Example #1
0
def from_pandas_refs(
    dfs: Union[ObjectRef["pandas.DataFrame"],
               List[ObjectRef["pandas.DataFrame"]]]
) -> Dataset[ArrowRow]:
    """Create a dataset from a list of Ray object references to Pandas
    dataframes.

    Args:
        dfs: A Ray object references to pandas dataframe, or a list of
             Ray object references to pandas dataframes.

    Returns:
        Dataset holding Arrow records read from the dataframes.
    """
    if isinstance(dfs, ray.ObjectRef):
        dfs = [dfs]

    df_to_block = cached_remote_fn(_df_to_block, num_returns=2)

    res = [df_to_block.remote(df) for df in dfs]
    blocks, metadata = zip(*res)
    return Dataset(
        BlockList(blocks, ray.get(list(metadata))), 0,
        DatasetStats(stages={"from_pandas_refs": metadata}, parent=None))
Example #2
0
    def _optimize_stages(self):
        """Optimize this pipeline, fusing stages together as possible."""
        context = DatasetContext.get_current()

        if not context.optimize_fuse_stages:
            self._optimized_stages = self._stages
            return

        dummy_ds = Dataset(
            ExecutionPlan(BlockList([], []), DatasetStats(stages={}, parent=None)),
            0,
            True,
        )
        for stage in self._stages:
            dummy_ds = stage(dummy_ds)
        dummy_ds._plan._optimize()
        optimized_stages = []
        for stage in dummy_ds._plan._stages:
            optimized_stages.append(
                lambda ds, stage=stage: Dataset(
                    ds._plan.with_stage(stage), ds._epoch, True
                )
            )
        self._optimized_stages = optimized_stages
Example #3
0
def from_items(items: List[Any], *, parallelism: int = 200) -> Dataset[Any]:
    """Create a dataset from a list of local Python objects.

    Examples:
        >>> ray.data.from_items([1, 2, 3, 4, 5])

    Args:
        items: List of local Python objects.
        parallelism: The amount of parallelism to use for the dataset.
            Parallelism may be limited by the number of items.

    Returns:
        Dataset holding the items.
    """
    block_size = max(1, len(items) // parallelism)

    blocks: List[ObjectRef[Block]] = []
    metadata: List[BlockMetadata] = []
    i = 0
    while i < len(items):
        stats = BlockExecStats.builder()
        builder = DelegatingBlockBuilder()
        for item in items[i:i + block_size]:
            builder.add(item)
        block = builder.build()
        blocks.append(ray.put(block))
        metadata.append(
            BlockAccessor.for_block(block).get_metadata(
                input_files=None, exec_stats=stats.build()))
        i += block_size

    return Dataset(
        BlockList(blocks, metadata),
        0,
        DatasetStats(stages={"from_items": metadata}, parent=None),
    )
Example #4
0
    def execute(
        self,
        input_blocks: BlockList,
        output_num_blocks: int,
        clear_input_blocks: bool,
        *,
        map_ray_remote_args: Optional[Dict[str, Any]] = None,
        reduce_ray_remote_args: Optional[Dict[str, Any]] = None,
        merge_factor: int = 2,
    ) -> Tuple[BlockList, Dict[str, List[BlockMetadata]]]:
        logger.info("Using experimental push-based shuffle.")
        # TODO(swang): For jobs whose reduce work is heavier than the map work,
        # we should support fractional merge factors.
        # TODO(swang): For large jobs, we should try to choose the merge factor
        # automatically, e.g., by running one test round of map and merge tasks
        # and comparing their run times.
        # TODO(swang): Add option to automatically reduce write amplification
        # during map-merge stage, by limiting how many partitions can be
        # processed concurrently.
        input_blocks_list = input_blocks.get_blocks()
        # Preemptively clear the blocks list since we will incrementally delete
        # the last remaining references as we submit the dependent map tasks
        # during the map-merge stage.
        if clear_input_blocks:
            input_blocks.clear()

        if map_ray_remote_args is None:
            map_ray_remote_args = {}
        if reduce_ray_remote_args is None:
            reduce_ray_remote_args = {}
        # The placement strategy for reduce tasks is overwritten to colocate
        # them with their inputs from the merge stage, so remove any
        # pre-specified scheduling strategy here.
        reduce_ray_remote_args = reduce_ray_remote_args.copy()
        reduce_ray_remote_args.pop("scheduling_strategy", None)

        map_fn = self._map_partition
        merge_fn = self._merge

        def map_partition(*args, **kwargs):
            return map_fn(self.map, *args, **kwargs)

        def merge(*args, **kwargs):
            return merge_fn(self.reduce, *args, **kwargs)

        shuffle_map = cached_remote_fn(map_partition)
        shuffle_merge = cached_remote_fn(merge)

