION] if search_type not in search_types: raise EsgfSearchException('search_type must be one of %s' % ','.join(search_types)) self.search_type = search_type self.latest = latest self.facets = facets self.fields = fields self.replica = replica #------------------------------------------------------------------------- # Functional search interface # These do not change the constraints on self. def search(self, **constraints): """ :param constraints: Further constraints for this query. Equivilent to calling self.constrain(**constraints).search() :return: A ResultSet for this query """ if constraints: sc = self.constrain(**constraints) else: sc = self self.__update_counts() return ResultSet(sc) def constrain(self, **constraints): """ Return a *new* instance with the additional constraints. """ new_sc = copy.copy(self) new_sc._update_constraints(constraints) return new_sc @property def facet_counts(self): self.__update_counts() return self.__facet_counts @property def hit_count(self): self.__update_counts() return self.__hit_count def get_facet_options(self): """ Return a dictionary of facet counts filtered to remove all facets that are completely constrained. """ facet_options = {} hits = self.hit_count for facet, counts in self.facet_counts.items(): # filter out counts that match total hits counts = dict(items for items in counts.items() if items[1] < hits) if len(counts) > 1: facet_options[facet] = counts return facet_options def __update_counts(self): # If hit_count is set the counts are already retrieved if self.__hit_count is not None: return self.__facet_counts = {} self.__hit_count = None query_dict = self._build_query() query_dict['facets'] = '*' response = self.connection.send_query(query_dict, limit=0) for facet, counts in ( response['facet_counts']['facet_fields'].items()): d = self.__facet_counts[facet] = {} while counts: d[counts.pop()] = counts.pop() self.__hit_count = response['response']['numFound'] #------------------------------------------------------------------------- # Constraint mutation interface # These functions update the instance in-place. # Use constrain() and search() to generate new contexts with tighter # constraints. def _update_constraints(self, constraints): """ Update the constraints in-place by calling _constrain_*() methods. """ constraints_split = self._split_constraints(constraints) self._constrain_facets(constraints_split['facet']) if 'query' in constraints_split['freetext']: new_freetext = constraints_split['freetext']['query'] self._constrain_freetext(new_freetext) #!TODO: implement temporal and geospatial constraints #self._constrain_temporal() #self._constrain_geospatial() # reset cached values self.__hit_count = None self.__facet_counts = None def _constrain_facets(self, facet_constraints): for key, values in facet_constraints.mixed().items(): current_values = self.facet_constraints.getall(key) if isinstance(values, list): for value in values: if value not in current_values: self.facet_constraints.add(key, value) else: if values not in current_values: self.facet_constraints.add(key, values) def _constrain_freetext(self, query): self.freetext_constraint = query def _constrain_temporal(self, start, end): """ :param start: a datetime instance specifying the start of the temporal constraint. :param end: a datetime instance specifying the end of the temporal constraint. """ #!TODO: support solr date keywords like "NOW" and "NOW-1DAY" # we will probably need a separate TemporalConstraint object self.temporal_constraint = (start, end) def _constrain_geospatial(self, lat=None, lon=None, bbox=None, location=None, radius=None, polygon=None): self.geospatial_constraint = GeospatialConstraint(lat, lon, bbox, location, radius, polygon) raise NotImplementedError #------------------------------------------------------------------------- def _split_constraints(self, constraints): """ Divide a constraint dictionary into 4 types of constraints: 1. Freetext query 2. Facet constraints 3. Temporal constraints 4. Geospatial constraints :return: A dictionary of the 4 types of constraint. """ # local import to prevent circular importing from .connection import query_keyword_type constraints_split = dict((kw, MultiDict()) for kw in QUERY_KEYWORD_TYPES) for kw, val in constraints.items(): constraint_type = query_keyword_type(kw) constraints_split[constraint_type][kw] = val return constraints_split def _build_query(self): """ Build query string parameters as a dictionary. """ query_dict = MultiDict({"query": self.freetext_constraint, "type": self.search_type, "latest": self.latest, "facets": self.facets, "fields": self.fields, "replica": self.replica, }) query_dict.extend(self.facet_constraints) #!TODO: encode datetime #start, end = self.temporal_constraint #query_dict.update(start=start, end=end) return query_dict
