def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N)+0.5
     new_y = logarithmic(x, y, new_x)
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     self.assertAllclose(new_y[:5], correct_y)
 def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N) + 0.5
     new_y = logarithmic(x, y, new_x)
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     self.assertAllclose(new_y[:5], correct_y)
 def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N) + 0.5
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", DeprecationWarning)
         new_y = logarithmic(x, y, new_x)
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     self.assertAllclose(new_y[:5], correct_y)
Example #4
0
 def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N) + 0.5
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning, "`logarithmic` is deprecated")
         new_y = logarithmic(x, y, new_x)
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     assert_allclose(new_y[:5], correct_y)
 def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N)+0.5
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning, "`logarithmic` is deprecated")
         new_y = logarithmic(x, y, new_x)
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     assert_allclose(new_y[:5], correct_y)
 def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N)+0.5
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", DeprecationWarning)
         new_y = logarithmic(x, y, new_x)
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     self.assertAllclose(new_y[:5], correct_y)
 def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N)+0.5
     t1 = time.clock()
     new_y = logarithmic(x, y, new_x)
     t2 = time.clock()
     #print "time for logarithmic interpolation with N = %i:" % N, t2 - t1
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     self.assertAllclose(new_y[:5], correct_y)
Example #8
0
 def test_logarithmic(self):
     N = 4000.
     x = arange(N)
     y = arange(N)
     new_x = arange(N) + 0.5
     t1 = time.clock()
     new_y = logarithmic(x, y, new_x)
     t2 = time.clock()
     #print "time for logarithmic interpolation with N = %i:" % N, t2 - t1
     correct_y = [np.NaN, 1.41421356, 2.44948974, 3.46410162, 4.47213595]
     self.assertAllclose(new_y[:5], correct_y)