        def submit_map_task(arg):
            mapper_idx, block = arg
            # NOTE(swang): Results are shuffled between map and merge tasks, so
            # there is no advantage to colocating specific map and merge tasks.
            # Therefore, we do not specify a node affinity policy for map tasks
            # in case the caller or Ray has a better scheduling strategy, e.g.,
            # based on data locality.
            map_result = shuffle_map.options(
                **map_ray_remote_args,
                num_returns=1 + schedule.num_merge_tasks_per_round,
            ).remote(
                mapper_idx,
                block,
                output_num_blocks,
                schedule,
                *self._map_args,
            )
            metadata_ref = map_result.pop(0)
            return metadata_ref, map_result

        def submit_merge_task(arg):
            merge_idx, map_results = arg
            num_merge_returns = schedule.get_num_reducers_per_merge_idx(merge_idx)
            merge_result = shuffle_merge.options(
                num_returns=1 + num_merge_returns,
                **schedule.get_merge_task_options(merge_idx),
            ).remote(
                *map_results,
                reduce_args=self._reduce_args,
            )
            metadata_ref = merge_result.pop(0)
            return metadata_ref, merge_result

        # Compute all constants used for task scheduling.
        num_cpus_per_node_map = _get_num_cpus_per_node_map()
        schedule = self._compute_shuffle_schedule(
            num_cpus_per_node_map,
            len(input_blocks_list),
            merge_factor,
            output_num_blocks,
        )

        # ObjectRef results from the last round of tasks. Used to add
        # backpressure during pipelining of map and merge tasks.
        last_map_metadata_results = []
        last_merge_metadata_results = []
        # Final outputs from the map-merge stage.
        # This is a map from merge task index to a nested list of merge results
        # (ObjectRefs). Each merge task index corresponds to a partition of P
        # final reduce tasks.
        all_merge_results = [[] for _ in range(schedule.num_merge_tasks_per_round)]
        shuffle_map_metadata = []
        shuffle_merge_metadata = []
        map_bar = ProgressBar("Shuffle Map", position=0, total=len(input_blocks_list))

        # Execute the map-merge stage. This submits tasks in rounds of M map
        # tasks and N merge tasks each. Task execution between map and merge is
        # pipelined, so that while executing merge for one round of inputs, we
        # also execute the map tasks for the following round.
        input_blocks_list = list(enumerate(input_blocks_list))
        while input_blocks_list:
            # Execute one round of the map stage.
            # Pop from the inputs so that we can clear the memory ASAP.
            round_input_blocks = []
            try:
                for _ in range(schedule.num_map_tasks_per_round):
                    round_input_blocks.append(input_blocks_list.pop(0))
            except IndexError:
                pass
            (
                prev_map_metadata,
                last_map_metadata_results,
                map_results,
            ) = _execute_pipelined_stage(
                submit_map_task,
                last_map_metadata_results,
                round_input_blocks,
                progress_bar=map_bar,
            )
            shuffle_map_metadata += prev_map_metadata

            # Shuffle the map results for the merge tasks.
            merge_args = [
                (merge_idx, [map_result.pop(0) for map_result in map_results])
                for merge_idx in range(schedule.num_merge_tasks_per_round)
            ]
            assert all([not map_result for map_result in map_results])
            # Execute one round of the merge stage.
            (
                prev_merge_metadata,
                last_merge_metadata_results,
                merge_results,
            ) = _execute_pipelined_stage(
                submit_merge_task,
                last_merge_metadata_results,
                merge_args,
            )
            shuffle_merge_metadata += prev_merge_metadata
            for merge_idx, merge_result in enumerate(merge_results):
                all_merge_results[merge_idx].append(merge_result)
            del merge_results

        # Wait for last map and merge tasks to finish.
        prev_map_metadata, _, _ = _execute_pipelined_stage(
            None, last_map_metadata_results, [], progress_bar=map_bar
        )
        shuffle_map_metadata += prev_map_metadata
        map_bar.close()
        prev_merge_metadata, _, _ = _execute_pipelined_stage(
            None, last_merge_metadata_results, []
        )
        shuffle_merge_metadata += prev_merge_metadata

        # Execute and wait for the reduce stage.
        new_metadata, new_blocks = self._execute_reduce_stage(
            output_num_blocks, schedule, reduce_ray_remote_args, all_merge_results
        )

        stats = {
            "map": shuffle_map_metadata,
            "merge": shuffle_merge_metadata,
            "reduce": new_metadata,
        }

        return BlockList(list(new_blocks), list(new_metadata)), stats
Example #5
0
    def execute(
        self,
        input_blocks: BlockList,
        output_num_blocks: int,
        clear_input_blocks: bool,
        *,
        map_ray_remote_args: Optional[Dict[str, Any]] = None,
        reduce_ray_remote_args: Optional[Dict[str, Any]] = None
    ) -> Tuple[BlockList, Dict[str, List[BlockMetadata]]]:
        input_blocks_list = input_blocks.get_blocks()
        input_num_blocks = len(input_blocks_list)