class SearchContext(object): """ Instances of this class represent the state of a current search. It exposes what facets are available to select and the facet counts if they are available. Subclasses of this class can restrict the search options. For instance FileSearchContext, DatasetSerachContext or CMIP5SearchContext SearchContext instances are connected to SearchConnection instances. You normally create SearchContext instances via one of: 1. Calling SearchConnection.new_context() 2. Calling SearchContext.constrain() :ivar constraints: A dictionary of facet constraints currently in effect. constraint[facet_name] = [value, value, ...] """ def __init__(self, connection, constraints, search_type=TYPE_DATASET, latest=None, facets=None, fields=None, from_timestamp=None, to_timestamp=None, replica=None): """ :param connection: The SearchConnection :param constraints: A dictionary of initial constraints :param type: One of TYPE_* constants defining the document type to search for :param facets: The list of facets for which counts will be retrieved and constraints be validated against. Or None to represent all facets. :param fields: A list of field names to return in search responses :param replica: A boolean defining whether to return master records or replicas, or None to return both. :param latest: A boolean defining whether to return only latest verisons or only non-latest versions, or None to return both. """ self.connection = connection self.__facet_counts = None self.__hit_count = None # Constraints self.freetext_constraint = None self.facet_constraints = MultiDict() self.temporal_constraint = (None, None) self.geosplatial_constraint = None self._update_constraints(constraints) # Search configuration parameters self.timestamp_range = (from_timestamp, to_timestamp) search_types = [TYPE_DATASET, TYPE_FILE, TYPE_AGGREGATION] if search_type not in search_types: raise EsgfSearchException('search_type must be one of %s' % ','.join(search_types)) self.search_type = search_type self.latest = latest self.facets = facets self.fields = fields self.replica = replica #------------------------------------------------------------------------- # Functional search interface # These do not change the constraints on self. def search(self, **constraints): """ :param constraints: Further constraints for this query. Equivilent to calling self.constrain(**constraints).search() :return: A ResultSet for this query """ if constraints: sc = self.constrain(**constraints) else: sc = self self.__update_counts() return ResultSet(sc) def constrain(self, **constraints): """ Return a *new* instance with the additional constraints. """ new_sc = copy.copy(self) new_sc._update_constraints(constraints) return new_sc @property def facet_counts(self): self.__update_counts() return self.__facet_counts @property def hit_count(self): self.__update_counts() return self.__hit_count def get_facet_options(self): """ Return a dictionary of facet counts filtered to remove all facets that are completely constrained. """ facet_options = {} hits = self.hit_count for facet, counts in self.facet_counts.items(): # filter out counts that match total hits counts = dict(items for items in counts.items() if items[1] < hits) if len(counts) > 1: facet_options[facet] = counts return facet_options def __update_counts(self): # If hit_count is set the counts are already retrieved if self.__hit_count is not None: return self.__facet_counts = {} self.__hit_count = None query_dict = self._build_query() query_dict['facets'] = '*' response = self.connection.send_query(query_dict, limit=0) for facet, counts in ( response['facet_counts']['facet_fields'].items()): d = self.__facet_counts[facet] = {} while counts: d[counts.pop()] = counts.pop() self.