rcParams['figure.figsize']=15,6 dateparse=lambda dates:pd.datetime.strptime(dates,'%Y-%m') date=pd.read_csv('/home/ycc/Documents/data/AirPassengers.csv',parse_dates="Month",index_col="Month",date_parser=dateparse) sampled_FC1=rsd.re_sam_data('FC1') sampled_FC2=rsd.re_sam_data('FC2') # divide the data into time and value sampled_FC1_value=sampled_FC1[:,1] sampled_FC2_value=sampled_FC2[:,1] sampled_FC1_time=sampled_FC1[:,0] sampled_FC2_time=sampled_FC2[:,0] # implement the rloess filter FC2_value_filtered=rloess.lowess(sampled_FC2_time,sampled_FC2_value,f=0.9,iter=3) #plt.plot(sampled_FC2_value) #plt.plot(FC2_value_filtered) #plt.show() ts_index_FC2=pd.date_range('1800-01-01','1970-03-01',freq='M') ts_all=pd.Series(sampled_FC2_value,index=ts_index_FC2) expweighted_avg_1=pd.ewma(ts_all,halflife=12) plt.plot(ts_all) plt.plot(expweighted_avg_1) plt.show()
from matplotlib.pylab import rcParams import pdb rcParams['figure.figsize']=15,6 sampled_FC2=rsd.re_sam_data('FC2') FC2_time=sampled_FC2[:,0] FC2_value=sampled_FC2[:,1] ts_index_FC2=pd.date_range('1800-01-01','1970-03-01',freq='M') ts_index_FC2_1=pd.date_range('1800-01-01','1900-03-01',freq='M') FC2_learn_rloessed=rloess.lowess(FC2_time[0:1202],FC2_value[0:1202],f=0.9) FC2_all_rloessed=rloess.lowess(FC2_time,FC2_value,f=0.9) residual_FC2_learn=FC2_value[0:1202]-FC2_learn_rloessed residual_FC2_all=FC2_value-FC2_all_rloessed ts_all=pd.Series(residual_FC2_all,index=ts_index_FC2) ts_learn=pd.Series(residual_FC2_learn,index=ts_index_FC2_1) ## -------------------------------------stationary the ts --------------------------------------------------- # method 1 : remove the trend and seasonality with differencing ts_learn_diff=ts_learn-ts_learn.shift() # first order differencing