Example #1
0
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([
         1.000000, 0.519052, 0.586405, 0.610151, 0.586405, 0.519052,
         1.000000
     ])
     cheb_odd = signal.chebwin(7, at=-10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
Example #2
0
def plot(data, fs, rate, w_ofs, nperseg=1024, at=180):
    plt.subplot(2, 3, 1 + w_ofs)
    plt.plot(data)
    plt.title('Waveform')

    plt.subplot(2, 3, 2 + w_ofs)

    plt.subplots_adjust(wspace=0.8, hspace=0.6)

    f, t, Zxx = sg.stft(data,
                        fs / rate,
                        nperseg=nperseg,
                        window=sg.chebwin(nperseg, at))

    spectrum = 20 * np.log10(
        2 * np.abs(Zxx) + np.random.rand(Zxx.shape[0], Zxx.shape[1]) * 1e-12)

    mmax = np.max(spectrum) + 6
    plt.pcolormesh(t, f, spectrum, cmap='jet')
    plt.clim(vmin=mmax - at, vmax=mmax)
    plt.colorbar()
    plt.title('STFT Magnitude')
    plt.ylabel('Frequency [Hz]')
    plt.xlabel('Time [sec]')

    plt.subplot(2, 3, 3 + w_ofs)
    plt.plot(spectrum)
    plt.ylim(mmax - at, mmax)
    plt.title('STFT Magnitude')
Example #3
0
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([
         1.000000, 0.451924, 0.51027, 0.541338, 0.541338, 0.51027, 0.451924,
         1.000000
     ])
     cheb_even = signal.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
Example #4
0
def spectral_contraction(X_mag):
    """Spectral Contraction measure.

       As suggested in _[1].

    Parameters
    ----------
    X_mag : ndarray
        Magnitude spectrum of a time frame.

    Returns
    -------
    spectral_contraction :

    References
    ----------
    .. [1] Bernhard Lehner, Gerhard Widmer, Reinhard Sonnleitner
           "ON THE REDUCTION OF FALSE POSITIVES IN SINGING VOICE DETECTION",
           ICASSP 2014

    """
    window = chebwin(X_mag.shape[0], 200)
    if X_mag.ndim > 1:
        window = np.tile(window, (X_mag.shape[1], 1)).T

    spectral_contraction = np.sum(X_mag * window, axis=0) / (np.sum(X_mag, axis=0) + np.finfo(float).eps)

    return spectral_contraction
Example #5
0
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = signal.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
Example #6
0
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_odd = signal.chebwin(7, at=10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
Example #7
0
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_odd = signal.chebwin(7, at=10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
Example #8
0
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = signal.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
Example #9
0
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         cheb_even = signal.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
Example #10
0
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         cheb_odd = signal.chebwin(7, at=-10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
Example #11
0
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         cheb_odd = signal.chebwin(7, at=-10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
Example #12
0
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         cheb_even = signal.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
Example #13
0
def fft_filter(ydata,
               window_function=None,
               cutoff=[50, 690],
               sample_rate=None):
    """
        Fourier filter implementation.
        
        Takes signal data in the frequency domain, and transforms into the
        time domain where slices are taken off.
        
        Various window functions can be applied, including stock and custom
        filters that I have implemented. One in particular is the house
        filter, which is considered the "gold standard".
    """
    stock_windows = [
        "blackmanharris",
        "blackman",
        "boxcar",
        "gaussian",
        "hanning",
        "bartlett",
    ]

    custom_windows = ["lowpass", "highpass", "bandpass", "chebyshev", "house"]
    # If a window function is provided, apply it to the frequency-domain signal
    # before applying the Fourier transform.
    if window_function:
        if window_function not in stock_windows and window_function not in custom_windows:
            pass
        if window_function in stock_windows:
            ydata *= spsig.get_window(window_function, ydata.size)
        else:
            if window_function != "chebyshev" and window_function != "house":
                #raise InvalidBandPassError("No frequency cut off supplied.")
                ydata *= butter_filter(ydata, cutoff, sample_rate,
                                       window_function)
            elif window_function == "chebyshev":
                ydata *= spsig.chebwin(ydata.size, 200.)
    # FFT the frequency spectrum to time domain
    time_domain = fft(ydata)

    # If no range is specified, take a prespecified chunk
    if cutoff is None:
        cutoff = [50, 690]
    # Make sure values are sorted
    cutoff = sorted(cutoff)

    # Apply the house filter before performing the inverse
    # FT back to frequency domain.
    if window_function == "house":
        house_window = house_filter(time_domain.size, *cutoff)
        time_domain *= house_window
        time_domain[:min(cutoff)] = 0.
        time_domain[max(cutoff):] = 0.