__hit_count = response['response']['numFound'] #------------------------------------------------------------------------- # Constraint mutation interface # These functions update the instance in-place. # Use constrain() and search() to generate new contexts with tighter # constraints. def _update_constraints(self, constraints): """ Update the constraints in-place by calling _constrain_*() methods. """ constraints_split = self._split_constraints(constraints) self._constrain_facets(constraints_split['facet']) if 'query' in constraints_split['freetext']: new_freetext = constraints_split['freetext']['query'] self._constrain_freetext(new_freetext) #!TODO: implement temporal and geospatial constraints #self._constrain_temporal() #self._constrain_geospatial() # reset cached values self.__hit_count = None self.__facet_counts = None def _constrain_facets(self, facet_constraints): for key, values in facet_constraints.mixed().items(): current_values = self.facet_constraints.getall(key) if isinstance(values, list): for value in values: if value not in current_values: self.facet_constraints.add(key, value) else: if values not in current_values: self.facet_constraints.add(key, values) def _constrain_freetext(self, query): self.freetext_constraint = query def _constrain_temporal(self, start, end): """ :param start: a datetime instance specifying the start of the temporal constraint. :param end: a datetime instance specifying the end of the temporal constraint. """ #!TODO: support solr date keywords like "NOW" and "NOW-1DAY" # we will probably need a separate TemporalConstraint object self.temporal_constraint = (start, end) def _constrain_geospatial(self, lat=None, lon=None, bbox=None, location=None, radius=None, polygon=None): self.geospatial_constraint = GeospatialConstraint( lat, lon, bbox, location, radius, polygon) raise NotImplementedError #------------------------------------------------------------------------- def _split_constraints(self, constraints): """ Divide a constraint dictionary into 4 types of constraints: 1. Freetext query 2. Facet constraints 3. Temporal constraints 4. Geospatial constraints :return: A dictionary of the 4 types of constraint. """ # local import to prevent circular importing from .connection import query_keyword_type constraints_split = dict( (kw, MultiDict()) for kw in QUERY_KEYWORD_TYPES) for kw, val in constraints.items(): constraint_type = query_keyword_type(kw) constraints_split[constraint_type][kw] = val return constraints_split def _build_query(self): """ Build query string parameters as a dictionary. """ query_dict = MultiDict({ "query": self.freetext_constraint, "type": self.search_type, "latest": self.latest, "facets": self.facets, "fields": self.fields, "replica": self.replica, }) query_dict.extend(self.facet_constraints) #!TODO: encode datetime #start, end = self.temporal_constraint #query_dict.update(start=start, end=end) return query_dict
class SearchContext(object): """ Instances of this class represent the state of a current search. It exposes what facets are available to select and the facet counts if they are available. Subclasses of this class can restrict the search options. For instance FileSearchContext, DatasetSerachContext or CMIP5SearchContext SearchContext instances are connected to SearchConnection instances. You normally create SearchContext instances via one of: 1. Calling SearchConnection.new_context() 2. Calling SearchContext.constrain() :ivar constraints: A dictionary of facet constraints currently in effect. ``constraint[facet_name] = [value, value, ...]`` :property facet_counts: A dictionary of available hits with each facet value for the search as currently constrained. This property returns a dictionary of dictionaries where ``facet_counts[facet][facet_value] == hit_count`` :property hit_count: The total number of hits available with current constraints. """ DEFAULT_SEARCH_TYPE = NotImplemented def __init__(self, connection, constraints, search_type=None, latest=None, facets=None, fields=None, from_timestamp=None, to_timestamp=None, replica=None, shards=None): """ :param connection: The SearchConnection :param constraints: A dictionary of initial constraints :param search_type: One of TYPE_* constants defining the document