Example #1
0
def assemble(mtx_d):
    m = Material('m', D=mtx_d, rho=density)

    integral = Integral('i', order=2 * order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    tmp = time.time()
    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    return mtx_k, mtx_m
Example #2
0
def evalValAndDeriv(D):
    m = Material('m', D = D, rho = 2700.0)

    integral = Integral('i', order=2)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations = lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    eigs0, evecs0 = scipy.sparse.linalg.eigsh(mtx_k, k = 10, M = mtx_m, which = 'SM')

    eigs = eigs0[3:]
    evecs = evecs0[:, 3:]

    dydmu = numpy.array([evecs[:, i].T.dot(dKdmu.dot(evecs[:, i])) for i in range(evecs.shape[1])])
    dydlambda = numpy.array([evecs[:, i].T.dot(dKdlambda.dot(evecs[:, i])) for i in range(evecs.shape[1])])

    return eigs, dydmu, dydlambda
def solve_problem(shape, dims, young, poisson, force, transform=None):
    domain = make_domain(dims[:2], shape, transform=transform)

    omega = domain.regions['Omega']
    gamma1 = domain.regions['Gamma1']
    gamma2 = domain.regions['Gamma2']

    field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1,
                            poly_space_base='shell10x')
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    thickness = dims[2]
    if transform is None:
        pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'bend':
        pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'twist':
        pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1]

    m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson),
                 values={'.drill' : 1e-7})
    load = Material('load', values={'.val' : pload})

    aux = Integral('i', order=3)
    qp_coors, qp_weights = aux.get_qp('3_8')
    qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5)
    qp_weights *= thickness

    integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom')

    t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_point_load(load.val, v)',
                  integral, gamma2, load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity with shell10x', equations=eqs, nls=nls, ls=ls)
    pb.time_update(ebcs=Conditions([fix_u]))

    state = pb.solve()

    return pb, state, u, gamma2
Example #4
0
    def test_solving(self):
        from sfepy.base.base import IndexedStruct
        from sfepy.discrete import (FieldVariable, Material, Problem, Function,
                                    Equation, Equations, Integral)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term
        from sfepy.solvers.ls import ScipyDirect
        from sfepy.solvers.nls import Newton
        from sfepy.mechanics.matcoefs import stiffness_from_lame

        u = FieldVariable('u', 'unknown', self.field)
        v = FieldVariable('v', 'test', self.field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(self.dim, 1.0, 1.0))
        f = Material('f', val=[[0.02], [0.01]])

        bc_fun = Function('fix_u_fun', fix_u_fun,
                          extra_args={'extra_arg' : 'hello'})

        fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
        shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})

        integral = Integral('i', order=3)

        t1 = Term.new('dw_lin_elastic(m.D, v, u)',
                      integral, self.omega, m=m, v=v, u=u)

        t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)

        eq = Equation('balance', t1 + t2)
        eqs = Equations([eq])

        ls = ScipyDirect({})

        nls_status = IndexedStruct()
        nls = Newton({}, lin_solver=ls, status=nls_status)

        pb = Problem('elasticity', equations=eqs)
        ## pb.save_regions_as_groups('regions')

        pb.set_bcs(ebcs=Conditions([fix_u, shift_u]))
        pb.set_solver(nls)

        state = pb.solve()

        name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
        pb.save_state(name, state)

        ok = nls_status.condition == 0
        if not ok:
            self.report('solver did not converge!')

        _ok = state.has_ebc()
        if not _ok:
            self.report('EBCs violated!')

        ok = ok and _ok

        return ok
Example #5
0
    def from_conf(conf, options):
        from sfepy.discrete import Problem

        problem = Problem.from_conf(conf, init_equations=False)
        test = Test(problem=problem,
                    conf=conf, options=options)
        return test
Example #6
0
def main():
    from sfepy.base.base import output
    from sfepy.base.conf import ProblemConf, get_standard_keywords
    from sfepy.discrete import Problem

    output.prefix = 'therel:'

    required, other = get_standard_keywords()
    conf = ProblemConf.from_file(__file__, required, other)

    problem = Problem.from_conf(conf, init_equations=False)

    # Setup output directory according to options above.
    problem.setup_default_output()

    # First solve the stationary electric conduction problem.
    problem.set_equations({'eq' : conf.equations['1']})
    state_el = problem.solve()
    problem.save_state(problem.get_output_name(suffix = 'el'), state_el)

    # Then solve the evolutionary heat conduction problem, using state_el.
    problem.set_equations({'eq' : conf.equations['2']})
    phi_var = problem.get_variables()['phi_known']
    phi_var.set_data(state_el())
    problem.solve()

    output('results saved in %s' % problem.get_output_name(suffix = '*'))
Example #7
0
def main():
    from sfepy.base.base import output
    from sfepy.base.conf import ProblemConf, get_standard_keywords
    from sfepy.discrete import Problem

    output.prefix = "therel:"

    required, other = get_standard_keywords()
    conf = ProblemConf.from_file(__file__, required, other)

    problem = Problem.from_conf(conf, init_equations=False)

    # Setup output directory according to options above.
    problem.setup_default_output()

    # First solve the stationary electric conduction problem.
    problem.set_equations({"eq": conf.equations["1"]})
    problem.time_update()
    state_el = problem.solve()
    problem.save_state(problem.get_output_name(suffix="el"), state_el)

    # Then solve the evolutionary heat conduction problem, using state_el.
    problem.set_equations({"eq": conf.equations["2"]})
    phi_var = problem.get_variables()["phi_known"]
    phi_var.set_data(state_el())
    time_solver = problem.get_time_solver()
    time_solver()

    output("results saved in %s" % problem.get_output_name(suffix="*"))
Example #8
0
def vary_omega1_size( problem ):
    """Vary size of \Omega1. Saves also the regions into options['output_dir'].

    Input:
      problem: Problem instance
    Return:
      a generator object:
      1. creates new (modified) problem
      2. yields the new (modified) problem and output container
      3. use the output container for some logging
      4. yields None (to signal next iteration to Application)
    """
    from sfepy.discrete import Problem
    from sfepy.solvers.ts import get_print_info
    
    output.prefix = 'vary_omega1_size:'

    diameters = nm.linspace( 0.1, 0.6, 7 ) + 0.001
    ofn_trunk, output_format = problem.ofn_trunk, problem.output_format
    output_dir = problem.output_dir
    join = os.path.join

    conf = problem.conf
    cf = conf.get_raw( 'functions' )
    n_digit, aux, d_format = get_print_info( len( diameters ) + 1 )
    for ii, diameter in enumerate( diameters ):
        output( 'iteration %d: diameter %3.2f' % (ii, diameter) )

        cf['select_circ'] = (lambda coors, domain=None: 
                             select_circ(coors[:,0], coors[:,1], 0, diameter),)
        conf.edit('functions', cf)
        problem = Problem.from_conf(conf)

        problem.save_regions( join( output_dir, ('regions_' + d_format) % ii ),
                              ['Omega_1'] )
        region = problem.domain.regions['Omega_1']
        if not region.has_cells():
            raise ValueError('region %s has no cells!' % region.name)

        ofn_trunk = ofn_trunk + '_' + (d_format % ii)
        problem.setup_output(output_filename_trunk=ofn_trunk,
                             output_dir=output_dir,
                             output_format=output_format)

        out = []
        yield problem, out

        out_problem, state = out[-1]

        filename = join( output_dir,
                         ('log_%s.txt' % d_format) % ii )
        fd = open( filename, 'w' )
        log_item = '$r(\Omega_1)$: %f\n' % diameter
        fd.write( log_item )
        fd.write( 'solution:\n' )
        nm.savetxt(fd, state())
        fd.close()

        yield None
def main():
    from sfepy.base.base import output
    from sfepy.base.conf import ProblemConf, get_standard_keywords
    from sfepy.discrete import Problem
    from sfepy.base.plotutils import plt

