Example #1
0
    def ncusps(self):
        r"""
        Return the number of cusps of this subgroup `\Gamma_1(N)`.

        EXAMPLES::

            sage: [Gamma1(n).ncusps() for n in [1..15]]
            [1, 2, 2, 3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 16]
            sage: [Gamma1(n).ncusps() for n in prime_range(2, 100)]
            [2, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96]
        """
        n = self.level()
        if n <= 4:
            return [None, 1, 2, 2, 3][n]
        return ZZ(sum([phi(d) * phi(n / d) / ZZ(2) for d in n.divisors()]))
Example #2
0
    def ncusps(self):
        r"""
        Return the number of cusps of this subgroup `\Gamma_1(N)`.

        EXAMPLES::

            sage: [Gamma1(n).ncusps() for n in [1..15]]
            [1, 2, 2, 3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 16]
            sage: [Gamma1(n).ncusps() for n in prime_range(2, 100)]
            [2, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96]
        """
        n = self.level()
        if n <= 4:
            return [None, 1, 2, 2, 3][n]
        return ZZ(sum([phi(d)*phi(n/d)/ZZ(2) for d in n.divisors()]))
Example #3
0
    def dimension_eis(self, k=2, eps=None, algorithm="CohenOesterle"):
        r"""
        Return the dimension of the space of Eisenstein series forms for self,
        or the dimension of the subspace corresponding to the given character
        if one is supplied.

        INPUT:

        - ``k`` - an integer (default: 2), the weight.

        - ``eps`` - either None or a Dirichlet character modulo N, where N is
          the level of this group. If this is None, then the dimension of the
          whole space is returned; otherwise, the dimension of the subspace of
          Eisenstein series of character eps.

        - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Möbius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        AUTHORS:

        - William Stein - Cohen--Oesterle algorithm

        - Jordi Quer - algorithm based on GammaH subgroups

        - David Loeffler (2009) - code refactoring

        EXAMPLES:

        The following two computations use different algorithms::

            sage: [Gamma1(36).dimension_eis(1,eps) for eps in DirichletGroup(36)]
            [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
            sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)]
            [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]

        So do these::

            sage: [Gamma1(48).dimension_eis(3,eps) for eps in DirichletGroup(48)]
            [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
            sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)]
            [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
        """
        from .all import Gamma0

        # first deal with special cases

        if eps is None:
            return GammaH_class.dimension_eis(self, k)

        N = self.level()
        K = eps.base_ring()
        eps = DirichletGroup(N, K)(eps)

        if eps.is_trivial():
            return Gamma0(N).dimension_eis(k)

        # Note case of k = 0 and trivial character already dealt with separately, so k <= 0 here is valid:
        if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k % 2) == 0
                                                            and eps.is_odd()):
            return ZZ(0)

        if algorithm == "Quer":
            n = eps.order()
            dim = ZZ(0)
            for d in n.divisors():
                G = GammaH_constructor(N, (eps**d).kernel())
                dim = dim + moebius(d) * G.dimension_eis(k)
            return dim // phi(n)

        elif algorithm == "CohenOesterle":
            from sage.modular.dims import CohenOesterle
            j = 2 - k
            # We use the Cohen-Oesterle formula in a subtle way to
            # compute dim M_k(N,eps) (see Ch. 6 of William Stein's book on
            # computing with modular forms).
            alpha = -ZZ(
                K(Gamma0(N).index() *
                  (j - 1) / ZZ(12)) + CohenOesterle(eps, j))
            if k == 1:
                return alpha
            else:
                return alpha - self.dimension_cusp_forms(k, eps)

        else:  #algorithm not in ["CohenOesterle", "Quer"]:
            raise ValueError("Unrecognised algorithm in dimension_eis")
Example #4
0
    def dimension_cusp_forms(self, k=2, eps=None, algorithm="CohenOesterle"):
        r"""
        Return the dimension of the space of cusp forms for self, or the
        dimension of the subspace corresponding to the given character if one
        is supplied.

        INPUT:

        - ``k`` - an integer (default: 2), the weight.