type to search for. Overrides SearchContext.DEFAULT_SEARCH_TYPE :param facets: The list of facets for which counts will be retrieved and constraints be validated against. Or None to represent all facets. :param fields: A list of field names to return in search responses :param replica: A boolean defining whether to return master records or replicas, or None to return both. :param latest: A boolean defining whether to return only latest verisons or only non-latest versions, or None to return both. :param shards: list of shards to restrict searches to. Should be from the list self.connection.get_shard_list() :param from_timestamp: Date-time string to specify start of search range (e.g. "2000-01-01T00:00:00Z"). :param to_timestamp: Date-time string to specify end of search range (e.g. "2100-12-31T23:59:59Z"). """ self.connection = connection self.__facet_counts = None self.__hit_count = None if search_type is None: search_type = self.DEFAULT_SEARCH_TYPE # Constraints self.freetext_constraint = None self.facet_constraints = MultiDict() self.temporal_constraint = [from_timestamp, to_timestamp] self.geosplatial_constraint = None self._update_constraints(constraints) # Search configuration parameters self.timestamp_range = (from_timestamp, to_timestamp) search_types = [TYPE_DATASET, TYPE_FILE, TYPE_AGGREGATION] if search_type not in search_types: raise EsgfSearchException('search_type must be one of %s' % ','.join(search_types)) self.search_type = search_type self.latest = latest self.facets = facets self.fields = fields self.replica = replica self.shards = shards #------------------------------------------------------------------------- # Functional search interface # These do not change the constraints on self. def search(self, **constraints): """ Perform the search with current constraints returning a set of results. :param constraints: Further constraints for this query. Equivilent to calling self.constrain(**constraints).search() :return: A ResultSet for this query """ if constraints: sc = self.constrain(**constraints) else: sc = self self.__update_counts() return ResultSet(sc) def constrain(self, **constraints): """ Return a *new* instance with the additional constraints. """ new_sc = copy.deepcopy(self) new_sc._update_constraints(constraints) return new_sc def get_download_script(self, **constraints): """ Download a script for downloading all files in the set of results. :param constraints: Further constraints for this query. Equivilent to calling self.constrain(**constraints).get_download_script() :return: A string containing the script """ if constraints: sc = self.constrain(**constraints) else: sc = self sc.__update_counts() query_dict = sc._build_query() #!TODO: allow setting limit script = sc.connection.send_wget(query_dict, shards=self.shards) return script @property def facet_counts(self): self.__update_counts() return self.__facet_counts @property def hit_count(self): self.__update_counts() return self.__hit_count def get_facet_options(self): """ Return a dictionary of facet counts filtered to remove all facets that are completely constrained. This method is similar to the property ``facet_counts`` except facet values which are not relevant for further constraining are removed. """ facet_options = {} hits = self.hit_count for facet, counts in self.facet_counts.items(): # filter out counts that match total hits counts = dict(items for items in counts.items() if items[1] < hits) if len(counts) > 1: facet_options[facet] = counts return facet_options def __update_counts(self): # If hit_count is set the counts are already retrieved if self.__hit_count is not None: return self.__facet_counts = {} self.__hit_count = None query_dict = self._build_query() query_dict['facets'] = '*' response = self.connection.send_search(query_dict, limit=0) for facet, counts in ( response['facet_counts']['facet_fields'].items()): d = self.__facet_counts[facet] = {} while counts: d[counts.pop()] = counts.pop() self.