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-n', '--no-plot',
                      action="store_true", dest='no_plot',
                      default=False, help=helps['no_plot'])
    options, args = parser.parse_args()

    required, other = get_standard_keywords()
    # Use this file as the input file.
    conf = ProblemConf.from_file(__file__, required, other)

    # Create problem instance, but do not set equations.
    problem = Problem.from_conf(conf, init_equations=False)

    # Solve the problem. Output is ignored, results stored by using the
    # step_hook.
    u_t = solve_branch(problem, linear_tension)
    u_c = solve_branch(problem, linear_compression)

    # Get pressure load by calling linear_*() for each time step.
    ts = problem.get_timestepper()
    load_t = nm.array([linear_tension(ts, nm.array([[0.0]]), 'qp')['val']
                       for aux in ts.iter_from(0)],
                      dtype=nm.float64).squeeze()
    load_c = nm.array([linear_compression(ts, nm.array([[0.0]]), 'qp')['val']
                       for aux in ts.iter_from(0)],
                      dtype=nm.float64).squeeze()

    # Join the branches.
    displacements = {}
    for key in u_t.keys():
        displacements[key] = nm.r_[u_c[key][::-1], u_t[key]]
    load = nm.r_[load_c[::-1], load_t]


    if plt is None:
        output('matplotlib cannot be imported, printing raw data!')
        output(displacements)
        output(load)
    else:
        legend = []
        for key, val in six.iteritems(displacements):
            plt.plot(load, val)
            legend.append(key)

        plt.legend(legend, loc = 2)
        plt.xlabel('tension [kPa]')
        plt.ylabel('displacement [mm]')
        plt.grid(True)

        plt.gcf().savefig('pressure_displacement.png')

        if not options.no_plot:
            plt.show()
Example #10
0
    def from_conf(conf, options):
        from sfepy.discrete import Problem

        problem = Problem.from_conf(conf)
        problem.time_update()

        test = Test(problem=problem, conf=conf, options=options)
        return test
Example #11
0
def assemble_matrices(define, mod, pars, set_wave_dir, options):
    """
    Assemble the blocks of dispersion eigenvalue problem matrices.
    """
    define_problem = functools.partial(define,
                                       filename_mesh=options.mesh_filename,
                                       pars=pars,
                                       approx_order=options.order,
                                       refinement_level=options.refine,
                                       solver_conf=options.solver_conf,
                                       plane=options.plane,
                                       post_process=options.post_process)

    conf = ProblemConf.from_dict(define_problem(), mod)

    pb = Problem.from_conf(conf)
    pb.dispersion_options = options
    pb.set_output_dir(options.output_dir)
    dim = pb.domain.shape.dim

    # Set the normalized wave vector direction to the material(s).
    wdir = nm.asarray(options.wave_dir[:dim], dtype=nm.float64)
    wdir = wdir / nm.linalg.norm(wdir)
    set_wave_dir(pb, wdir)

    bbox = pb.domain.mesh.get_bounding_box()
    size = (bbox[1] - bbox[0]).max()
    scaling0 = apply_unit_multipliers([1.0], ['length'],
                                      options.unit_multipliers)[0]
    scaling = scaling0
    if options.mesh_size is not None:
        scaling *= options.mesh_size / size
    output('scaling factor of periodic cell mesh coordinates:', scaling)
    output('new mesh size with applied unit multipliers:', scaling * size)
    pb.domain.mesh.coors[:] *= scaling
    pb.set_mesh_coors(pb.domain.mesh.coors, update_fields=True)

    bzone = 2.0 * nm.pi / (scaling * size)
    output('1. Brillouin zone size:', bzone * scaling0)
    output('1. Brillouin zone size with applied unit multipliers:', bzone)

    pb.time_update()
    pb.update_materials()

    # Assemble the matrices.
    mtxs = {}
    for key, eq in pb.equations.iteritems():
        mtxs[key] = mtx = pb.mtx_a.copy()
        mtx = eq.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx)
        mtx.eliminate_zeros()
        output_array_stats(mtx.data, 'nonzeros in %s' % key)

        output('symmetry checks:')
        output('%s - %s^T:' % (key, key), max_diff_csr(mtx, mtx.T))
        output('%s - %s^H:' % (key, key), max_diff_csr(mtx, mtx.H))

    return pb, wdir, bzone, mtxs
Example #12
0
    def test_stokes_slip_bc(self):
        import scipy.sparse as sp

        from sfepy.base.conf import ProblemConf
        from sfepy.discrete import Problem
        import examples.navier_stokes.stokes_slip_bc as ssb

        conf = ProblemConf.from_module(ssb)
        pb = Problem.from_conf(conf, init_solvers=False)
        pb.time_update()
        variables = pb.get_variables()

        adi = variables.adi
        lcdi = variables.lcdi
        mtx = variables.mtx_lcbc

        ok = adi.var_names == lcdi.var_names
        self.report('same adi-lcdi ordering:', ok)

        ublock = mtx[adi.indx['u']]
        ir, ic = ublock.nonzero()
        ir += adi.indx['u'].start

        i0, i1 = adi.indx['u'].start, adi.indx['u'].stop
        _ok0 = (i0 <= ir).all() and  (ir < i1).all()
        self.report('u block rows in [%d %d[: %s' % (i0, i1, _ok0))

        i0, i1 = lcdi.indx['u'].start, lcdi.indx['u'].stop
        _ok1 = (i0 <= ic).all() and  (ic < i1).all()
        self.report('u block cols in [%d %d[: %s' % (i0, i1, _ok1))

        ok = ok and _ok0 and _ok1

        pblock = mtx[adi.indx['p']]
        ir, ic, iv = sp.find(pblock)
        ir += adi.indx['p'].start

        i0, i1 = adi.indx['p'].start, adi.indx['p'].stop
        _ok0 = (i0 <= ir).all() and  (ir < i1).all()
        self.report('p block rows in [%d %d[: %s' % (i0, i1, _ok0))

        i0, i1 = lcdi.indx['p'].start, lcdi.indx['p'].stop
        _ok1 = (i0 <= ic).all() and  (ic < i1).all()
        self.report('p block cols in [%d %d[: %s' % (i0, i1, _ok1))

        ok = ok and _ok0 and _ok1

        _ok0 = (len(ir) == adi.n_dof['p'])
        self.report('p block size correct:', _ok0)
        _ok1 = ((ir - adi.indx['p'].start) == (ic - lcdi.indx['p'].start)).all()
        self.report('p block diagonal:', _ok1)
        _ok2 = (iv == 1.0).all()
        self.report('p block identity:', _ok2)

        ok = ok and _ok0 and _ok1 and _ok2

        return ok
Example #13
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val' : val, 'gval' : gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
                    m=m, v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region,
                    m=m, v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
Example #14
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
    domain = Domain("domain", mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region("Omega", "all")
    gamma1 = domain.create_region("Gamma1", "vertices in x < %.10f" % (min_x + eps), "facet")
    gamma2 = domain.create_region("Gamma2", "vertices in x > %.10f" % (max_x - eps), "facet")

    field = Field.from_args("fu", nm.float64, "vector", omega, approx_order=2)

    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    m = Material("m", lam=1.0, mu=1.0)
    f = Material("f", val=[[0.02], [0.01]])

    integral = Integral("i", order=3)

    t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
    t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
    eq = Equation("balance", t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})

    bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
    shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem("elasticity", equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups("regions")