    # Return the real part of the inverse FT
    filtered = np.real(ifft(time_domain))
    return filtered
Example #14
0
def chebyshev_window2(lobefrac, tolerance):
    w = int((1 / math.pi) * (1 / lobefrac) * math.acosh(1.0 / tolerance))
    if ((w % 2) != 0):
        w -= 1

    x0 = math.cosh(math.acosh(1.0 / tolerance) / (w - 1))
    w0 = 2.0 * math.acos(1.0 / x0)
    at = -20 * math.log10(1.0 / tolerance)
    x = signal.chebwin(w, at)
    return x
Example #15
0
 def test_basic(self):
     assert_allclose(signal.chebwin(6, 100),
                     [0.1046401879356917, 0.5075781475823447, 1.0, 1.0,
                      0.5075781475823447, 0.1046401879356917])
     assert_allclose(signal.chebwin(7, 100),
                     [0.05650405062850233, 0.316608530648474,
                      0.7601208123539079, 1.0, 0.7601208123539079,
                      0.316608530648474, 0.05650405062850233])
     assert_allclose(signal.chebwin(6, 10),
                     [1.0, 0.6071201674458373, 0.6808391469897297,
                      0.6808391469897297, 0.6071201674458373, 1.0])
     assert_allclose(signal.chebwin(7, 10),
                     [1.0, 0.5190521247588651, 0.5864059018130382,
                      0.6101519801307441, 0.5864059018130382,
                      0.5190521247588651, 1.0])
     assert_allclose(signal.chebwin(6, 10, False),
                     [1.0, 0.5190521247588651, 0.5864059018130382,
                      0.6101519801307441, 0.5864059018130382,
                      0.5190521247588651])
Example #16
0
def PSD(matrix):
    N1 = np.size(matrix, 1)
    N2 = np.size(matrix, 0)
    #rxx=sig.convolve2d(matrix,matrix,mode='same')
    rxx = matrix
    rxx = rxx * (chebwin(N1, at=100).reshape(1, N1) * np.ones((N2, 1)))
    sxx = np.fft.fft(rxx, axis=1)
    mag_sxx = (np.abs(sxx[:, 0:N1 // 2]) * ts)**2
    mag_sxx = 10 * np.log10(np.mean(mag_sxx, 0))
    F = np.linspace(0, fs // 2, len(mag_sxx))
    return F, mag_sxx
Example #17
0
 def test_basic(self):
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         assert_allclose(signal.chebwin(6, 100),
                         [0.1046401879356917, 0.5075781475823447, 1.0, 1.0,
                          0.5075781475823447, 0.1046401879356917])
         assert_allclose(signal.chebwin(7, 100),
                         [0.05650405062850233, 0.316608530648474,
                          0.7601208123539079, 1.0, 0.7601208123539079,
                          0.316608530648474, 0.05650405062850233])
         assert_allclose(signal.chebwin(6, 10),
                         [1.0, 0.6071201674458373, 0.6808391469897297,
                          0.6808391469897297, 0.6071201674458373, 1.0])
         assert_allclose(signal.chebwin(7, 10),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651, 1.0])
         assert_allclose(signal.chebwin(6, 10, False),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651])
Example #18
0
 def test_basic(self):
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         assert_allclose(signal.chebwin(6, 100),
                         [0.1046401879356917, 0.5075781475823447, 1.0, 1.0,
                          0.5075781475823447, 0.1046401879356917])
         assert_allclose(signal.chebwin(7, 100),
                         [0.05650405062850233, 0.316608530648474,
                          0.7601208123539079, 1.0, 0.7601208123539079,
                          0.316608530648474, 0.05650405062850233])
         assert_allclose(signal.chebwin(6, 10),
                         [1.0, 0.6071201674458373, 0.6808391469897297,
                          0.6808391469897297, 0.6071201674458373, 1.0])
         assert_allclose(signal.chebwin(7, 10),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651, 1.0])
         assert_allclose(signal.chebwin(6, 10, False),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651])
Example #19
0
 def test_basic(self):
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         assert_allclose(signal.chebwin(6, 100),
                         [0.1046401879356917, 0.5075781475823447, 1.0, 1.0,
                          0.5075781475823447, 0.1046401879356917])
         assert_allclose(signal.chebwin(7, 100),
                         [0.05650405062850233, 0.316608530648474,
                          0.7601208123539079, 1.0, 0.7601208123539079,
                          0.316608530648474, 0.05650405062850233])
         assert_allclose(signal.chebwin(6, 10),
                         [1.0, 0.6071201674458373, 0.6808391469897297,
                          0.6808391469897297, 0.6071201674458373, 1.0])
         assert_allclose(signal.chebwin(7, 10),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651, 1.0])
         assert_allclose(signal.chebwin(6, 10, False),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651])
Example #20
0
def FFT(s):
    F = fft.fft(s)
    F = 20 * np.log10(np.abs(F))
    N = F.shape[0]
    W = chebwin(N, at=100)
    Fw = fft.fft(s * W)
    Fw = 20 * np.log10(np.abs(Fw))
    f = np.linspace(0, fs // 2, N // 2)
    plt.plot(f[0:N // 8], F[0:N // 8], label=lavel[j])
    legend = plt.legend(loc='upper right', shadow=True, fontsize='small')
    legend.get_frame().set_facecolor('pink')
    plt.title(senal[i])
    plt.grid()
Example #21
0
    def update_descriptors(self):
        if not self.kernel_type:
            raise ValueError("Integrator was passed kernel None")