        if map_ray_remote_args is None:
            map_ray_remote_args = {}
        if reduce_ray_remote_args is None:
            reduce_ray_remote_args = {}
        if "scheduling_strategy" not in reduce_ray_remote_args:
            reduce_ray_remote_args = reduce_ray_remote_args.copy()
            reduce_ray_remote_args["scheduling_strategy"] = "SPREAD"

        shuffle_map = cached_remote_fn(self.map)
        shuffle_reduce = cached_remote_fn(self.reduce)

        map_bar = ProgressBar("Shuffle Map", total=input_num_blocks)

        shuffle_map_out = [
            shuffle_map.options(
                **map_ray_remote_args,
                num_returns=1 + output_num_blocks,
            ).remote(i, block, output_num_blocks, *self._map_args)
            for i, block in enumerate(input_blocks_list)
        ]

        # The first item returned is the BlockMetadata.
        shuffle_map_metadata = []
        for i, refs in enumerate(shuffle_map_out):
            shuffle_map_metadata.append(refs[0])
            shuffle_map_out[i] = refs[1:]

        # Eagerly delete the input block references in order to eagerly release
        # the blocks' memory.
        del input_blocks_list
        if clear_input_blocks:
            input_blocks.clear()
        shuffle_map_metadata = map_bar.fetch_until_complete(
            shuffle_map_metadata)
        map_bar.close()

        reduce_bar = ProgressBar("Shuffle Reduce", total=output_num_blocks)
        shuffle_reduce_out = [
            shuffle_reduce.options(
                **reduce_ray_remote_args,
                num_returns=2,
            ).remote(
                *self._reduce_args,
                *[shuffle_map_out[i][j] for i in range(input_num_blocks)],
            ) for j in range(output_num_blocks)
        ]
        # Eagerly delete the map block references in order to eagerly release
        # the blocks' memory.
        del shuffle_map_out
        new_blocks, new_metadata = zip(*shuffle_reduce_out)
        new_metadata = reduce_bar.fetch_until_complete(list(new_metadata))
        reduce_bar.close()

        stats = {
            "map": shuffle_map_metadata,
            "reduce": new_metadata,
        }

        return BlockList(list(new_blocks), list(new_metadata)), stats
Example #6
0
    def _apply(
        self,
        fn: Any,
        remote_args: dict,
        block_list: BlockList,
        clear_input_blocks: bool,
        name: Optional[str] = None,
    ) -> BlockList:
        context = DatasetContext.get_current()

        # Handle empty datasets.
        if block_list.initial_num_blocks() == 0:
            return block_list

        blocks = block_list.get_blocks_with_metadata()
        if name is None:
            name = "map"
        name = name.title()
        map_bar = ProgressBar(name, total=len(blocks))

        if context.block_splitting_enabled:
            map_block = cached_remote_fn(_map_block_split).options(
                **remote_args)
            refs = [map_block.remote(b, fn, m.input_files) for b, m in blocks]
        else:
            map_block = cached_remote_fn(_map_block_nosplit).options(
                **dict(remote_args, num_returns=2))
            all_refs = [
                map_block.remote(b, fn, m.input_files) for b, m in blocks
            ]
            data_refs = [r[0] for r in all_refs]
            refs = [r[1] for r in all_refs]

        # Release input block references.
        if clear_input_blocks:
            del blocks
            block_list.clear()

        # Common wait for non-data refs.
        try:
            results = map_bar.fetch_until_complete(refs)
        except (ray.exceptions.RayTaskError, KeyboardInterrupt) as e:
            # One or more mapper tasks failed, or we received a SIGINT signal
            # while waiting; either way, we cancel all map tasks.
            for ref in refs:
                ray.cancel(ref)
            # Wait until all tasks have failed or been cancelled.
            for ref in refs:
                try:
                    ray.get(ref)
                except (ray.exceptions.RayTaskError,
                        ray.exceptions.TaskCancelledError):
                    pass
            # Reraise the original task failure exception.
            raise e from None

        new_blocks, new_metadata = [], []
        if context.block_splitting_enabled:
            for result in results:
                for block, metadata in result:
                    new_blocks.append(block)
                    new_metadata.append(metadata)
        else:
            for block, metadata in zip(data_refs, results):
                new_blocks.append(block)
                new_metadata.append(metadata)
        return BlockList(list(new_blocks), list(new_metadata))
Example #7
0
    def _apply(
        self,
        fn: Any,
        remote_args: dict,
        block_list: BlockList,
        clear_input_blocks: bool,
        name: Optional[str] = None,
    ) -> BlockList:
        """Note: this is not part of the Dataset public API."""
        context = DatasetContext.get_current()

        blocks_in = block_list.get_blocks_with_metadata()