        - ``eps`` - either None or a Dirichlet character modulo N, where N is
          the level of this group. If this is None, then the dimension of the
          whole space is returned; otherwise, the dimension of the subspace of
          forms of character eps.

        - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Möbius inversion using the subgroups GammaH (a method due to Jordi
          Quer). Ignored for weight 1.

        EXAMPLES:

        We compute the same dimension in two different ways ::

            sage: K = CyclotomicField(3)
            sage: eps = DirichletGroup(7*43,K).0^2
            sage: G = Gamma1(7*43)

        Via Cohen--Oesterle::

            sage: Gamma1(7*43).dimension_cusp_forms(2, eps)
            28

        Via Quer's method::

            sage: Gamma1(7*43).dimension_cusp_forms(2, eps, algorithm="Quer")
            28

        Some more examples::

            sage: G.<eps> = DirichletGroup(9)
            sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]]
            [0, 0, 1, 0, 3, 0, 5, 0, 7, 0]
            sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]]
            [0, 0, 0, 2, 0, 4, 0, 6, 0, 8]

        In weight 1, we can sometimes rule out cusp forms existing via
        Riemann-Roch, but if this does not work, we trigger computation of the
        cusp forms space via Schaeffer's algorithm::

            sage: chi = [u for u in DirichletGroup(40) if u(-1) == -1 and u(21) == 1][0]
            sage: Gamma1(40).dimension_cusp_forms(1, chi)
            0
            sage: G = DirichletGroup(57); chi = (G.0) * (G.1)^6
            sage: Gamma1(57).dimension_cusp_forms(1, chi)
            1
        """
        from .all import Gamma0

        # first deal with special cases

        if eps is None:
            return GammaH_class.dimension_cusp_forms(self, k)

        N = self.level()
        K = eps.base_ring()
        eps = DirichletGroup(N, K)(eps)

        if K.characteristic() != 0:
            raise NotImplementedError(
                'dimension_cusp_forms() is only implemented for rings of characteristic 0'
            )

        if eps.is_trivial():
            return Gamma0(N).dimension_cusp_forms(k)

        if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k % 2) == 0
                                                            and eps.is_odd()):
            return ZZ(0)

        if k == 1:
            from sage.modular.modform.weight1 import dimension_wt1_cusp_forms
            return dimension_wt1_cusp_forms(eps)

        # now the main part

        if algorithm == "Quer":
            n = eps.order()
            dim = ZZ(0)
            for d in n.divisors():
                G = GammaH_constructor(N, (eps**d).kernel())
                dim = dim + moebius(d) * G.dimension_cusp_forms(k)
            return dim // phi(n)

        elif algorithm == "CohenOesterle":
            from sage.modular.dims import CohenOesterle
            return ZZ(
                K(Gamma0(N).index() * (k - 1) / ZZ(12)) +
                CohenOesterle(eps, k))

        else:  #algorithm not in ["CohenOesterle", "Quer"]:
            raise ValueError("Unrecognised algorithm in dimension_cusp_forms")
Example #5
0
    def dimension_eis(self, k=2, eps=None, algorithm="CohenOesterle"):
        r"""
        Return the dimension of the space of Eisenstein series forms for self,
        or the dimension of the subspace corresponding to the given character
        if one is supplied.

        INPUT:

        - ``k`` - an integer (default: 2), the weight.

        - ``eps`` - either None or a Dirichlet character modulo N, where N is
          the level of this group. If this is None, then the dimension of the
          whole space is returned; otherwise, the dimension of the subspace of
          Eisenstein series of character eps.

        - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Möbius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        AUTHORS:

        - William Stein - Cohen--Oesterle algorithm

        - Jordi Quer - algorithm based on GammaH subgroups

        - David Loeffler (2009) - code refactoring

        EXAMPLES:

        The following two computations use different algorithms: ::

            sage: [Gamma1(36).dimension_eis(1,eps) for eps in DirichletGroup(36)]
            [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
            sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)]
            [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]

        So do these: ::

            sage: [Gamma1(48).dimension_eis(3,eps) for eps in DirichletGroup(48)]
            [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
            sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)]
            [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
        """
        from all import Gamma0