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state("linear_elasticity.vtk", vec)

    if options.show:
        view = Viewer("linear_elasticity.vtk")
        view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
Example #15
0
def run(domain, order):
    omega = domain.create_region('Omega', 'all')
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Gamma3',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Gamma4',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2*order)

    t1 = Term.new('dw_laplace(v, u)',
                  integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    fix1 = EssentialBC('fix1', gamma1, {'u.0' : 0.4})
    fix2 = EssentialBC('fix2', gamma2, {'u.0' : 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function('dof_map_fun', per.match_x_line)
    shift_fun = Function('shift_fun', get_shift)

    sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0' : 'u.0'},
                               dof_map_fun, 'shifted_periodic',
                               arguments=(shift_fun,))

    ls = ScipyDirect({})

    pb = Problem('laplace', equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({}, lin_solver=ls,
                 fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
    def from_conf(conf, options):
        from sfepy.discrete import Problem

        pb = Problem.from_conf(conf, init_solvers=False)
        pb.time_update()
        mtx = pb.equations.evaluate(mode='weak', dw_mode='matrix',
                                    asm_obj=pb.mtx_a)

        test = Test(mtx=mtx, conf=conf, options=options)
        return test
Example #17
0
    def __init__(self, conf, options, output_prefix, init_equations=True, **kwargs):
        """`kwargs` are passed to  Problem.from_conf()

        Command-line options have precedence over conf.options."""
        Application.__init__(self, conf, options, output_prefix)
        self.setup_options()

        is_eqs = init_equations
        if hasattr(options, "solve_not") and options.solve_not:
            is_eqs = False
        self.problem = Problem.from_conf(conf, init_equations=is_eqs, **kwargs)

        self.setup_output_info(self.problem, self.options)
def run(domain, order):
    omega = domain.create_region("Omega", "all")
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region("Gamma1", "vertices in (x < %.10f)" % (min_x + eps), "facet")
    gamma2 = domain.create_region("Gamma2", "vertices in (x > %.10f)" % (max_x - eps), "facet")
    gamma3 = domain.create_region("Gamma3", "vertices in y < %.10f" % (min_y + eps), "facet")
    gamma4 = domain.create_region("Gamma4", "vertices in y > %.10f" % (max_y - eps), "facet")

    field = Field.from_args("fu", nm.float64, 1, omega, approx_order=order)

    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    integral = Integral("i", order=2 * order)

    t1 = Term.new("dw_laplace(v, u)", integral, omega, v=v, u=u)
    eq = Equation("eq", t1)
    eqs = Equations([eq])

    fix1 = EssentialBC("fix1", gamma1, {"u.0": 0.4})
    fix2 = EssentialBC("fix2", gamma2, {"u.0": 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function("dof_map_fun", per.match_x_line)
    shift_fun = Function("shift_fun", get_shift)

    sper = LinearCombinationBC(
        "sper", [gamma3, gamma4], {"u.0": "u.0"}, dof_map_fun, "shifted_periodic", arguments=(shift_fun,)
    )

    ls = ScipyDirect({})

    pb = Problem("laplace", equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
Example #19
0
def recover_micro_hook( micro_filename, region, macro,
                        naming_scheme = 'step_iel',
                        recovery_file_tag='' ):

    # Create a micro-problem instance.
    required, other = get_standard_keywords()
    required.remove( 'equations' )
    pb = Problem.from_conf_file(micro_filename, required=required, other=other,
                                init_equations=False, init_solvers=False)

    coefs_filename = pb.conf.options.get('coefs_filename', 'coefs')
    output_dir = pb.conf.options.get('output_dir', '.')
    coefs_filename = op.join(output_dir, coefs_filename) + '.h5'

    # Coefficients and correctors
    coefs = Coefficients.from_file_hdf5( coefs_filename )
    corrs = get_correctors_from_file( dump_names = coefs.dump_names ) 

    recovery_hook = pb.conf.options.get('recovery_hook', None)

    if recovery_hook is not None:
        recovery_hook = pb.conf.get_function(recovery_hook)

        aux = max(pb.domain.shape.n_gr, 2)
        format = get_print_info( aux, fill = '0' )[1] \
            + '_' + get_print_info( pb.domain.mesh.n_el, fill = '0' )[1]

        for ig, ii, iel in region.iter_cells():
            print 'ig: %d, ii: %d, iel: %d' % (ig, ii, iel)

            local_macro = {}
            for k, v in macro.iteritems():
                local_macro[k] = v[ii,0]

            out = recovery_hook( pb, corrs, local_macro )

            # save data
            suffix = format % (ig, iel)
            micro_name = pb.get_output_name(extra='recovered_'\
                                            + recovery_file_tag + suffix)
            filename = op.join(output_dir, op.basename(micro_name))
            fpv = pb.conf.options.get('file_per_var', False)
            pb.save_state(filename, out=out,
                          file_per_var=fpv)
Example #20
0
    def test_save_ebc(self):
        from sfepy.discrete import (FieldVariable, Integral,
                                    Equation, Equations, Problem)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term

        name = op.join(self.options.out_dir,
                       op.splitext(op.basename(__file__))[0])

        integral = Integral('i', order=1)

        u = self.variables['u']
        v = FieldVariable('v', 'test', u.field, primary_var_name='u')

        p = self.variables['p']
        q = FieldVariable('q', 'test', p.field, primary_var_name='p')

        regions = self.problem.domain.regions
        omega = regions['Omega']

        # Problem.save_ebc() requires to have equations defined.
        t1 = Term.new('dw_lin_elastic(v, u)',
                      integral, omega, v=v, u=u)
        t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
        eq = Equation('aux', t1 + t2)
        eqs = Equations([eq])

        pb = Problem('test', equations=eqs, auto_solvers=False)

        all_ebcs = []
        all_ebcs.append(EssentialBC('fix_u1', regions['RightFix'],
                                    {'u.all' : nm.array([0.0, 1.0])}))
        all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
                                    {'u.0' : 0.0, 'u.1' : 1.0}))
        all_ebcs.append(EssentialBC('fix_p1', regions['LeftFix'],
                                    {'p.all' : 0.0}))
        all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
                                    {'p.0' : 0.0}))
        ebcs = Conditions(all_ebcs)

        pb.time_update(ebcs=ebcs)

        pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True)
        pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False)

        return True
Example #21
0
def save_only(conf, save_names, problem=None):
    """
    Save information available prior to setting equations and
    solving them.
    """
    if problem is None:
        problem = Problem.from_conf(conf, init_equations=False)

    if save_names.regions is not None:
        problem.save_regions(save_names.regions)

    if save_names.regions_as_groups is not None:
        problem.save_regions_as_groups(save_names.regions_as_groups)

    if save_names.field_meshes is not None:
        problem.save_field_meshes(save_names.field_meshes)

    if save_names.ebc is not None:
        problem.save_ebc(save_names.ebc, force=False)

    if save_names.ebc_nodes is not None:
        problem.save_ebc(save_names.ebc_nodes, force=True)
    def test_ebc( self ):
        import numpy as nm
        from sfepy.discrete import Problem

        pb = Problem.from_conf(self.test_conf)
        pb.time_update()

        vvs = pb.get_variables()
        setv = vvs.set_state_part
        make_full = vvs.make_full_vec

        svec_u = nm.ones( (vvs.adi.n_dof['u'],), dtype = nm.float64 )
        svec_phi = nm.empty( (vvs.adi.n_dof['phi'],), dtype = nm.float64 )
        svec_phi.fill( 2.0 )

        svec = vvs.create_stripped_state_vector()
        setv( svec, svec_u, 'u', stripped = True )
        setv( svec, svec_phi, 'phi', stripped = True )

        vec = make_full( svec )

        ii_u = vvs.di.indx['u'].start + vvs['u'].eq_map.eqi
        ii_phi = vvs.di.indx['phi'].start + vvs['phi'].eq_map.eqi

        ok_ebc = vvs.has_ebc( vec )
        ok_u = nm.all( vec[ii_u] == svec_u )
        ok_phi = nm.all( vec[ii_phi] == svec_phi )

        msg = '%s: %s'
        self.report( msg % ('ebc', ok_ebc) )
        self.report( msg % ('u', ok_u) )
        self.report( msg % ('phi', ok_phi) )