        logger.debug(
            'Updating WindowIntegrator "%s" descriptors based on input descriptor: %s.',
            self.name, self.sink.descriptor)

        record_length = self.sink.descriptor.axes[-1].num_points()

        time_pts = self.sink.descriptor.axes[-1].points
        time_step = time_pts[1] - time_pts[0]
        kernel = np.zeros(record_length, dtype=np.complex128)
        sample_start = int(self.box_car_start.value / time_step)
        sample_stop = int(self.box_car_stop.value / time_step) + 1
        if self.kernel_type == 'boxcar':
            kernel[sample_start:sample_stop] = 1.0
        elif self.kernel_type == 'chebwin':
            # create a Dolph-Chebyshev window with 100 dB attenuation
            kernel[sample_start:sample_stop] = \
                chebwin(sample_start-sample_stop, at=100)
        elif self.kernel_type == 'blackman':
            kernel[sample_start:sample_stop] = \
                blackman(sample_start-sample_stop)
        elif self.kernel_type == 'slepian':
            # create a Slepian window with 0.2 bandwidth
            kernel[sample_start:sample_stop] = \
                slepian(sample_start-sample_stop, width=0.2)

        # add modulation
        kernel *= np.exp(2j * np.pi * self.frequency.value * time_step *
                         time_pts)

        # pad or truncate the kernel to match the record length
        if kernel.size < record_length:
            self.aligned_kernel = np.append(
                kernel,
                np.zeros(record_length - kernel.size, dtype=np.complex128))
        else:
            self.aligned_kernel = np.resize(kernel, record_length)

        # Integrator reduces and removes axis on output stream
        # update output descriptors
        output_descriptor = DataStreamDescriptor()
        # TODO: handle reduction to single point
        output_descriptor.axes = self.sink.descriptor.axes[:-1]
        output_descriptor._exp_src = self.sink.descriptor._exp_src
        output_descriptor.dtype = np.complex128
        for os in self.source.output_streams:
            os.set_descriptor(output_descriptor)
            os.end_connector.update_descriptors()
Example #22
0
def genCoeff(window, M):

    # CHEBWIN
    if window == "cheb-win":
        PFBCoeff = sp.chebwin(M, at=-30)

    # HANNING WINDOW
    elif window == "hanning":
        X = numpy.array([(float(i) / NFFT) - (float(NTaps) / 2)
                         for i in range(M)])
        PFBCoeff = numpy.sinc(X) * numpy.hanning(M)

    else:
        PFBCoeff = numpy.ones(M)
    return PFBCoeff
Example #23
0
    def test_cheb_even(self):
        cheb_even_true = array([
            0.203894, 0.107279, 0.133904, 0.163608, 0.196338, 0.231986,
            0.270385, 0.311313, 0.354493, 0.399594, 0.446233, 0.493983,
            0.542378, 0.590916, 0.639071, 0.686302, 0.732055, 0.775783,
            0.816944, 0.855021, 0.889525, 0.920006, 0.946060, 0.967339,
            0.983557, 0.994494, 1.000000, 1.000000, 0.994494, 0.983557,
            0.967339, 0.946060, 0.920006, 0.889525, 0.855021, 0.816944,
            0.775783, 0.732055, 0.686302, 0.639071, 0.590916, 0.542378,
            0.493983, 0.446233, 0.399594, 0.354493, 0.311313, 0.270385,
            0.231986, 0.196338, 0.163608, 0.133904, 0.107279, 0.203894
        ])

        cheb_even = signal.chebwin(54, at=-40)
        assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
Example #24
0
    def test_cheb_odd(self):
        cheb_odd_true = array([
            0.200938, 0.107729, 0.134941, 0.165348, 0.198891, 0.235450,
            0.274846, 0.316836, 0.361119, 0.407338, 0.455079, 0.503883,
            0.553248, 0.602637, 0.651489, 0.699227, 0.745266, 0.789028,
            0.829947, 0.867485, 0.901138, 0.930448, 0.955010, 0.974482,
            0.988591, 0.997138, 1.000000, 0.997138, 0.988591, 0.974482,
            0.955010, 0.930448, 0.901138, 0.867485, 0.829947, 0.789028,
            0.745266, 0.699227, 0.651489, 0.602637, 0.553248, 0.503883,
            0.455079, 0.407338, 0.361119, 0.316836, 0.274846, 0.235450,
            0.198891, 0.165348, 0.134941, 0.107729, 0.200938
        ])

        cheb_odd = signal.chebwin(53, at=-40)
        assert_array_almost_equal(cheb_odd, cheb_odd_true, decimal=4)
Example #25
0
    def filter(self, f):
        '''
        Beamforming filter coefficients