        # first deal with special cases

        if eps is None:
            return GammaH_class.dimension_eis(self, k)

        N = self.level()
        K = eps.base_ring()
        eps = DirichletGroup(N, K)(eps)

        if eps.is_trivial():
            return Gamma0(N).dimension_eis(k)

        # Note case of k = 0 and trivial character already dealt with separately, so k <= 0 here is valid:
        if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
            return ZZ(0)

        if algorithm == "Quer":
            n = eps.order()
            dim = ZZ(0)
            for d in n.divisors():
                G = GammaH_constructor(N,(eps**d).kernel())
                dim = dim + moebius(d)*G.dimension_eis(k)
            return dim//phi(n)

        elif algorithm == "CohenOesterle":
            from sage.modular.dims import CohenOesterle
            j = 2-k
            # We use the Cohen-Oesterle formula in a subtle way to
            # compute dim M_k(N,eps) (see Ch. 6 of William Stein's book on
            # computing with modular forms).
            alpha = -ZZ( K(Gamma0(N).index()*(j-1)/ZZ(12)) + CohenOesterle(eps,j) )
            if k == 1:
                return alpha
            else:
                return alpha - self.dimension_cusp_forms(k, eps)

        else: #algorithm not in ["CohenOesterle", "Quer"]:
            raise ValueError("Unrecognised algorithm in dimension_eis")
Example #6
0
    def dimension_cusp_forms(self, k=2, eps=None, algorithm="CohenOesterle"):
        r"""
        Return the dimension of the space of cusp forms for self, or the
        dimension of the subspace corresponding to the given character if one
        is supplied.

        INPUT:

        - ``k`` - an integer (default: 2), the weight.

        - ``eps`` - either None or a Dirichlet character modulo N, where N is
          the level of this group. If this is None, then the dimension of the
          whole space is returned; otherwise, the dimension of the subspace of
          forms of character eps.

        - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Möbius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        EXAMPLES:

        We compute the same dimension in two different ways ::

            sage: K = CyclotomicField(3)
            sage: eps = DirichletGroup(7*43,K).0^2
            sage: G = Gamma1(7*43)

        Via Cohen--Oesterle: ::

            sage: Gamma1(7*43).dimension_cusp_forms(2, eps)
            28

        Via Quer's method: ::

            sage: Gamma1(7*43).dimension_cusp_forms(2, eps, algorithm="Quer")
            28

        Some more examples: ::

            sage: G.<eps> = DirichletGroup(9)
            sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]]
            [0, 0, 1, 0, 3, 0, 5, 0, 7, 0]
            sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]]
            [0, 0, 0, 2, 0, 4, 0, 6, 0, 8]
        """
        from all import Gamma0

        # first deal with special cases

        if eps is None:
            return GammaH_class.dimension_cusp_forms(self, k)

        N = self.level()
        K = eps.base_ring()
        eps = DirichletGroup(N, K)(eps)

        if K.characteristic() != 0:
            raise NotImplementedError('dimension_cusp_forms() is only implemented for rings of characteristic 0')

        if eps.is_trivial():
            return Gamma0(N).dimension_cusp_forms(k)

        if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
            return ZZ(0)

        if k == 1:
            try:
                n = self.dimension_cusp_forms(1)
                if n == 0:
                    return ZZ(0)
                else: # never happens at present
                    raise NotImplementedError("Computations of dimensions of spaces of weight 1 cusp forms not implemented at present")
            except NotImplementedError:
                raise

        # now the main part

        if algorithm == "Quer":
            n = eps.order()
            dim = ZZ(0)
            for d in n.divisors():
                G = GammaH_constructor(N,(eps**d).kernel())
                dim = dim + moebius(d)*G.dimension_cusp_forms(k)
            return dim//phi(n)

        elif algorithm == "CohenOesterle":
            from sage.modular.dims import CohenOesterle
            return ZZ( K(Gamma0(N).index() * (k-1)/ZZ(12)) + CohenOesterle(eps,k) )

        else: #algorithm not in ["CohenOesterle", "Quer"]:
            raise ValueError("Unrecognised algorithm in dimension_cusp_forms")