        # Early release block references.
        if clear_input_blocks:
            block_list.clear()

        orig_num_blocks = len(blocks_in)
        results = []
        if name is None:
            name = "map"
        name = name.title()
        map_bar = ProgressBar(name, total=orig_num_blocks)

        class BlockWorker:
            def ready(self):
                return "ok"

            def map_block_split(self, block: Block,
                                input_files: List[str]) -> BlockPartition:
                return _map_block_split(block, fn, input_files)

            @ray.method(num_returns=2)
            def map_block_nosplit(
                    self, block: Block,
                    input_files: List[str]) -> Tuple[Block, BlockMetadata]:
                return _map_block_nosplit(block, fn, input_files)

        if not remote_args:
            remote_args["num_cpus"] = 1

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        workers = [BlockWorker.remote() for _ in range(self.min_size)]
        tasks = {w.ready.remote(): w for w in workers}
        tasks_in_flight = collections.defaultdict(int)
        metadata_mapping = {}
        block_indices = {}
        ready_workers = set()

        while len(results) < orig_num_blocks:
            ready, _ = ray.wait(list(tasks.keys()),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if (len(workers) < self.max_size
                        and len(ready_workers) / len(workers) > 0.8):
                    w = BlockWorker.remote()
                    workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks.pop(obj_id)

            # Process task result.
            if worker in ready_workers:
                results.append(obj_id)
                tasks_in_flight[worker] -= 1
                map_bar.update(1)
            else:
                ready_workers.add(worker)
                map_bar.set_description(
                    "Map Progress ({} actors {} pending)".format(
                        len(ready_workers),
                        len(workers) - len(ready_workers)))

            # Schedule a new task.
            while (blocks_in and tasks_in_flight[worker] <
                   self.max_tasks_in_flight_per_actor):
                block, meta = blocks_in.pop()
                if context.block_splitting_enabled:
                    ref = worker.map_block_split.remote(
                        block, meta.input_files)
                else:
                    ref, meta_ref = worker.map_block_nosplit.remote(
                        block, meta.input_files)
                    metadata_mapping[ref] = meta_ref
                tasks[ref] = worker
                block_indices[ref] = len(blocks_in)
                tasks_in_flight[worker] += 1

        map_bar.close()
        new_blocks, new_metadata = [], []
        # Put blocks in input order.
        results.sort(key=block_indices.get)
        if context.block_splitting_enabled:
            for result in ray.get(results):
                for block, metadata in result:
                    new_blocks.append(block)
                    new_metadata.append(metadata)
        else:
            for block in results:
                new_blocks.append(block)
                new_metadata.append(metadata_mapping[block])
            new_metadata = ray.get(new_metadata)
        return BlockList(new_blocks, new_metadata)
Example #8
0
def simple_shuffle(
    input_blocks: BlockList,
    block_udf: Optional[Callable[[Block], Iterable[Block]]],
    output_num_blocks: int,
    *,
    random_shuffle: bool = False,
    random_seed: Optional[int] = None,
    map_ray_remote_args: Optional[Dict[str, Any]] = None,
    reduce_ray_remote_args: Optional[Dict[str, Any]] = None,
    _spread_resource_prefix: Optional[str] = None
) -> Tuple[BlockList, Dict[str, List[BlockMetadata]]]:
    input_blocks = input_blocks.get_blocks()
    if map_ray_remote_args is None:
        map_ray_remote_args = {}
    if reduce_ray_remote_args is None:
        reduce_ray_remote_args = {}
    if "scheduling_strategy" not in reduce_ray_remote_args:
        reduce_ray_remote_args = reduce_ray_remote_args.copy()
        reduce_ray_remote_args["scheduling_strategy"] = "SPREAD"
    input_num_blocks = len(input_blocks)
    if _spread_resource_prefix is not None:
        # Use given spread resource prefix for round-robin resource-based
        # scheduling.
        nodes = ray.nodes()
        map_resource_iter = _get_spread_resources_iter(
            nodes, _spread_resource_prefix, map_ray_remote_args
        )
        reduce_resource_iter = _get_spread_resources_iter(
            nodes, _spread_resource_prefix, reduce_ray_remote_args
        )
    else:
        # If no spread resource prefix given, yield an empty dictionary.
        map_resource_iter, reduce_resource_iter = itertools.tee(itertools.repeat({}), 2)

    shuffle_map = cached_remote_fn(_shuffle_map)
    shuffle_reduce = cached_remote_fn(_shuffle_reduce)

    map_bar = ProgressBar("Shuffle Map", position=0, total=input_num_blocks)

    shuffle_map_out = [
        shuffle_map.options(
            **map_ray_remote_args,
            num_returns=1 + output_num_blocks,
            resources=next(map_resource_iter)
        ).remote(block, block_udf, i, output_num_blocks, random_shuffle, random_seed)
        for i, block in enumerate(input_blocks)
    ]