        ok = ok_ebc and ok_u and ok_phi

        return ok
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims', metavar='dims',
                        action='store', dest='dims',
                        default='1.0,1.0,1.0', help=helps['dims'])
    parser.add_argument('--shape', metavar='shape',
                        action='store', dest='shape',
                        default='7,7,7', help=helps['shape'])
    parser.add_argument('--centre', metavar='centre',
                        action='store', dest='centre',
                        default='0.0,0.0,0.0', help=helps['centre'])
    parser.add_argument('-3', '--3d',
                        action='store_true', dest='is_3d',
                        default=False, help=helps['3d'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    options = parser.parse_args()

    dim = 3 if options.is_3d else 2
    dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

    output('dimensions:', dims)
    output('shape:     ', shape)
    output('centre:    ', centre)

    mesh0 = gen_block_mesh(dims, shape, centre, name='block-fem',
                           verbose=True)
    domain0 = FEDomain('d', mesh0)

    bbox = domain0.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps = 1e-8 * (max_x - min_x)

    cnt = (shape[0] - 1) // 2
    g0 = 0.5 * dims[0]
    grading = nm.array([g0 / 2**ii for ii in range(cnt)]) + eps + centre[0] - g0

    domain, subs = refine_towards_facet(domain0, grading, 'x <')

    omega = domain.create_region('Omega', 'all')

    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega,
                            approx_order=options.order)

    if subs is not None:
        field.substitute_dofs(subs)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_laplace(v, u)',
                  integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    def u_fun(ts, coors, bc=None, problem=None):
        """
        Define a displacement depending on the y coordinate.
        """
        if coors.shape[1] == 2:
            min_y, max_y = bbox[:, 1]
            y = (coors[:, 1] - min_y) / (max_y - min_y)

            val = (max_y - min_y) * nm.cos(3 * nm.pi * y)

        else:
            min_y, max_y = bbox[:, 1]
            min_z, max_z = bbox[:, 2]
            y = (coors[:, 1] - min_y) / (max_y - min_y)
            z = (coors[:, 2] - min_z) / (max_z - min_z)

            val = ((max_y - min_y) * (max_z - min_z)
                   * nm.cos(3 * nm.pi * y) * (1.0 + 3.0 * (z - 0.5)**2))

        return val

    bc_fun = Function('u_fun', u_fun)
    fix1 = EssentialBC('shift_u', gamma1, {'u.0' : bc_fun})
    fix2 = EssentialBC('fix2', gamma2, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls = Newton({}, lin_solver=ls)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([fix1, fix2]))
    state = pb.solve()

    if subs is not None:
        field.restore_dofs()

    filename = os.path.join(options.output_dir, 'hanging.vtk')
    ensure_path(filename)

    pb.save_state(filename, state)
    if options.order > 1:
        pb.save_state(filename, state, linearization=Struct(kind='adaptive',
                                                            min_level=0,
                                                            max_level=8,
                                                            eps=1e-3))
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='1.0,1.0,1.0',
                        help=helps['dims'])
    parser.add_argument('--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='7,7,7',
                        help=helps['shape'])
    parser.add_argument('--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='0.0,0.0,0.0',
                        help=helps['centre'])
    parser.add_argument('-3',
                        '--3d',
                        action='store_true',
                        dest='is_3d',
                        default=False,
                        help=helps['3d'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    options = parser.parse_args()

    dim = 3 if options.is_3d else 2
    dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

    output('dimensions:', dims)
    output('shape:     ', shape)
    output('centre:    ', centre)

    mesh0 = gen_block_mesh(dims, shape, centre, name='block-fem', verbose=True)
    domain0 = FEDomain('d', mesh0)

    bbox = domain0.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps = 1e-8 * (max_x - min_x)

    cnt = (shape[0] - 1) // 2
    g0 = 0.5 * dims[0]
    grading = nm.array([g0 / 2**ii
                        for ii in range(cnt)]) + eps + centre[0] - g0

    domain, subs = refine_towards_facet(domain0, grading, 'x <')

    omega = domain.create_region('Omega', 'all')

    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            1,
                            omega,
                            approx_order=options.order)

    if subs is not None:
        field.substitute_dofs(subs)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    def u_fun(ts, coors, bc=None, problem=None):
        """
        Define a displacement depending on the y coordinate.
        """
        if coors.shape[1] == 2:
            min_y, max_y = bbox[:, 1]
            y = (coors[:, 1] - min_y) / (max_y - min_y)

            val = (max_y - min_y) * nm.cos(3 * nm.pi * y)

        else:
            min_y, max_y = bbox[:, 1]
            min_z, max_z = bbox[:, 2]
            y = (coors[:, 1] - min_y) / (max_y - min_y)
            z = (coors[:, 2] - min_z) / (max_z - min_z)

            val = ((max_y - min_y) * (max_z - min_z) * nm.cos(3 * nm.pi * y) *
                   (1.0 + 3.0 * (z - 0.5)**2))

        return val

    bc_fun = Function('u_fun', u_fun)
    fix1 = EssentialBC('shift_u', gamma1, {'u.0': bc_fun})
    fix2 = EssentialBC('fix2', gamma2, {'u.all': 0.0})

    ls = ScipyDirect({})

    nls = Newton({}, lin_solver=ls)

    pb = Problem('heat', equations=eqs)

    pb.set_bcs(ebcs=Conditions([fix1, fix2]))

    pb.set_solver(nls)

    state = pb.solve()

    if subs is not None:
        field.restore_dofs()

    filename = os.path.join(options.output_dir, 'hanging.vtk')
    ensure_path(filename)

    pb.save_state(filename, state)
    if options.order > 1:
        pb.save_state(filename,
                      state,
                      linearization=Struct(kind='adaptive',
                                           min_level=0,
                                           max_level=8,
                                           eps=1e-3))
Example #25
0
def main():
    import os
    from sfepy.base.base import spause, output
    from sfepy.base.conf import ProblemConf, get_standard_keywords
    from sfepy.discrete import Problem
    import sfepy.homogenization.coefs_base as cb

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-n', '--no-pauses',
                      action="store_true", dest='no_pauses',
                      default=False, help=help['no_pauses'])
    options, args = parser.parse_args()

    if options.no_pauses:
        def spause(*args):
            output(*args)

    nm.set_printoptions(precision=3)

    spause(r""">>>
First, this file will be read in place of an input
(problem description) file.
Press 'q' to quit the example, press any other key to continue...""")
    required, other = get_standard_keywords()
    required.remove('equations')
    # Use this file as the input file.
    conf = ProblemConf.from_file(__file__, required, other)
    print(list(conf.to_dict().keys()))
    spause(r""">>>
...the read input as a dict (keys only for brevity).
['q'/other key to quit/continue...]""")

    spause(r""">>>
Now the input will be used to create a Problem instance.
['q'/other key to quit/continue...]""")
    problem = Problem.from_conf(conf, init_equations=False)
    # The homogenization mini-apps need the output_dir.
    output_dir = ''
    problem.output_dir = output_dir
    print(problem)
    spause(r""">>>
...the Problem instance.
['q'/other key to quit/continue...]""")

    spause(r""">>>
The homogenized elastic coefficient $E_{ijkl}$ is expressed
using $\Pi$ operators, computed now. In fact, those operators are permuted
coordinates of the mesh nodes.
['q'/other key to quit/continue...]""")
    req = conf.requirements['pis']
    mini_app = cb.ShapeDimDim('pis', problem, req)
    pis = mini_app()
    print(pis)
    spause(r""">>>
...the $\Pi$ operators.
['q'/other key to quit/continue...]""")