        Parameters
        ----------
        f:
            frequency 
        '''
        filter = super(DelayAndSumChebyWin, self).filter(f)

        #multiply a chebwin window
        filter = filter * chebwin(self.M, at=self.attenuation_dB).reshape(
            self.M, 1)
        return filter
def dolph_chebyshev_coefficients(N, RoDb):

    Ro = pow(10, RoDb / 20)

    window = signal.chebwin(N, RoDb)

    coeffs_normalized = window[N // 2:]

    zo = math.cosh(cosh_inverse(Ro) / (N - 1))

    normalization_factor = (zo**(N - 1)) / coeffs_normalized[-1]

    coeffs = [normalization_factor * i for i in coeffs_normalized]

    return coeffs
Example #27
0
    def test_cheb_odd(self):
        cheb_odd_true = array([0.200938, 0.107729, 0.134941, 0.165348,
                               0.198891, 0.235450, 0.274846, 0.316836,
                               0.361119, 0.407338, 0.455079, 0.503883,
                               0.553248, 0.602637, 0.651489, 0.699227,
                               0.745266, 0.789028, 0.829947, 0.867485,
                               0.901138, 0.930448, 0.955010, 0.974482,
                               0.988591, 0.997138, 1.000000, 0.997138,
                               0.988591, 0.974482, 0.955010, 0.930448,
                               0.901138, 0.867485, 0.829947, 0.789028,
                               0.745266, 0.699227, 0.651489, 0.602637,
                               0.553248, 0.503883, 0.455079, 0.407338,
                               0.361119, 0.316836, 0.274846, 0.235450,
                               0.198891, 0.165348, 0.134941, 0.107729,
                               0.200938])

        cheb_odd = signal.chebwin(53, at=-40)
        assert_array_almost_equal(cheb_odd, cheb_odd_true, decimal=4)
Example #28
0
    def test_cheb_even(self):
        cheb_even_true = array([0.203894, 0.107279, 0.133904,
                                0.163608, 0.196338, 0.231986,
                                0.270385, 0.311313, 0.354493,
                                0.399594, 0.446233, 0.493983,
                                0.542378, 0.590916, 0.639071,
                                0.686302, 0.732055, 0.775783,
                                0.816944, 0.855021, 0.889525,
                                0.920006, 0.946060, 0.967339,
                                0.983557, 0.994494, 1.000000,
                                1.000000, 0.994494, 0.983557,
                                0.967339, 0.946060, 0.920006,
                                0.889525, 0.855021, 0.816944,
                                0.775783, 0.732055, 0.686302,
                                0.639071, 0.590916, 0.542378,
                                0.493983, 0.446233, 0.399594,
                                0.354493, 0.311313, 0.270385,
                                0.231986, 0.196338, 0.163608,
                                0.133904, 0.107279, 0.203894])

        cheb_even = signal.chebwin(54, at=-40)
        assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
Example #29
0
 def test_cheb_odd_high_attenuation(self):
     cheb_odd = signal.chebwin(53, at=-40)
     assert_array_almost_equal(cheb_odd, cheb_odd_true, decimal=4)
# Plot the window and its frequency response:

from scipy import signal
from scipy.fftpack import fft, fftshift
import matplotlib.pyplot as plt

window = signal.chebwin(51, at=100)
plt.plot(window)
plt.title("Dolph-Chebyshev window (100 dB)")
plt.ylabel("Amplitude")
plt.xlabel("Sample")

plt.figure()
A = fft(window, 2048) / (len(window)/2.0)
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
plt.plot(freq, response)
plt.axis([-0.5, 0.5, -120, 0])
plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
plt.ylabel("Normalized magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
Example #31
0
 def test_cheb_even_high_attenuation(self):
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         cheb_even = signal.chebwin(54, at=-40)
     assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
Example #32
0
 def test_cheb_even_high_attenuation(self):
     with warnings.catch_warnings():
         warnings.simplefilter("ignore", UserWarning)
         cheb_even = signal.chebwin(54, at=-40)
     assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
fig=plt.figure(figsize=(10,10))#4
ax = plt.subplot(4,1,1)#5
ax.plot(time,y) #6
ax = plt.subplot(4,1,2) #7
windLength = 128; #8
overl = windLength-1; #9
freqBins = 250; #10
wind=np.kaiser(windLength,0)
f, tt, Sxx =sg.spectrogram(y,fs,wind,len(wind),overl); #7
plt.pcolormesh(tt,f,Sxx);
ax = plt.subplot(4,1,3) #12
wind=np.hanning(windLength);
f, tt, Sxx =sg.spectrogram(y,fs,wind,len(wind),overl); #7
plt.pcolormesh(tt,f,Sxx)
ax = plt.subplot(4,1,4); #14
wind=sg.chebwin(windLength, at=100);
f, tt, Sxx =sg.spectrogram(y,fs,wind,len(wind)); #7
plt.pcolormesh(tt,f,Sxx);