    # The first item returned is the BlockMetadata.
    shuffle_map_metadata = []
    for i, refs in enumerate(shuffle_map_out):
        shuffle_map_metadata.append(refs[0])
        shuffle_map_out[i] = refs[1:]

    # Eagerly delete the input block references in order to eagerly release
    # the blocks' memory.
    del input_blocks
    shuffle_map_metadata = map_bar.fetch_until_complete(shuffle_map_metadata)
    map_bar.close()

    # Randomize the reduce order of the blocks.
    if random_shuffle:
        random = np.random.RandomState(random_seed)
        random.shuffle(shuffle_map_out)

    reduce_bar = ProgressBar("Shuffle Reduce", position=0, total=output_num_blocks)
    shuffle_reduce_out = [
        shuffle_reduce.options(
            **reduce_ray_remote_args,
            num_returns=2,
            resources=next(reduce_resource_iter)
        ).remote(*[shuffle_map_out[i][j] for i in range(input_num_blocks)])
        for j in range(output_num_blocks)
    ]
    # Eagerly delete the map block references in order to eagerly release
    # the blocks' memory.
    del shuffle_map_out
    new_blocks, new_metadata = zip(*shuffle_reduce_out)
    reduce_bar.block_until_complete(list(new_blocks))
    new_metadata = ray.get(list(new_metadata))
    reduce_bar.close()

    stats = {
        "map": shuffle_map_metadata,
        "reduce": new_metadata,
    }

    return BlockList(list(new_blocks), list(new_metadata)), stats
Example #9
0
File: shuffle.py Project: rlan/ray
def simple_shuffle(
        input_blocks: BlockList[T],
        output_num_blocks: int,
        *,
        random_shuffle: bool = False,
        random_seed: Optional[int] = None,
        map_ray_remote_args: Optional[Dict[str, Any]] = None,
        reduce_ray_remote_args: Optional[Dict[str, Any]] = None,
        _spread_resource_prefix: Optional[str] = None) -> BlockList[T]:
    if map_ray_remote_args is None:
        map_ray_remote_args = {}
    if reduce_ray_remote_args is None:
        reduce_ray_remote_args = {}
    input_num_blocks = len(input_blocks)
    if _spread_resource_prefix is not None:
        # Use given spread resource prefix for round-robin resource-based
        # scheduling.
        nodes = ray.nodes()
        map_resource_iter = _get_spread_resources_iter(
            nodes, _spread_resource_prefix, map_ray_remote_args)
        reduce_resource_iter = _get_spread_resources_iter(
            nodes, _spread_resource_prefix, reduce_ray_remote_args)
    else:
        # If no spread resource prefix given, yield an empty dictionary.
        map_resource_iter, reduce_resource_iter = itertools.tee(
            itertools.repeat({}), 2)

    shuffle_map = cached_remote_fn(_shuffle_map)
    shuffle_reduce = cached_remote_fn(_shuffle_reduce)

    map_bar = ProgressBar("Shuffle Map", position=0, total=input_num_blocks)

    shuffle_map_out = [
        shuffle_map.options(**map_ray_remote_args,
                            num_returns=output_num_blocks,
                            resources=next(map_resource_iter)).remote(
                                block, i, output_num_blocks, random_shuffle,
                                random_seed)
        for i, block in enumerate(input_blocks)
    ]
    # Eagerly delete the input block references in order to eagerly release
    # the blocks' memory.
    del input_blocks
    if output_num_blocks == 1:
        # Handle the num_returns=1 edge case which doesn't return a list.
        shuffle_map_out = [[x] for x in shuffle_map_out]
    map_bar.block_until_complete([x[0] for x in shuffle_map_out])
    map_bar.close()

    # Randomize the reduce order of the blocks.
    if random_shuffle:
        random = np.random.RandomState(random_seed)
        random.shuffle(shuffle_map_out)

    reduce_bar = ProgressBar("Shuffle Reduce",
                             position=0,
                             total=output_num_blocks)
    shuffle_reduce_out = [
        shuffle_reduce.options(**reduce_ray_remote_args,
                               num_returns=2,
                               resources=next(reduce_resource_iter)).
        remote(*[shuffle_map_out[i][j] for i in range(input_num_blocks)])
        for j in range(output_num_blocks)
    ]
    # Eagerly delete the map block references in order to eagerly release
    # the blocks' memory.
    del shuffle_map_out
    new_blocks, new_metadata = zip(*shuffle_reduce_out)
    reduce_bar.block_until_complete(list(new_blocks))
    new_metadata = ray.get(list(new_metadata))
    reduce_bar.close()

    return BlockList(list(new_blocks), list(new_metadata))
Example #10
0
    def apply(self, fn: Any, remote_args: dict,
              blocks: BlockList) -> BlockList:
        context = DatasetContext.get_current()

        blocks_in = blocks.get_blocks_with_metadata()
        orig_num_blocks = len(blocks_in)
        results = []
        map_bar = ProgressBar("Map Progress", total=orig_num_blocks)

        class BlockWorker:
            def ready(self):
                return "ok"

            def map_block_split(self, block: Block,
                                input_files: List[str]) -> BlockPartition:
                return _map_block_split(block, fn, input_files)