__hit_count = response['response']['numFound'] #------------------------------------------------------------------------- # Constraint mutation interface # These functions update the instance in-place. # Use constrain() and search() to generate new contexts with tighter # constraints. def _update_constraints(self, constraints): """ Update the constraints in-place by calling _constrain_*() methods. """ constraints_split = self._split_constraints(constraints) self._constrain_facets(constraints_split['facet']) if 'query' in constraints_split['freetext']: new_freetext = constraints_split['freetext']['query'] self._constrain_freetext(new_freetext) #!TODO: implement temporal and geospatial constraints if 'from_timestamp' in constraints_split['temporal']: self.temporal_constraint[0] = constraints_split['temporal']['from_timestamp'] if 'to_timestamp' in constraints_split['temporal']: self.temporal_constraint[1] = constraints_split['temporal']['to_timestamp'] #self._constrain_geospatial() # reset cached values self.__hit_count = None self.__facet_counts = None def _constrain_facets(self, facet_constraints): for key, values in facet_constraints.mixed().items(): current_values = self.facet_constraints.getall(key) if isinstance(values, list): for value in values: if value not in current_values: self.facet_constraints.add(key, value) else: if values not in current_values: self.facet_constraints.add(key, values) def _constrain_freetext(self, query): self.freetext_constraint = query def _constrain_geospatial(self, lat=None, lon=None, bbox=None, location=None, radius=None, polygon=None): self.geospatial_constraint = GeospatialConstraint(lat, lon, bbox, location, radius, polygon) raise NotImplementedError #------------------------------------------------------------------------- def _split_constraints(self, constraints): """ Divide a constraint dictionary into 4 types of constraints: 1. Freetext query 2. Facet constraints 3. Temporal constraints 4. Geospatial constraints :return: A dictionary of the 4 types of constraint. """ # local import to prevent circular importing from .connection import query_keyword_type constraints_split = dict((kw, MultiDict()) for kw in QUERY_KEYWORD_TYPES) for kw, val in constraints.items(): constraint_type = query_keyword_type(kw) constraints_split[constraint_type][kw] = val return constraints_split def _build_query(self): """ Build query string parameters as a dictionary. """ query_dict = MultiDict({"query": self.freetext_constraint, "type": self.search_type, "latest": self.latest, "facets": self.facets, "fields": self.fields, "replica": self.replica, }) query_dict.extend(self.facet_constraints) #!TODO: encode datetime start, end = self.temporal_constraint query_dict.update(start=start, end=end) return query_dict
class SearchContext(object): """ Instances of this class represent the state of a current search. It exposes what facets are available to select and the facet counts if they are available. Subclasses of this class can restrict the search options. For instance FileSearchContext, DatasetSerachContext or CMIP5SearchContext SearchContext instances are connected to SearchConnection instances. You normally create SearchContext instances via one of: 1. Calling SearchConnection.new_context() 2. Calling SearchContext.constrain() :ivar constraints: A dictionary of facet constraints currently in effect. ``constraint[facet_name] = [value, value, ...]`` :property facet_counts: A dictionary of available hits with each facet value for the search as currently constrained. This property returns a dictionary of dictionaries where ``facet_counts[facet][facet_value] == hit_count`` :property hit_count: The total number of hits available with current constraints. """ DEFAULT_SEARCH_TYPE = NotImplemented def __init__(self, connection, constraints, search_type=None, latest=None, facets=None, fields=None, from_timestamp=None, to_timestamp=None, replica=None, shards=None): """ :param connection: The SearchConnection :param constraints: A dictionary of initial constraints :param search_type: One of TYPE_* constants defining the document type to search for. Overrides SearchContext.DEFAULT_SEARCH_TYPE :param facets: The list of facets for which counts will be retrieved and constraints be validated against. Or None to represent all facets. :param fields: A list of field names to return in search responses :param replica: A boolean defining whether to return master records or replicas, or None to return both. :param latest: A boolean defining whether to return only latest verisons or only non-latest versions, or None to return both. :param shards: list of shards to restrict searches to. Should be from the list self.connection.get_shard_list() :param from_timestamp: Date-time string to specify start of search range (e.g. "2000-01-01T00:00:00Z"). :param to_timestamp: Date-time string to specify end of search range (e.g. "2100-12-31T23:59:59Z"). """ self.connection = connection self.