    spause(r""">>>
Next, $E_{ijkl}$ needs so called steady state correctors $\bar{\omega}^{rs}$,
computed now.
['q'/other key to quit/continue...]""")
    req = conf.requirements['corrs_rs']

    save_name = req.get('save_name', '')
    name = os.path.join(output_dir, save_name)

    mini_app = cb.CorrDimDim('steady rs correctors', problem, req)
    mini_app.setup_output(save_format='vtk',
                          file_per_var=False)
    corrs_rs = mini_app(data={'pis': pis})
    print(corrs_rs)
    spause(r""">>>
...the $\bar{\omega}^{rs}$ correctors.
The results are saved in: %s.%s

Try to display them with:

   python postproc.py %s.%s

['q'/other key to quit/continue...]""" % (2 * (name, problem.output_format)))

    spause(r""">>>
Then the volume of the domain is needed.
['q'/other key to quit/continue...]""")
    volume = problem.evaluate('d_volume.i3.Y(uc)')
    print(volume)

    spause(r""">>>
...the volume.
['q'/other key to quit/continue...]""")

    spause(r""">>>
Finally, $E_{ijkl}$ can be computed.
['q'/other key to quit/continue...]""")
    mini_app = cb.CoefSymSym('homogenized elastic tensor',
                             problem, conf.coefs['E'])
    c_e = mini_app(volume, data={'pis': pis, 'corrs_rs' : corrs_rs})
    print(r""">>>
The homogenized elastic coefficient $E_{ijkl}$, symmetric storage
with rows, columns in 11, 22, 12 ordering:""")
    print(c_e)
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--diffusivity',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='diffusivity',
                      default=1e-5,
                      help=helps['diffusivity'])
    parser.add_option('--ic-max',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='ic_max',
                      default=2.0,
                      help=helps['ic_max'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=2,
                      help=helps['order'])
    parser.add_option('-r',
                      '--refine',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='refine',
                      default=0,
                      help=helps['refine'])
    parser.add_option('-p',
                      '--probe',
                      action="store_true",
                      dest='probe',
                      default=False,
                      help=helps['probe'])
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    options, args = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in xrange(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'scalar',
                            omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral,
                  omega,
                  m=m,
                  s=s,
                  T=T)
    t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0': 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0': -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)

    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0': ic_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    tss = SimpleTimeSteppingSolver({
        't0': 0.0,
        't1': 100.0,
        'n_step': 11
    },
                                   problem=pb)
    tss.init_time()

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_lines(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu',
                                 nm.float64,
                                 'vector',
                                 omega,
                                 approx_order=options.order - 1)
        dvel = FieldVariable('dvel',
                             'parameter',
                             gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu',
                                 nm.float64,
                                 'scalar',
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a': 1e-16, 'i_max': 1}

        if options.show:
            plt.ion()

    # Solve the problem using the time stepping solver.
    suffix = tss.ts.suffix
    for step, time, state in tss():
        if options.probe:
            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' %
                         order,
                         copy_materials=False,
                         mode='qp')
            project_by_component(dvel,
                                 dvel_qp,
                                 component,
                                 order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png' %
                        (suffix % step),
                        bbox_inches='tight')

            if options.show:
                plt.draw()

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                           (val.min(), val.mean(), val.max()))
                output.level -= 2
Example #27
0
    def _solve(self, property_array):
        """
        Solve the Sfepy problem for one sample.

        Args:
          property_array: array of shape (n_x, n_y, 2) where the last
          index is for Lame's parameter and shear modulus,
          respectively.

        Returns:
          the strain field of shape (n_x, n_y, 2) where the last
          index represents the x and y displacements

        """
        shape = property_array.shape[:-1]
        mesh = self._get_mesh(shape)
        domain = Domain('domain', mesh)

        region_all = domain.create_region('region_all', 'all')

        field = Field.from_args('fu', np.float64, 'vector', region_all, # pylint: disable=no-member
                                approx_order=2)

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = self._get_material(property_array, domain)

        integral = Integral('i', order=4)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral, region_all, m=m, v=v, u=u)
        eq = Equation('balance_of_forces', t1)
        eqs = Equations([eq])

        epbcs, functions = self._get_periodicBCs(domain)
        ebcs = self._get_displacementBCs(domain)
        lcbcs = self._get_linear_combinationBCs(domain)

        ls = ScipyDirect({})

        pb = Problem('elasticity', equations=eqs, auto_solvers=None)

        pb.time_update(
            ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions)

        ev = pb.get_evaluator()
        nls = Newton({}, lin_solver=ls,
                     fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

        try:
            pb.set_solvers_instances(ls, nls)
        except AttributeError:
            pb.set_solver(nls)

        vec = pb.solve()

        u = vec.create_output_dict()['u'].data
        u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:]))

        dims = domain.get_mesh_bounding_box().shape[1]
        strain = np.squeeze(
            pb.evaluate(
                'ev_cauchy_strain.{dim}.region_all(u)'.format(
                    dim=dims),
                mode='el_avg',
                copy_materials=False))
        strain_reshape = np.reshape(strain, (shape + strain.shape[-1:]))

        stress = np.squeeze(
            pb.evaluate(
                'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format(
                    dim=dims),
                mode='el_avg',
                copy_materials=False))
        stress_reshape = np.reshape(stress, (shape + stress.shape[-1:]))

        return strain_reshape, u_reshape, stress_reshape
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d',
                        '--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='[1.0, 1.0]',
                        help=helps['dims'])
    parser.add_argument('-c',
                        '--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='[0.0, 0.0]',
                        help=helps['centre'])
    parser.add_argument('-s',
                        '--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='[11, 11]',
                        help=helps['shape'])
    parser.add_argument('-b',
                        '--bc-kind',
                        metavar='kind',
                        action='store',
                        dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free',
                        help=helps['bc_kind'])
    parser.add_argument('-a',
                        '--axis',
                        metavar='0, ..., dim, or -1',
                        type=int,
                        action='store',
                        dest='axis',
                        default=-1,
                        help=helps['axis'])
    parser.add_argument('--young',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='young',
                        default=200e+9,
                        help=helps['young'])
    parser.add_argument('--poisson',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='poisson',
                        default=0.3,
                        help=helps['poisson'])
    parser.add_argument('--density',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='density',
                        default=7800.0,
                        help=helps['density'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    parser.add_argument('-n',
                        '--n-eigs',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='n_eigs',
                        default=6,
                        help=helps['n_eigs'])
    parser.add_argument('-i',
                        '--ignore',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='ignore',
                        default=None,
                        help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true",
                        dest='show',
                        default=False,
                        help=helps['show'])
    #parser.add_argument('filename', nargs='?', default=None)
    #read block.mesh
    #parser.add_argument('filename', nargs='?', default="platehexat200mm.mesh")
    parser.add_argument('filename', nargs='?', default="block_1m.mesh")
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    """
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')

    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')
    """
    #import pdb; pdb.set_trace()
    left = domain.create_region('left', 'vertices in (x < -0.49)', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)
    """
    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) // 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore
    """
    fixed = EssentialBC('Fixed', left, {'u.all': 0.0})
    pb.time_update(ebcs=Conditions([fixed]))
    n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k,
                                 mtx_m,
                                 options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e' %
               (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)
Example #29
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--young', metavar='float', type=float,
                      action='store', dest='young',
                      default=2000.0, help=helps['young'])
    parser.add_option('--poisson', metavar='float', type=float,
                      action='store', dest='poisson',
                      default=0.4, help=helps['poisson'])
    parser.add_option('--load', metavar='float', type=float,
                      action='store', dest='load',
                      default=-1000.0, help=helps['load'])
    parser.add_option('--order', metavar='int', type=int,
                      action='store', dest='order',
                      default=1, help=helps['order'])
    parser.add_option('-r', '--refine', metavar='int', type=int,
                      action='store', dest='refine',
                      default=0, help=helps['refine'])
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=helps['show'])
    parser.add_option('-p', '--probe',
                      action="store_true", dest='probe',
                      default=False, help=helps['probe'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  vertical load:', options.load)
    output('uniform mesh refinement level:', options.refine)