            @ray.method(num_returns=2)
            def map_block_nosplit(
                    self, block: Block,
                    input_files: List[str]) -> Tuple[Block, BlockMetadata]:
                return _map_block_nosplit(block, fn, input_files)

        if not remote_args:
            remote_args["num_cpus"] = 1

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        self.workers = [BlockWorker.remote()]
        tasks = {w.ready.remote(): w for w in self.workers}
        metadata_mapping = {}
        ready_workers = set()

        while len(results) < orig_num_blocks:
            ready, _ = ray.wait(list(tasks),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if len(ready_workers) / len(self.workers) > 0.8:
                    w = BlockWorker.remote()
                    self.workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(self.workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks[obj_id]
            del tasks[obj_id]

            # Process task result.
            if worker in ready_workers:
                results.append(obj_id)
                map_bar.update(1)
            else:
                ready_workers.add(worker)

            # Schedule a new task.
            if blocks_in:
                block, meta = blocks_in.pop()
                if context.block_splitting_enabled:
                    ref = worker.map_block_split.remote(
                        block, meta.input_files)
                else:
                    ref, meta_ref = worker.map_block_nosplit.remote(
                        block, meta.input_files)
                    metadata_mapping[ref] = meta_ref
                tasks[ref] = worker

        map_bar.close()
        new_blocks, new_metadata = [], []
        if context.block_splitting_enabled:
            for result in ray.get(results):
                for block, metadata in result:
                    new_blocks.append(block)
                    new_metadata.append(metadata)
        else:
            for block in results:
                new_blocks.append(block)
                new_metadata.append(metadata_mapping[block])
        return BlockList(new_blocks, new_metadata)
Example #11
0
def fast_repartition(blocks, num_blocks):
    from ray.data.dataset import Dataset

    wrapped_ds = Dataset(ExecutionPlan(blocks,
                                       DatasetStats(stages={}, parent=None)),
                         0,
                         lazy=False)
    # Compute the (n-1) indices needed for an equal split of the data.
    count = wrapped_ds.count()
    dataset_format = wrapped_ds._dataset_format()
    indices = []
    cur_idx = 0
    for _ in range(num_blocks - 1):
        cur_idx += count / num_blocks
        indices.append(int(cur_idx))
    assert len(indices) < num_blocks, (indices, num_blocks)
    if indices:
        splits = wrapped_ds.split_at_indices(indices)
    else:
        splits = [wrapped_ds]
    # TODO(ekl) include stats for the split tasks. We may also want to
    # consider combining the split and coalesce tasks as an optimization.

    # Coalesce each split into a single block.
    reduce_task = cached_remote_fn(
        _ShufflePartitionOp.reduce).options(num_returns=2)
    reduce_bar = ProgressBar("Repartition", position=0, total=len(splits))
    reduce_out = [
        reduce_task.remote(False, None, *s.get_internal_block_refs())
        for s in splits if s.num_blocks() > 0
    ]

    # Early-release memory.
    del splits, blocks, wrapped_ds

    new_blocks, new_metadata = zip(*reduce_out)
    new_blocks, new_metadata = list(new_blocks), list(new_metadata)
    new_metadata = reduce_bar.fetch_until_complete(new_metadata)
    reduce_bar.close()

    # Handle empty blocks.
    if len(new_blocks) < num_blocks:
        from ray.data.impl.arrow_block import ArrowBlockBuilder
        from ray.data.impl.pandas_block import PandasBlockBuilder
        from ray.data.impl.simple_block import SimpleBlockBuilder

        num_empties = num_blocks - len(new_blocks)
        if dataset_format == "arrow":
            builder = ArrowBlockBuilder()
        elif dataset_format == "pandas":
            builder = PandasBlockBuilder()
        else:
            builder = SimpleBlockBuilder()
        empty_block = builder.build()
        empty_meta = BlockAccessor.for_block(empty_block).get_metadata(
            input_files=None, exec_stats=None)  # No stats for empty block.
        empty_blocks, empty_metadata = zip(*[(ray.put(empty_block), empty_meta)
                                             for _ in range(num_empties)])
        new_blocks += empty_blocks
        new_metadata += empty_metadata

    return BlockList(new_blocks, new_metadata), {}
Example #12
0
    def apply(self, fn: Any, remote_args: dict,
              blocks: BlockList) -> BlockList:

        blocks_in = list(blocks.iter_blocks_with_metadata())
        orig_num_blocks = len(blocks_in)
        results = []
        map_bar = ProgressBar("Map Progress", total=orig_num_blocks)

        class BlockWorker:
            def ready(self):
                return "ok"