#%% 

b1_low, a1_low = sg.butter(5, .2, 'low', analog=True)#1
b2_low, a2_low = sg.butter(10, .2, 'low', analog=True)#2
b3_low, a3_low = sg.cheby1(5, .2, 100, 'low', analog=True)#3
b4_low, a4_low = sg.cheby1(5, .2, 100, 'low', analog=True)#4
w, k = sg.freqs(b3_low, a3_low) #5
plt.semilogx(w, 20 * np.log(abs(k))) #5

B_low,A_low = sg.butter(8,0.6,btype='low',analog=True) #1
B_high,A_high = sg.butter(8,0.4,btype='high',analog=True) #2
winds = {}
Example #34
0
 def test_cheb_odd_high_attenuation(self):
     cheb_odd = signal.chebwin(53, at=-40)
     assert_array_almost_equal(cheb_odd, cheb_odd_true, decimal=4)
Example #35
0
 def test_cheb_even_high_attenuation(self):
     cheb_even = signal.chebwin(54, at=-40)
     assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
 def chebyshev_win(self, array_size, sll, *args, **kwargs):
     return signal.chebwin(array_size, at=-sll)
Example #37
0
DIR = '/home/jernej/Desktop/ModelskaAn/MOJEDELLO/dvanajsta/'
val = ["val2", "val3"]
V = 1
SIG = loadtxt(DIR + val[V] + ".dat")  # branje
LS = len(SIG)  # dolžina  signala

SIG_256 = SIG[0:LS // 2]
SIG_128 = SIG[0:LS // 4]
SIG_64 = SIG[0:LS // 8]

STD = 7
windowGauss = signal.gaussian(LS, std=STD)
windowBartt = signal.bartlett(LS)
windowHann = signal.hann(LS)
windowCH = signal.chebwin(LS, at=100)
windowTuR = signal.tukey(LS)

FTSIG = 2 * abs(np.fft.fft(SIG))**2
FTfreq = np.fft.fftfreq(LS, 1 / len(SIG))
FTSIG_G = 2 * abs(np.fft.fft(SIG * signal.gaussian(LS, std=STD)))**2
FTSIG_B = 2 * abs(np.fft.fft(SIG * signal.bartlett(LS)))**2
FTSIG_H = 2 * abs(np.fft.fft(SIG * signal.hann(LS)))**2
FTSIG_CH = 2 * abs(np.fft.fft(SIG * signal.chebwin(LS, at=100)))**2
FTSIG_T = 2 * abs(np.fft.fft(SIG * signal.tukey(LS)))**2
FTSIG_HCH = 2 * abs(np.fft.fft(SIG * signal.tukey(LS) * signal.hann(LS)))**2

FTSIG_256 = 2 * abs(np.fft.fft(SIG_256))**2
FTfreq_256 = np.fft.fftfreq(LS // 2, 1 / len(SIG_256))
FTSIG_G_256 = 2 * abs(np.fft.fft(
    SIG_256 * signal.gaussian(LS // 2, std=STD)))**2
Example #38
0
def phase_channels(conf,d,i0,carrier_width=10.0,cphases=None,camps=None,use_cphases=False):
    """
    simple calculation of phase differences between ch0 and other channels
    as well as channel amplitude.
    can be used to beamform all channels together.
    """
    if use_cphases:
        print("Using calibrated phases")
    else:
        cphases=n.zeros(len(conf.ch))
        camps=n.ones(len(conf.ch))        
    fvec=n.fft.fftshift(n.fft.fftfreq(conf.nfft,d=1.0/conf.sample_rate))
    fidx=n.where( (fvec>conf.fmin)&(fvec<conf.fmax))[0]
    carrier_fidx=n.where( (fvec>-10.0)&(fvec<10.0))[0]
    n_freq=len(fidx)
    nfft=conf.nfft
    step_len=conf.step_len*conf.sample_rate
    t=n.arange(nfft,dtype=n.float32)/conf.sample_rate
    wfun=s.chebwin(nfft,150)
    n_chan=len(conf.ch)
    ch_pairs=[]
    n_pair=0
    for i in range(1,n_chan):
        ch_pairs.append((0,i))
        n_pair+=1
    