    # Build the problem definition.
    mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left',
                                'vertices in x < 0.001', 'facet')
    bottom = domain.create_region('Bottom',
                                  'vertices in y < 0.001', 'facet')
    top = domain.create_region('Top', 'vertex 2', 'vertex')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    D = stiffness_from_youngpoisson(2, options.young, options.poisson)

    asphalt = Material('Asphalt', D=D)
    load = Material('Load', values={'.val' : [0.0, options.load]})

    integral = Integral('i', order=2*options.order)
    integral0 = Integral('i', order=0)

    t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
                  integral, omega, Asphalt=asphalt, v=v, u=u)
    t2 = Term.new('dw_point_load(Load.val, v)',
                  integral0, top, Load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
    ysym = EssentialBC('YSym', left, {'u.0' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([xsym, ysym]))

    # Solve the problem.
    state = pb.solve()
    output(nls_status)

    # Postprocess the solution.
    out = state.create_output_dict()
    out = stress_strain(out, pb, state, extend=True)
    pb.save_state('its2D_interactive.vtk', out=out)

    gdata = geometry_data['2_3']
    nc = len(gdata.coors)

    integral_vn = Integral('ivn', coors=gdata.coors,
                          weights=[gdata.volume / nc] * nc)

    nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))

    if options.probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)

        sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
                                approx_order=options.order - 1)
        stress = FieldVariable('stress', 'parameter', sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain', 'parameter', sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component', nm.float64, 1, omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2 * (options.order - 1)
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
                       mode='qp', copy_materials=False)

        project_by_component(strain, strain_qp, component, order)
        project_by_component(stress, stress_qp, component, order)

        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results(u, strain, stress, probe, labels[ii])

            fig.savefig('its2D_interactive_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                       % (val.min(), val.mean(), val.max()))
            output.level -= 2

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer

        view = Viewer('its2D_interactive.vtk')
        view(vector_mode='warp_norm', rel_scaling=1,
             is_scalar_bar=True, is_wireframe=True)
def main():
    from sfepy.base.conf import ProblemConf, get_standard_keywords
    from sfepy.discrete import Problem
    from sfepy.base.plotutils import plt

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-n',
                      '--no-plot',
                      action="store_true",
                      dest='no_plot',
                      default=False,
                      help=helps['no_plot'])
    options, args = parser.parse_args()

    required, other = get_standard_keywords()
    # Use this file as the input file.
    conf = ProblemConf.from_file(__file__, required, other)

    # Create problem instance, but do not set equations.
    problem = Problem.from_conf(conf, init_equations=False)

    # Solve the problem. Output is ignored, results stored by using the
    # step_hook.
    u_t = solve_branch(problem, linear_tension)
    u_c = solve_branch(problem, linear_compression)

    # Get pressure load by calling linear_*() for each time step.
    ts = problem.get_timestepper()
    load_t = nm.array([
        linear_tension(ts, nm.array([[0.0]]), 'qp')['val']
        for aux in ts.iter_from(0)
    ],
                      dtype=nm.float64).squeeze()
    load_c = nm.array([
        linear_compression(ts, nm.array([[0.0]]), 'qp')['val']
        for aux in ts.iter_from(0)
    ],
                      dtype=nm.float64).squeeze()

    # Join the branches.
    displacements = {}
    for key in u_t.keys():
        displacements[key] = nm.r_[u_c[key][::-1], u_t[key]]
    load = nm.r_[load_c[::-1], load_t]

    if plt is None:
        print 'matplotlib cannot be imported, printing raw data!'
        print displacements
        print load
    else:
        legend = []
        for key, val in displacements.iteritems():
            plt.plot(load, val)
            legend.append(key)

        plt.legend(legend, loc=2)
        plt.xlabel('tension [kPa]')
        plt.ylabel('displacement [mm]')
        plt.grid(True)

        plt.gcf().savefig('pressure_displacement.png')

        if not options.no_plot:
            plt.show()
Example #31
0
def generate_probes(filename_input,
                    filename_results,
                    options,
                    conf=None,
                    problem=None,
                    probes=None,
                    labels=None,
                    probe_hooks=None):
    """
    Generate probe figures and data files.
    """
    if conf is None:
        required, other = get_standard_keywords()
        conf = ProblemConf.from_file(filename_input, required, other)

    opts = conf.options

    if options.auto_dir:
        output_dir = opts.get_('output_dir', '.')
        filename_results = os.path.join(output_dir, filename_results)

    output('results in: %s' % filename_results)

    io = MeshIO.any_from_filename(filename_results)
    step = options.step if options.step >= 0 else io.read_last_step()
    all_data = io.read_data(step)
    output('loaded:', all_data.keys())
    output('from step:', step)

    if options.only_names is None:
        data = all_data
    else:
        data = {}
        for key, val in all_data.iteritems():
            if key in options.only_names:
                data[key] = val

    if problem is None:
        problem = Problem.from_conf(conf,
                                    init_equations=False,
                                    init_solvers=False)

    if probes is None:
        gen_probes = conf.get_function(conf.options.gen_probes)
        probes, labels = gen_probes(problem)

    if probe_hooks is None:
        probe_hooks = {None: conf.get_function(conf.options.probe_hook)}

    if options.output_filename_trunk is None:
        options.output_filename_trunk = problem.ofn_trunk

    filename_template = options.output_filename_trunk \
                        + ('_%%d.%s' % options.output_format)
    if options.same_dir:
        filename_template = os.path.join(os.path.dirname(filename_results),
                                         filename_template)

    output_dir = os.path.dirname(filename_results)

    for ip, probe in enumerate(probes):
        output(ip, probe.name)

        probe.set_options(close_limit=options.close_limit)

        for key, probe_hook in probe_hooks.iteritems():

            out = probe_hook(data, probe, labels[ip], problem)
            if out is None: continue
            if isinstance(out, tuple):
                fig, results = out
            else:
                fig = out

            if key is not None:
                filename = filename_template % (key, ip)

            else:
                filename = filename_template % ip

            if fig is not None:
                if isinstance(fig, dict):
                    for fig_name, fig_fig in fig.iteritems():
                        fig_filename = edit_filename(filename,
                                                     suffix='_' + fig_name)
                        fig_fig.savefig(fig_filename)
                        output('figure ->', os.path.normpath(fig_filename))

                else:
                    fig.savefig(filename)
                    output('figure ->', os.path.normpath(filename))

            if results is not None:
                txt_filename = edit_filename(filename, new_ext='.txt')

                write_results(txt_filename, probe, results)

                output('data ->', os.path.normpath(txt_filename))
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0))
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
def main(cli_args):
    dims = parse_argument_list(cli_args.dims, float)
    shape = parse_argument_list(cli_args.shape, int)
    centre = parse_argument_list(cli_args.centre, float)
    material_parameters = parse_argument_list(cli_args.material_parameters,
                                              float)
    order = cli_args.order

    ts_vals = cli_args.ts.split(',')
    ts = {
        't0': float(ts_vals[0]),
        't1': float(ts_vals[1]),
        'n_step': int(ts_vals[2])
    }

    do_plot = cli_args.plot

    ### Mesh and regions ###
    mesh = gen_block_mesh(dims, shape, centre, name='block', verbose=False)
    domain = FEDomain('domain', mesh)

    omega = domain.create_region('Omega', 'all')

    lbn, rtf = domain.get_mesh_bounding_box()
    box_regions = define_box_regions(3, lbn, rtf)
    regions = dict(
        [[r, domain.create_region(r, box_regions[r][0], box_regions[r][1])]
         for r in box_regions])