__facet_counts = None self.__hit_count = None if search_type is None: search_type = self.DEFAULT_SEARCH_TYPE # Constraints self.freetext_constraint = None self.facet_constraints = MultiDict() self.temporal_constraint = [from_timestamp, to_timestamp] self.geosplatial_constraint = None self._update_constraints(constraints) # Search configuration parameters self.timestamp_range = (from_timestamp, to_timestamp) search_types = [TYPE_DATASET, TYPE_FILE, TYPE_AGGREGATION] if search_type not in search_types: raise EsgfSearchException('search_type must be one of %s' % ','.join(search_types)) self.search_type = search_type self.latest = latest self.facets = facets self.fields = fields self.replica = replica self.shards = shards #------------------------------------------------------------------------- # Functional search interface # These do not change the constraints on self. def search(self, **constraints): """ Perform the search with current constraints returning a set of results. :param constraints: Further constraints for this query. Equivilent to calling self.constrain(**constraints).search() :return: A ResultSet for this query """ if constraints: sc = self.constrain(**constraints) else: sc = self self.__update_counts() return ResultSet(sc) def constrain(self, **constraints): """ Return a *new* instance with the additional constraints. """ new_sc = copy.deepcopy(self) new_sc._update_constraints(constraints) return new_sc def get_download_script(self, **constraints): """ Download a script for downloading all files in the set of results. :param constraints: Further constraints for this query. Equivilent to calling self.constrain(**constraints).get_download_script() :return: A string containing the script """ if constraints: sc = self.constrain(**constraints) else: sc = self sc.__update_counts() query_dict = sc._build_query() #!TODO: allow setting limit script = sc.connection.send_wget(query_dict, shards=self.shards) return script @property def facet_counts(self): self.__update_counts() return self.__facet_counts @property def hit_count(self): self.__update_counts() return self.__hit_count def get_facet_options(self): """ Return a dictionary of facet counts filtered to remove all facets that are completely constrained. This method is similar to the property ``facet_counts`` except facet values which are not relevant for further constraining are removed. """ facet_options = {} hits = self.hit_count for facet, counts in self.facet_counts.items(): # filter out counts that match total hits counts = dict(items for items in counts.items() if items[1] < hits) if len(counts) > 1: facet_options[facet] = counts return facet_options def __update_counts(self): # If hit_count is set the counts are already retrieved if self.__hit_count is not None: return self.__facet_counts = {} self.__hit_count = None query_dict = self._build_query() query_dict['facets'] = '*' response = self.connection.send_search(query_dict, limit=0) for facet, counts in ( response['facet_counts']['facet_fields'].items()): d = self.__facet_counts[facet] = {} while counts: d[counts.pop()] = counts.pop() self.__hit_count = response['response']['numFound'] #------------------------------------------------------------------------- # Constraint mutation interface # These functions update the instance in-place. # Use constrain() and search() to generate new contexts with tighter # constraints. def _update_constraints(self, constraints): """ Update the constraints in-place by calling _constrain_*() methods. """ constraints_split = self._split_constraints(constraints) self._constrain_facets(constraints_split['facet']) if 'query' in constraints_split['freetext']: new_freetext = constraints_split['freetext']['query'] self._constrain_freetext(new_freetext) #!TODO: implement temporal and geospatial constraints if 'from_timestamp' in constraints_split['temporal']: self.temporal_constraint[0] = constraints_split['temporal'][ 'from_timestamp'] if 'to_timestamp' in constraints_split['temporal']: self.temporal_constraint[1] = constraints_split['temporal'][ 'to_timestamp'] #self._constrain_geospatial() # reset cached values self.