    S=n.zeros([n_pair,conf.nsteps,n_freq],dtype=n.complex64)
    overlap=int(nfft/conf.overlap_fraction)
    nmax_avg=int(n.floor((conf.step_len*conf.sample_rate-nfft-conf.offset)/overlap))
    n_avg=1
    tvec=n.zeros(conf.nsteps)
    pwrs=n.zeros(len(conf.ch))
    npwrs=n.zeros(len(conf.ch))    
    for step_idx in range(conf.nsteps):
        fnow = conf.f0 + step_idx*conf.fstep
        fshift = conf.center_freq-fnow
        dshift=n.exp(1j*2.0*n.pi*fshift*t)
        
        for pi,ci in enumerate(ch_pairs):
            for avg_i in range(n_avg):
                inow=i0+step_idx*step_len + avg_i*overlap
                print("%s n_avg %d/%d f0 %1.2f"%(stuffr.unix2datestr(inow/conf.sample_rate),n_avg,nmax_avg,fnow/1e6))
                tvec[step_idx]=step_idx*step_len/conf.sample_rate
                
                z0=dshift*d.read_vector_c81d(inow,nfft,conf.ch[ci[0]])*camps[ci[0]]*n.exp(1j*cphases[ci[0]])
                pwrs[ci[0]]+=n.mean(n.abs(z0)**2.0)
                npwrs[ci[0]]+=1.0
                z1=dshift*d.read_vector_c81d(inow,nfft,conf.ch[ci[1]])*camps[ci[1]]*n.exp(1j*cphases[ci[1]])
                pwrs[ci[1]]+=n.mean(n.abs(z1)**2.0)
                npwrs[ci[1]]+=1.0                
                X0=n.fft.fftshift(n.fft.fft(wfun*z0))
                X1=n.fft.fftshift(n.fft.fft(wfun*z1))                
                S[pi,step_idx,:]+=X0[fidx]*n.conj(X1[fidx])
                
    gfidx=n.where( n.abs((fvec[fidx])>carrier_width))[0]    
    phase_diffs=[]
    
    for i in range(n_pair):
        xc=n.copy(S[i,:,gfidx])
        xc=xc.flatten()
        xc_idx=n.argsort(xc)
        phase_diff=n.angle(n.sum(xc[xc_idx[int(len(xc_idx)*0.3):int(len(xc_idx)*0.9)]]))
        phase_diffs.append(phase_diff)
        if use_cphases:
            plt.pcolormesh(n.angle(S[i,:,:]))
            plt.colorbar()
            plt.show()
            plt.plot(n.angle(n.sum(S[i,:,:],axis=0)))
            plt.axhline(phase_diff)
            plt.show()
        
    ch_pwrs=pwrs/npwrs

    phases=n.zeros(n_chan)
    # simple phaseup with reference to channel 0
    # ph0-ph1
    # ph0-ph2
    # ph0-ph3
    # ph0-ph4
    for i in range(n_pair):
        phases[i+1]=phase_diffs[i]
#    plt.plot(phases)
 #   plt.show()
    # pha = 0
    # pha - phb = mab
    # pha - phc = 
    return(1.0/n.sqrt(ch_pwrs),phases)
Example #39
0
def calculate_sweep_xc(conf,d,i0,use_cphases=False,cphases=None,camps=None):

    if use_cphases:
        print("Using calcibrated phases")
    else:
        cphases=n.zeros(len(conf.ch))
        camps=n.ones(len(conf.ch))
        
    fvec=n.fft.fftshift(n.fft.fftfreq(conf.nfft,d=1.0/conf.sample_rate))
    fidx=n.where( (fvec>conf.fmin)&(fvec<conf.fmax))[0]

    carrier_fidx=n.where( (fvec>-10.0)&(fvec<10.0))[0]
    
    n_freq=len(fidx)
    
    nfft=conf.nfft
    step_len=conf.step_len*conf.sample_rate
    t=n.arange(nfft,dtype=n.float32)/conf.sample_rate

    wfun=s.chebwin(nfft,150)

    n_chan=len(conf.ch)
    cpix=ito.combinations(n.arange(n_chan,dtype=n.int),2)
    ch_pairs=[]
    for i in range(n_chan):
        ch_pairs.append((i,i))
    for cpi in cpix:
        ch_pairs.append((cpi[0],cpi[1]))
        
    n_pairs=len(ch_pairs)
        
    S=n.zeros([n_pairs,conf.nsteps,n_freq],dtype=n.complex64)

    overlap=int(nfft/conf.overlap_fraction)
    
    nmax_avg=int(n.floor((conf.step_len*conf.sample_rate-nfft-conf.offset)/overlap))+1
    
    if conf.fast:
        n_avg=n.min([conf.n_avg,nmax_avg])
    else:
        n_avg=nmax_avg
    
    tvec=n.zeros(conf.nsteps)
    carrier = n.zeros(conf.nsteps,dtype=n.complex64)
    f0s=n.zeros(conf.nsteps)
    
    for step_idx in range(conf.nsteps):
        fnow = conf.f0 + step_idx*conf.fstep
        f0s[step_idx]=fnow
        fshift = conf.center_freq-fnow
        dshift=n.exp(1j*2.0*n.pi*fshift*t)