            def process_block(
                self, block: Block, input_files: List[str]
            ) -> Iterable[Tuple[Block, BlockMetadata]]:
                output = []
                for new_block in fn(block):
                    accessor = BlockAccessor.for_block(new_block)
                    new_metadata = BlockMetadata(
                        num_rows=accessor.num_rows(),
                        size_bytes=accessor.size_bytes(),
                        schema=accessor.schema(),
                        input_files=input_files)
                    owner = DatasetContext.get_current().block_owner
                    output.append((ray.put(new_block,
                                           _owner=owner), new_metadata))
                return output

        if not remote_args:
            remote_args["num_cpus"] = 1

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        self.workers = [BlockWorker.remote()]
        tasks = {w.ready.remote(): w for w in self.workers}
        ready_workers = set()

        while len(results) < orig_num_blocks:
            ready, _ = ray.wait(list(tasks),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if len(ready_workers) / len(self.workers) > 0.8:
                    w = BlockWorker.remote()
                    self.workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(self.workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks[obj_id]
            del tasks[obj_id]

            # Process task result.
            if worker in ready_workers:
                results.append(obj_id)
                map_bar.update(1)
            else:
                ready_workers.add(worker)

            # Schedule a new task.
            if blocks_in:
                block, meta = blocks_in.pop()
                ref = worker.process_block.remote(block, meta.input_files)
                tasks[ref] = worker

        map_bar.close()
        new_blocks, new_metadata = [], []
        for result in ray.get(results):
            for block, metadata in result:
                new_blocks.append(block)
                new_metadata.append(metadata)
        return BlockList(new_blocks, new_metadata)
Example #13
0
    def aggregate(self, *aggs: AggregateFn) -> Dataset[U]:
        """Implements the accumulator-based aggregation.

        This is a blocking operation.

        Examples:
            >>> grouped_ds.aggregate(AggregateFn(
            ...     init=lambda k: [],
            ...     accumulate=lambda a, r: a + [r],
            ...     merge=lambda a1, a2: a1 + a2,
            ...     finalize=lambda a: a
            ... ))

        Args:
            aggs: Aggregations to do.

        Returns:
            If the input dataset is simple dataset then the output is
            a simple dataset of (k, v_1, ..., v_n) tuples where k is the
            groupby key and v_i is the result of the ith given aggregation.
            If the input dataset is Arrow dataset then the output is
            an Arrow dataset of n + 1 columns where first column is
            the groupby key and the second through n + 1 columns are the
            results of the aggregations.
            If groupby key is None then the key part of return is omitted.
        """

        if len(aggs) == 0:
            raise ValueError("Aggregate requires at least one aggregation")
        # Handle empty dataset.
        if self._dataset.num_blocks() == 0:
            return self._dataset

        blocks = list(self._dataset._blocks.iter_blocks())
        num_mappers = len(blocks)
        num_reducers = num_mappers
        if self._key is None:
            num_reducers = 1
            boundaries = []
        else:
            boundaries = sort.sample_boundaries(
                blocks,
                [(self._key,
                  "ascending")] if isinstance(self._key, str) else self._key,
                num_reducers)

        partition_and_combine_block = cached_remote_fn(
            _partition_and_combine_block).options(num_returns=num_reducers)
        aggregate_combined_blocks = cached_remote_fn(
            _aggregate_combined_blocks, num_returns=2)

        map_results = np.empty((num_mappers, num_reducers), dtype=object)
        for i, block in enumerate(blocks):
            map_results[i, :] = partition_and_combine_block.remote(
                block, boundaries, self._key, aggs)
        map_bar = ProgressBar("GroupBy Map", len(map_results))
        map_bar.block_until_complete([ret[0] for ret in map_results])
        map_bar.close()

        blocks = []
        metadata = []
        for j in range(num_reducers):
            block, meta = aggregate_combined_blocks.remote(
                num_reducers, self._key, aggs, *map_results[:, j].tolist())
            blocks.append(block)
            metadata.append(meta)
        reduce_bar = ProgressBar("GroupBy Reduce", len(blocks))
        reduce_bar.block_until_complete(blocks)
        reduce_bar.close()

        metadata = ray.get(metadata)
        return Dataset(BlockList(blocks, metadata), self._dataset._epoch)
Example #14
0
    def apply(self, fn: Any, remote_args: dict,
              blocks: Iterable[Block]) -> Iterable[ObjectRef[Block]]:

        map_bar = ProgressBar("Map Progress", total=len(blocks))

        class BlockWorker:
            def ready(self):
                return "ok"