__hit_count = None self.__facet_counts = None def _constrain_facets(self, facet_constraints): for key, values in facet_constraints.mixed().items(): current_values = self.facet_constraints.getall(key) if isinstance(values, list): for value in values: if value not in current_values: self.facet_constraints.add(key, value) else: if values not in current_values: self.facet_constraints.add(key, values) def _constrain_freetext(self, query): self.freetext_constraint = query def _constrain_geospatial(self, lat=None, lon=None, bbox=None, location=None, radius=None, polygon=None): self.geospatial_constraint = GeospatialConstraint( lat, lon, bbox, location, radius, polygon) raise NotImplementedError #------------------------------------------------------------------------- def _split_constraints(self, constraints): """ Divide a constraint dictionary into 4 types of constraints: 1. Freetext query 2. Facet constraints 3. Temporal constraints 4. Geospatial constraints :return: A dictionary of the 4 types of constraint. """ # local import to prevent circular importing from .connection import query_keyword_type constraints_split = dict( (kw, MultiDict()) for kw in QUERY_KEYWORD_TYPES) for kw, val in constraints.items(): constraint_type = query_keyword_type(kw) constraints_split[constraint_type][kw] = val return constraints_split def _build_query(self): """ Build query string parameters as a dictionary. """ query_dict = MultiDict({ "query": self.freetext_constraint, "type": self.search_type, "latest": self.latest, "facets": self.facets, "fields": self.fields, "replica": self.replica, }) query_dict.extend(self.facet_constraints) #!TODO: encode datetime start, end = self.temporal_constraint query_dict.update(start=start, end=end) return query_dict
def test_from_fieldstorage_without_filename(self): from pyesgf.multidict import MultiDict d = MultiDict() fs = DummyFieldStorage('a', '1') self.assertEqual(d.from_fieldstorage(fs), MultiDict({'a': '1'}))
def search(self, constraints=[('project', 'CORDEX')], query=None, start=None, end=None, limit=1, offset=0, search_type='Dataset', temporal=False): self.show_status("Starting ...", 0) from pyesgf.multidict import MultiDict my_constraints = MultiDict() for key, value in constraints: my_constraints.add(key, value) LOGGER.debug('constraints=%s', my_constraints) if not query or query == '*': query = None LOGGER.debug('query: %s', query) # TODO: check type of start, end LOGGER.debug('start=%s, end=%s', start, end) ctx = None if temporal is True: LOGGER.debug("using dataset search with time constraints") # TODO: handle timestamps in a better way timestamp_format = '%Y-%m-%dT%H:%M:%SZ' if start: from_timestamp = start.strftime(timestamp_format) else: from_timestamp = None if end: to_timestamp = end.strftime(timestamp_format) else: to_timestamp = None LOGGER.debug("from=%s, to=%s", from_timestamp, to_timestamp) ctx = self.conn.new_context(fields=self.fields, replica=self.replica, latest=self.latest, query=query, from_timestamp=from_timestamp, to_timestamp=to_timestamp) else: ctx = self.conn.new_context(fields=self.fields, replica=self.replica, latest=self.latest, query=query) if len(my_constraints) > 0: ctx = ctx.constrain(**my_constraints.mixed()) LOGGER.debug('ctx: facet_constraints=%s, replica=%s, latests=%s', ctx.facet_constraints, ctx.replica, ctx.latest) self.show_status("Datasets found=%d" % ctx.hit_count, 0) self.summary = dict(total_number_of_datasets=ctx.hit_count, number_of_datasets=0, number_of_files=0, number_of_aggregations=0, size=0) self.result = [] self.count = 0 # search datasets # we always do this to get the summary document datasets = ctx.search(ignore_facet_check=True) (self.start_index, self.stop_index, self.max_count) = self._index(datasets, limit, offset) self.summary['number_of_datasets'] = max(0, self.max_count) t0 = datetime.now() for i in range(self.start_index, self.stop_index): ds = datasets[i] # progress = self.count * 100.0 / self.max_count self.count = self.count + 1 self.result.append(ds.json) for