        tvec[step_idx]=step_idx*step_len/conf.sample_rate
        
        for avg_i in range(n_avg):
            inow=i0+step_idx*step_len + avg_i*overlap
            print("%s n_avg %d/%d f0 %1.2f"%(stuffr.unix2datestr(inow/conf.sample_rate),n_avg,nmax_avg,fnow/1e6))
            
            for pi,chp_i in enumerate(ch_pairs):                                        
                
                z0=dshift*d.read_vector_c81d(inow,nfft,conf.ch[chp_i[0]])*camps[chp_i[0]]*n.exp(1j*cphases[chp_i[0]])
                z1=dshift*d.read_vector_c81d(inow,nfft,conf.ch[chp_i[1]])*camps[chp_i[1]]*n.exp(1j*cphases[chp_i[1]])
                X0=n.fft.fftshift(n.fft.fft(wfun*z0))
                X1=n.fft.fftshift(n.fft.fft(wfun*z1))                
                S[pi,step_idx,:]+=X0[fidx]*n.conj(X1[fidx])
                
    
    if conf.fscale == "kHz":
        fvec=fvec/1e3

    ho=h5py.File("img/%s_sweep_xc_%1.2f.h5"%(conf.prefix,i0/conf.sample_rate),"w")
    ho["S"]=S
    ho["ch_pairs"]=ch_pairs
    ho["phases"]=cphases
    ho["amps"]=camps
    ho["time_vec"]=tvec
    ho["freq_vec"]=fvec[fidx]
    ho["f0s"]=f0s
    ho["center_freq"]=conf.center_freq
    ho["t0"]=i0/conf.sample_rate
    ho["date"]=stuffr.unix2datestr(i0/conf.sample_rate)
    ho.close()
Example #40
0
def calculate_sweep(conf,d,i0,use_cphases=False,cphases=None,camps=None):

    ofname="img/%s_sweep_%1.2f.h5"%(conf.prefix,i0/conf.sample_rate)
    if os.path.exists(ofname) and conf.overwrite == False:
        print("File %s already exists. Skipping."%(ofname))
    if use_cphases:
        print("Using calcibrated phases")
    else:
        cphases=n.zeros(len(conf.ch))
        camps=n.ones(len(conf.ch))
        
    fvec=n.fft.fftshift(n.fft.fftfreq(conf.nfft,d=1.0/conf.sample_rate))
    fidx=n.where( (fvec>conf.fmin)&(fvec<conf.fmax))[0]

    carrier_fidx=n.where( (fvec>-10.0)&(fvec<10.0))[0]
    
    n_freq=len(fidx)
    
    nfft=conf.nfft
    step_len=conf.step_len*conf.sample_rate
    t=n.arange(nfft,dtype=n.float32)/conf.sample_rate

    wfun=s.chebwin(nfft,150)

    S=n.zeros([conf.nsteps*conf.nsubsteps,n_freq])
    N_avgd=n.zeros([conf.nsteps*conf.nsubsteps,n_freq])    

    overlap=int(nfft/conf.overlap_fraction)
    nmax_avg=int(n.floor((conf.step_len*conf.sample_rate-conf.trim_end)/overlap/conf.nsubsteps))+1
    sub_len=int(n.floor((step_len-conf.trim_end)/conf.nsubsteps))
    
    if conf.fast:
        n_avg=n.min([conf.n_avg,nmax_avg])
    else:
        n_avg=nmax_avg
    
    tvec=n.zeros(conf.nsteps*conf.nsubsteps)
    carrier = n.zeros(conf.nsteps*conf.nsubsteps,dtype=n.complex64)
    f0s=n.zeros(conf.nsteps*conf.nsubsteps)
    
    for step_idx in range(conf.nsteps):
        fnow = conf.f0 + step_idx*conf.fstep
        fshift = conf.center_freq-fnow
        dshift=n.exp(1j*2.0*n.pi*fshift*t)
        step_i0=i0+step_idx*step_len
        
        for sub_idx in range(conf.nsubsteps):
            
            f0s[step_idx*conf.nsubsteps+sub_idx]=fnow
            tvec[step_idx*conf.nsubsteps+sub_idx]=(step_idx*step_len+sub_idx*sub_len)/conf.sample_rate

            
            
            for avg_i in range(n_avg):
                inow=i0 + step_idx*step_len + sub_idx*sub_len + avg_i*overlap
                
                # make sure this fits the step
                if (inow+nfft-step_i0+conf.trim_end) < step_len:
                    print("%s n_avg %d/%d f0 %1.2f"%(stuffr.unix2datestr(inow/conf.sample_rate),avg_i,nmax_avg,fnow/1e6))
                    z=n.zeros(nfft,dtype=n.complex128)
                    # beamform signals
                    for ch_i in range(len(conf.ch)):
                        try:
                            z+=dshift*d.read_vector_c81d(inow,nfft,conf.ch[ch_i])*camps[ch_i]*n.exp(1j*cphases[ch_i])
                        except:
                            print("missing data")
                    