            @ray.method(num_returns=2)
            def process_block(self, block: Block,
                              meta: BlockMetadata) -> (Block, BlockMetadata):
                new_block = fn(block)
                accessor = BlockAccessor.for_block(new_block)
                new_metadata = BlockMetadata(num_rows=accessor.num_rows(),
                                             size_bytes=accessor.size_bytes(),
                                             schema=accessor.schema(),
                                             input_files=meta.input_files)
                return new_block, new_metadata

        if not remote_args:
            remote_args["num_cpus"] = 1
        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        self.workers = [BlockWorker.remote()]
        metadata_mapping = {}
        tasks = {w.ready.remote(): w for w in self.workers}
        ready_workers = set()
        blocks_in = [(b, m) for (b, m) in zip(blocks, blocks.get_metadata())]
        blocks_out = []

        while len(blocks_out) < len(blocks):
            ready, _ = ray.wait(list(tasks),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if len(ready_workers) / len(self.workers) > 0.8:
                    w = BlockWorker.remote()
                    self.workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(self.workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks[obj_id]
            del tasks[obj_id]

            # Process task result.
            if worker in ready_workers:
                blocks_out.append(obj_id)
                map_bar.update(1)
            else:
                ready_workers.add(worker)

            # Schedule a new task.
            if blocks_in:
                block_ref, meta_ref = worker.process_block.remote(
                    *blocks_in.pop())
                metadata_mapping[block_ref] = meta_ref
                tasks[block_ref] = worker

        new_metadata = ray.get([metadata_mapping[b] for b in blocks_out])
        map_bar.close()
        return BlockList(blocks_out, new_metadata)
Example #15
0
 def compute_to_blocklist(self) -> BlockList:
     """Launch all tasks and return a concrete BlockList."""
     blocks, metadata = self._get_blocks_with_metadata()
     return BlockList(blocks, metadata)
Example #16
0
def simple_shuffle(
        input_blocks: BlockList[T],
        output_num_blocks: int,
        *,
        random_shuffle: bool = False,
        random_seed: Optional[int] = None,
        map_ray_remote_args: Optional[Dict[str, Any]] = None,
        reduce_ray_remote_args: Optional[Dict[str,
                                              Any]] = None) -> BlockList[T]:
    # Check for spread resource labels in environment variable, and use
    # the given labels for round-robin resource-based scheduling.
    shuffle_spread_custom_resource_labels = os.getenv(
        "RAY_DATASETS_SHUFFLE_SPREAD_CUSTOM_RESOURCE_LABELS", None)
    if shuffle_spread_custom_resource_labels is not None:
        shuffle_spread_custom_resource_labels = (
            shuffle_spread_custom_resource_labels.split(","))
        round_robin_resource_provider = itertools.cycle(
            map(lambda resource: {resource: 0.001},
                shuffle_spread_custom_resource_labels))
    else:
        # If no round-robin resource provider given, yield an empty
        # dictionary.
        round_robin_resource_provider = itertools.repeat({})
    # Create separate resource iterators for the map and reduce stages.
    map_resource_iter, reduce_resource_iter = itertools.tee(
        round_robin_resource_provider, 2)
    if map_ray_remote_args is None:
        map_ray_remote_args = {}
    if reduce_ray_remote_args is None:
        reduce_ray_remote_args = {}
    input_num_blocks = len(input_blocks)

    shuffle_map = cached_remote_fn(_shuffle_map)
    shuffle_reduce = cached_remote_fn(_shuffle_reduce)

    map_bar = ProgressBar("Shuffle Map", position=0, total=input_num_blocks)

    shuffle_map_out = [
        shuffle_map.options(**map_ray_remote_args,
                            num_returns=output_num_blocks,
                            resources=next(map_resource_iter)).remote(
                                block, i, output_num_blocks, random_shuffle,
                                random_seed)
        for i, block in enumerate(input_blocks)
    ]
    # Eagerly delete the input block references in order to eagerly release
    # the blocks' memory.
    del input_blocks
    if output_num_blocks == 1:
        # Handle the num_returns=1 edge case which doesn't return a list.
        shuffle_map_out = [[x] for x in shuffle_map_out]
    map_bar.block_until_complete([x[0] for x in shuffle_map_out])
    map_bar.close()

    # Randomize the reduce order of the blocks.
    if random_shuffle:
        random = np.random.RandomState(random_seed)
        random.shuffle(shuffle_map_out)

    reduce_bar = ProgressBar("Shuffle Reduce",
                             position=0,
                             total=output_num_blocks)
    shuffle_reduce_out = [
        shuffle_reduce.options(**reduce_ray_remote_args,
                               num_returns=2,
                               resources=next(reduce_resource_iter)).
        remote(*[shuffle_map_out[i][j] for i in range(input_num_blocks)])
        for j in range(output_num_blocks)
    ]
    # Eagerly delete the map block references in order to eagerly release
    # the blocks' memory.
    del shuffle_map_out
    new_blocks, new_metadata = zip(*shuffle_reduce_out)
    reduce_bar.block_until_complete(list(new_blocks))
    new_metadata = ray.get(list(new_metadata))
    reduce_bar.close()

    return BlockList(list(new_blocks), list(new_metadata))