    ### Fields ###
    scalar_field = Field.from_args('fu',
                                   np.float64,
                                   'scalar',
                                   omega,
                                   approx_order=order - 1)
    vector_field = Field.from_args('fv',
                                   np.float64,
                                   'vector',
                                   omega,
                                   approx_order=order)

    u = FieldVariable('u', 'unknown', vector_field, history=1)
    v = FieldVariable('v', 'test', vector_field, primary_var_name='u')
    p = FieldVariable('p', 'unknown', scalar_field, history=1)
    q = FieldVariable('q', 'test', scalar_field, primary_var_name='p')

    ### Material ###
    c10, c01 = material_parameters
    m = Material(
        'm',
        mu=2 * c10,
        kappa=2 * c01,
    )

    ### Boundary conditions ###
    x_sym = EssentialBC('x_sym', regions['Left'], {'u.0': 0.0})
    y_sym = EssentialBC('y_sym', regions['Near'], {'u.1': 0.0})
    z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2': 0.0})
    disp_fun = Function('disp_fun', get_displacement)
    displacement = EssentialBC('displacement', regions['Right'],
                               {'u.0': disp_fun})
    ebcs = Conditions([x_sym, y_sym, z_sym, displacement])

    ### Terms and equations ###
    integral = Integral('i', order=2 * order)

    term_neohook = Term.new('dw_tl_he_neohook(m.mu, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
    term_mooney = Term.new('dw_tl_he_mooney_rivlin(m.kappa, v, u)',
                           integral,
                           omega,
                           m=m,
                           v=v,
                           u=u)
    term_pressure = Term.new('dw_tl_bulk_pressure(v, u, p)',
                             integral,
                             omega,
                             v=v,
                             u=u,
                             p=p)

    term_volume_change = Term.new('dw_tl_volume(q, u)',
                                  integral,
                                  omega,
                                  q=q,
                                  u=u,
                                  term_mode='volume')
    term_volume = Term.new('dw_volume_integrate(q)', integral, omega, q=q)

    eq_balance = Equation('balance',
                          term_neohook + term_mooney + term_pressure)
    eq_volume = Equation('volume', term_volume_change - term_volume)
    equations = Equations([eq_balance, eq_volume])

    ### Solvers ###
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'i_max': 5}, lin_solver=ls, status=nls_status)

    ### Problem ###
    pb = Problem('hyper', equations=equations)
    pb.set_bcs(ebcs=ebcs)
    pb.set_ics(ics=Conditions([]))
    tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb)
    pb.set_solver(tss)

    ### Solution ###
    axial_stress = []
    axial_displacement = []

    def stress_strain_fun(*args, **kwargs):
        return stress_strain(*args,
                             order=order,
                             global_stress=axial_stress,
                             global_displacement=axial_displacement,
                             **kwargs)

    pb.solve(save_results=True, post_process_hook=stress_strain_fun)

    if do_plot:
        plot_graphs(material_parameters,
                    axial_stress,
                    axial_displacement,
                    undeformed_length=dims[0])
Example #34
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--young',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='young',
                      default=2000.0,
                      help=helps['young'])
    parser.add_option('--poisson',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='poisson',
                      default=0.4,
                      help=helps['poisson'])
    parser.add_option('--load',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='load',
                      default=-1000.0,
                      help=helps['load'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=1,
                      help=helps['order'])
    parser.add_option('-r',
                      '--refine',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='refine',
                      default=0,
                      help=helps['refine'])
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    parser.add_option('-p',
                      '--probe',
                      action="store_true",
                      dest='probe',
                      default=False,
                      help=helps['probe'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  vertical load:', options.load)
    output('uniform mesh refinement level:', options.refine)

    # Build the problem definition.
    mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in xrange(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.001', 'facet')
    bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet')
    top = domain.create_region('Top', 'vertex 2', 'vertex')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    D = stiffness_from_youngpoisson(2, options.young, options.poisson)

    asphalt = Material('Asphalt', D=D)
    load = Material('Load', values={'.val': [0.0, options.load]})

    integral = Integral('i', order=2 * options.order)
    integral0 = Integral('i', order=0)

    t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
                  integral,
                  omega,
                  Asphalt=asphalt,
                  v=v,
                  u=u)
    t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    xsym = EssentialBC('XSym', bottom, {'u.1': 0.0})
    ysym = EssentialBC('YSym', left, {'u.0': 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([xsym, ysym]))

    # Solve the problem.
    state = pb.solve()
    output(nls_status)

    # Postprocess the solution.
    out = state.create_output_dict()
    out = stress_strain(out, pb, state, extend=True)
    pb.save_state('its2D_interactive.vtk', out=out)

    gdata = geometry_data['2_3']
    nc = len(gdata.coors)

    integral_vn = Integral('ivn',
                           coors=gdata.coors,
                           weights=[gdata.volume / nc] * nc)

    nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))

    if options.probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)

        sfield = Field.from_args('sym_tensor',
                                 nm.float64,
                                 3,
                                 omega,
                                 approx_order=options.order - 1)
        stress = FieldVariable('stress',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component',
                                 nm.float64,
                                 1,
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2 * (options.order - 1)
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
                       mode='qp',
                       copy_materials=False)

        project_by_component(strain, strain_qp, component, order)
        project_by_component(stress, stress_qp, component, order)

        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results(u, strain, stress, probe, labels[ii])

            fig.savefig('its2D_interactive_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                       (val.min(), val.mean(), val.max()))
            output.level -= 2

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer

        view = Viewer('its2D_interactive.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=1,
             is_scalar_bar=True,
             is_wireframe=True)
Example #35
0
# bc2 = EssentialBC('Gamma_Right', gammaR, {'t.0' : 20.0})

set_bc_fun = Function('set_bc_impl', set_bc_impl)
bc1 = EssentialBC('Gamma_Left', gammaL, {'t.0': set_bc_fun})
bc2 = EssentialBC('Gamma_Right', gammaR, {'t.0': set_bc_fun})

bc3 = EssentialBC('Gamma_Top', gammaT, {'t.0': set_bc_fun})
bc4 = EssentialBC('Gamma_Bottom', gammaB, {'t.0': set_bc_fun})

ls = ScipyDirect({})

nls_status = IndexedStruct()
newtonConfig = {'i_max': 10, 'eps_a': 1e-10, 'eps_r': 1}
nls = Newton(newtonConfig, lin_solver=ls, status=nls_status)

pb = Problem('Poisson', equations=eqs, nls=nls, ls=ls)
pb.save_regions_as_groups('regions')

# pb.time_update(ebcs=Conditions([fix_u, t1, t2]))
pb.time_update(ebcs=Conditions([bc1, bc2, bc3, bc4]))

vec = pb.solve()
print nls_status

pb.save_state('customCylinder.vtk', vec)

# if options.show:
# view = Viewer('customCylinder.vtk')
# view(vector_mode='warp_norm', rel_scaling=2,
#      is_scalar_bar=True, is_wireframe=True)
Example #36
0
    def test_solving(self):
        from sfepy.base.base import IndexedStruct
        from sfepy.discrete import (FieldVariable, Material, Problem, Function,
                                    Equation, Equations, Integral)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term
        from sfepy.solvers.ls import ScipyDirect
        from sfepy.solvers.nls import Newton
        from sfepy.mechanics.matcoefs import stiffness_from_lame

        u = FieldVariable('u', 'unknown', self.field)
        v = FieldVariable('v', 'test', self.field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(self.dim, 1.0, 1.0))
        f = Material('f', val=[[0.02], [0.01]])

        bc_fun = Function('fix_u_fun',
                          fix_u_fun,
                          extra_args={'extra_arg': 'hello'})

        fix_u = EssentialBC('fix_u', self.gamma1, {'u.all': bc_fun})
        shift_u = EssentialBC('shift_u', self.gamma2, {'u.0': 0.1})

        integral = Integral('i', order=3)

        t1 = Term.new('dw_lin_elastic(m.D, v, u)',
                      integral,
                      self.omega,
                      m=m,
                      v=v,
                      u=u)

        t2 = Term.new('dw_volume_lvf(f.val, v)',
                      integral,
                      self.omega,
                      f=f,
                      v=v)

        eq = Equation('balance', t1 + t2)
        eqs = Equations([eq])

        ls = ScipyDirect({})

        nls_status = IndexedStruct()
        nls = Newton({}, lin_solver=ls, status=nls_status)

        pb = Problem('elasticity', equations=eqs)
        ## pb.save_regions_as_groups('regions')

        pb.set_bcs(ebcs=Conditions([fix_u, shift_u]))
        pb.set_solver(nls)

        state = pb.solve()

        name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
        pb.save_state(name, state)

        ok = nls_status.condition == 0
        if not ok:
            self.report('solver did not converge!')