                    X=n.fft.fftshift(n.fft.fft(wfun*z))
                    if conf.debug:
                        plt.plot(fvec,10.0*n.log10(X))
                        plt.show()
                
                    S[step_idx*conf.nsubsteps+sub_idx,:]+=n.abs(X[fidx])**2.0
                    N_avgd[step_idx*conf.nsubsteps+sub_idx,:]+=1.0
                    carrier[step_idx*conf.nsubsteps+sub_idx]+=n.sum(n.abs(X[carrier_fidx])**2.0)
                
    S=S/N_avgd
#    ofname="img/%s_sweep_%1.2f.h5"%(conf.prefix,i0/conf.sample_rate)
    print("Saving %s"%(ofname))
    ho=h5py.File(ofname,"w")
    ho["S"]=S
    ho["phases"]=cphases
    ho["amps"]=camps
    ho["time_vec"]=tvec
    ho["freq_vec"]=fvec[fidx]
    ho["f0s"]=f0s
    ho["carrier_pwr"]=carrier
    ho["center_freq"]=conf.center_freq
    ho["fscale"]=str(conf.fscale)
    ho["t0"]=i0/conf.sample_rate
    ho["date"]=stuffr.unix2datestr(i0/conf.sample_rate)
    ho.close()

    clean_image.plot_file(ofname,show_plot=conf.show_plot,vmin=conf.vmin,vmax=conf.vmax)
Example #41
0
 def test_cheb_even_high_attenuation(self):
     cheb_even = signal.chebwin(54, at=-40)
     assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
Example #42
0
 def test_cheb_even_high_attenuation(self):
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = signal.chebwin(54, at=40)
     assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
Example #43
0
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     cheb_odd = signal.chebwin(7, at=-10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
Example #44
0
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     cheb_even = signal.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
Example #45
0
SIG2_256= SIG2[0:LS//2]

SIG3_lin_302= SIG3_lin[0:LS3//2]

SIG4_256= SIG4[0:LS4//2]

SIG5_256= SIG5[0:LS5//2]

SIG6_256= SIG6[0:LS6//2]


########### FOURIERE ############################

FTSIG = 2*abs(np.fft.fft(SIG))**2 
FTSIG_CH = 2*abs(np.fft.fft(SIG*signal.chebwin(LS, at=100)))**2 
FTSIG_256 = 2*abs(np.fft.fft(SIG_256))**2 
FTSIG_CH_256 = 2*abs(np.fft.fft(SIG_256*signal.chebwin(LS//2, at=100)))**2 

FTSIG2 = 2*abs(np.fft.fft(SIG2))**2 
FTSIG2_CH = 2*abs(np.fft.fft(SIG2*signal.chebwin(LS, at=100)))**2 
FTSIG2_256 = 2*abs(np.fft.fft(SIG2_256))**2 
FTSIG2_CH_256 = 2*abs(np.fft.fft(SIG2_256*signal.chebwin(LS//2, at=100)))**2 

FTSIG3_lin = 2*abs(np.fft.fft(SIG3_lin))**2 
FTSIG3_lin_CH = 2*abs(np.fft.fft(SIG3_lin*signal.chebwin(LS3, at=100)))**2 
FTSIG3_lin_302 = 2*abs(np.fft.fft(SIG3_lin_302))**2 
FTSIG3_lin_CH_302 = 2*abs(np.fft.fft(SIG3_lin_302*signal.chebwin(LS3//2, at=100)))**2 

FTSIG4 = 2*abs(np.fft.fft(SIG4))**2 
cmdstring = cmdstring + " -p " + str(radioConfig.tunerOffsetPPM)

if radioConfig.cropPercentage > 0:
    cmdstring = cmdstring + " -x " + str(radioConfig.cropPercentage)

cmdstring = cmdstring + " -e " + datagathduration
cmdstring = cmdstring + " -q"

if radioConfig.linearPower:
    cmdstring = cmdstring + " -l"

if radioConfig.fftWindow != "":
    if radioConfig.fftWindow == "BlacHarr":
        window = signal.blackmanharris(freqbins)
    elif radioConfig.fftWindow == "DolpCheb":
        window = signal.chebwin(freqbins, at=80)
    elif radioConfig.fftWindow == "FlatTop":
        window = signal.flattop(freqbins)

    file = open("window.txt","w")
    for wparm in window:
        file.write('{0:.12f}\n'.format(wparm))
    file.close() 
    cmdstring = cmdstring + " -w window.txt"

if radioConfig.sessionDurationMin == 0:
    loopForever = True
else:
    loopForever = False

numscans = radioConfig.sessionDurationMin / radioConfig.dataGatheringDurationMin