key in ['number_of_files', 'number_of_aggregations', 'size']: # LOGGER.debug(ds.json) self.summary[key] = self.summary[key] + ds.json.get(key, 0) self.summary['ds_search_duration_secs'] = (datetime.now() - t0).seconds self.summary['size_mb'] = self.summary.get('size', 0) / 1024 / 1024 self.summary['size_gb'] = self.summary.get('size_mb', 0) / 1024 LOGGER.debug('search_type = %s ', search_type) if search_type == 'Dataset': pass # search files (optional) elif search_type == 'File': self._file_search(datasets, my_constraints, start, end) # search aggregations (optional) elif search_type == 'Aggregation': self._aggregation_search(datasets, my_constraints) else: raise Exception('unknown search type: %s', search_type) LOGGER.debug('summary=%s', self.summary) self.show_status('Done', 100) return (self.result, self.summary, ctx.facet_counts)
def test_kwargs(self): from pyesgf.multidict import MultiDict md = MultiDict(kw1='val1') self.assertEqual(md._items, [('kw1', 'val1')])
def test_no_args(self): from pyesgf.multidict import MultiDict md = MultiDict() self.assertEqual(md._items, [])
def test_view_list(self): from pyesgf.multidict import MultiDict d = MultiDict() self.assertEqual(d.view_list([1, 2])._items, [1, 2])
def search(self, constraints=[('project', 'CORDEX')], query=None, start=None, end=None, limit=1, offset=0, search_type='Dataset', temporal=False): self.show_status("Starting ...", 0) from pyesgf.multidict import MultiDict my_constraints = MultiDict() for key, value in constraints: my_constraints.add(key, value) LOGGER.debug('constraints=%s', my_constraints) if not query or query == '*': query = None LOGGER.debug('query: %s', query) # TODO: check type of start, end LOGGER.debug('start=%s, end=%s', start, end) ctx = None if temporal is True: LOGGER.debug("using dataset search with time constraints") # TODO: handle timestamps in a better way # timestamp_format = '%Y-%m-%dT%H:%M:%SZ' if start: # from_timestamp = start.strftime(timestamp_format) from_timestamp = '{0}T12:00:00Z'.format(start.isoformat().strip()) else: from_timestamp = None if end: # to_timestamp = end.strftime(timestamp_format) to_timestamp = '{0}T12:00:00Z'.format(end.isoformat().strip()) else: to_timestamp = None LOGGER.debug("from=%s, to=%s", from_timestamp, to_timestamp) ctx = self.conn.new_context(fields=self.fields, replica=self.replica, latest=self.latest, query=query, from_timestamp=from_timestamp, to_timestamp=to_timestamp) else: ctx = self.conn.new_context(fields=self.fields, replica=self.replica, latest=self.latest, query=query) if len(my_constraints) > 0: ctx = ctx.constrain(**my_constraints.mixed()) LOGGER.debug('ctx: facet_constraints=%s, replica=%s, latests=%s', ctx.facet_constraints, ctx.replica, ctx.latest) self.show_status("Datasets found=%d" % ctx.hit_count, 0) self.summary = dict(total_number_of_datasets=ctx.hit_count, number_of_datasets=0, number_of_files=0, number_of_aggregations=0, size=0) self.result = [] self.count = 0 # search datasets # we always do this to get the summary document datasets = ctx.search(ignore_facet_check=True) (self.start_index, self.stop_index, self.max_count) = self._index(datasets, limit, offset) self.summary['number_of_datasets'] = max(0, self.max_count) t0 = datetime.now() for i in range(self.start_index, self.stop_index): ds = datasets[i] # progress = self.count * 100.0 / self.max_count self.count = self.count + 1 self.result.append(ds.json) for key in ['number_of_files', 'number_of_aggregations', 'size']: # LOGGER.debug(ds.json) self.summary[key] = self.summary[key] + ds.json.get(key, 0) self.summary['ds_search_duration_secs'] = (datetime.now() - t0).seconds self.summary['size_mb'] = self.summary.get('size', 0) / 1024 / 1024 self.summary['size_gb'] = self.summary.get('size_mb', 0) / 1024 LOGGER.debug('search_type = %s ', search_type) if search_type == 'Dataset': pass # search files (optional) elif search_type == 'File': self._file_search(datasets, my_constraints, start, end) # search aggregations (optional) elif search_type == 'Aggregation': self._aggregation_search(datasets, my_constraints) else: raise Exception('unknown search type: %s', search_type) LOGGER.debug('summary=%s', self.summary) self.show_status('Done', 100) return (self.result, self.summary, ctx.facet_counts)