        _ok = state.has_ebc()
        if not _ok:
            self.report('EBCs violated!')

        ok = ok and _ok

        return ok
def main(cli_args):
    dims = parse_argument_list(cli_args.dims, float)
    shape = parse_argument_list(cli_args.shape, int)
    centre = parse_argument_list(cli_args.centre, float)
    material_parameters = parse_argument_list(cli_args.material_parameters,
                                              float)
    order = cli_args.order

    ts_vals = cli_args.ts.split(',')
    ts = {
        't0' : float(ts_vals[0]), 't1' : float(ts_vals[1]),
        'n_step' : int(ts_vals[2])}

    do_plot = cli_args.plot

    ### Mesh and regions ###
    mesh = gen_block_mesh(
        dims, shape, centre, name='block', verbose=False)
    domain = FEDomain('domain', mesh)

    omega = domain.create_region('Omega', 'all')

    lbn, rtf = domain.get_mesh_bounding_box()
    box_regions = define_box_regions(3, lbn, rtf)
    regions = dict([
        [r, domain.create_region(r, box_regions[r][0], box_regions[r][1])]
        for r in box_regions])

    ### Fields ###
    scalar_field = Field.from_args(
        'fu', np.float64, 'scalar', omega, approx_order=order-1)
    vector_field = Field.from_args(
        'fv', np.float64, 'vector', omega, approx_order=order)

    u = FieldVariable('u', 'unknown', vector_field, history=1)
    v = FieldVariable('v', 'test', vector_field, primary_var_name='u')
    p = FieldVariable('p', 'unknown', scalar_field, history=1)
    q = FieldVariable('q', 'test', scalar_field, primary_var_name='p')

    ### Material ###
    c10, c01 = material_parameters
    m = Material(
        'm', mu=2*c10, kappa=2*c01,
    )

    ### Boundary conditions ###
    x_sym = EssentialBC('x_sym', regions['Left'], {'u.0' : 0.0})
    y_sym = EssentialBC('y_sym', regions['Near'], {'u.1' : 0.0})
    z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2' : 0.0})
    disp_fun = Function('disp_fun', get_displacement)
    displacement = EssentialBC(
        'displacement', regions['Right'], {'u.0' : disp_fun})
    ebcs = Conditions([x_sym, y_sym, z_sym, displacement])

    ### Terms and equations ###
    integral = Integral('i', order=2*order)

    term_neohook = Term.new(
        'dw_tl_he_neohook(m.mu, v, u)',
        integral, omega, m=m, v=v, u=u)
    term_mooney = Term.new(
        'dw_tl_he_mooney_rivlin(m.kappa, v, u)',
        integral, omega, m=m, v=v, u=u)
    term_pressure = Term.new(
        'dw_tl_bulk_pressure(v, u, p)',
        integral, omega, v=v, u=u, p=p)

    term_volume_change = Term.new(
        'dw_tl_volume(q, u)',
        integral, omega, q=q, u=u, term_mode='volume')
    term_volume = Term.new(
        'dw_volume_integrate(q)',
        integral, omega, q=q)

    eq_balance = Equation('balance', term_neohook+term_mooney+term_pressure)
    eq_volume = Equation('volume', term_volume_change-term_volume)
    equations = Equations([eq_balance, eq_volume])

    ### Solvers ###
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton(
        {'i_max' : 5},
        lin_solver=ls, status=nls_status
    )

    ### Problem ###
    pb = Problem('hyper', equations=equations)
    pb.set_bcs(ebcs=ebcs)
    pb.set_ics(ics=Conditions([]))
    tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb)
    pb.set_solver(tss)

    ### Solution ###
    axial_stress = []
    axial_displacement = []
    def stress_strain_fun(*args, **kwargs):
        return stress_strain(
            *args, order=order, global_stress=axial_stress,
            global_displacement=axial_displacement, **kwargs)

    pb.solve(save_results=True, post_process_hook=stress_strain_fun)

    if do_plot:
        plot_graphs(
            material_parameters, axial_stress, axial_displacement,
            undeformed_length=dims[0])
Example #38
0
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)' %
                                      (min_x + eps_x),
                                      'facet',
                                      allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)' %
                                      (max_x - eps_x),
                                      'facet',
                                      allow_empty=True)
    gamma3_i = domain_i.create_region('Gamma3',
                                      'vertices in (y < %.10f)' %
                                      (min_y + eps_y),
                                      'facet',
                                      allow_empty=True)

    field1_i = Field.from_args('fu',
                               nm.float64,
                               mesh.dim,
                               omega_i,
                               approx_order=order_u)

    field2_i = Field.from_args('fp',
                               nm.float64,
                               1,
                               omega_i,
                               approx_order=order_p)

    output('field 1: number of local DOFs:', field1_i.n_nod)
    output('field 2: number of local DOFs:', field2_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
    v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
    p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
    q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092],
                                [0.092]])

    mat = Material('m',
                   D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
                   k=1,
                   alpha=alpha)
    integral = Integral('i', order=2 * (max(order_u, order_p)))

    t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
                   integral,
                   omega_i,
                   m=mat,
                   v_i=v_i,
                   u_i=u_i)
    t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
                   integral,
                   omega_i,
                   m=mat,
                   v_i=v_i,
                   p_i=p_i)
    t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
                   integral,
                   omega_i,
                   m=mat,
                   u_i=u_i,
                   q_i=q_i)
    t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
                   integral,
                   omega_i,
                   m=mat,
                   q_i=q_i,
                   p_i=p_i)

    eq1 = Equation('eq1', t11 - t12)
    eq2 = Equation('eq1', t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all': 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0': 0.05})

    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function('bc_fun', bc_fun)
    ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all': fun})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
def create_local_problem(omega_gi, order):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)' %
                                      (min_x + eps_x),
                                      'facet',
                                      allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)' %
                                      (max_x - eps_x),
                                      'facet',
                                      allow_empty=True)

    field_i = Field.from_args('fu', nm.float64, 1, omega_i, approx_order=order)

    output('number of local field DOFs:', field_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field_i)
    v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i')

    integral = Integral('i', order=2 * order)

    mat = Material('m', lam=10, mu=5)
    t1 = Term.new('dw_laplace(m.lam, v_i, u_i)',
                  integral,
                  omega_i,
                  m=mat,
                  v_i=v_i,
                  u_i=u_i)

    def _get_load(coors):
        val = nm.ones_like(coors[:, 0])
        for coor in coors.T:
            val *= nm.sin(4 * nm.pi * coor)
        return val

    def get_load(ts, coors, mode=None, **kwargs):
        if mode == 'qp':
            return {'val': _get_load(coors).reshape(coors.shape[0], 1, 1)}

    load = Material('load', function=Function('get_load', get_load))

    t2 = Term.new('dw_volume_lvf(load.val, v_i)',
                  integral,
                  omega_i,
                  load=load,
                  v_i=v_i)

    eq = Equation('balance', t1 - 100 * t2)
    eqs = Equations([eq])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all': 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all': 0.1})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2]))
    pb.update_materials()

    return pb
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('-o',
                        '--output-dir',
                        default='.',
                        help=helps['output_dir'])
    parser.add_argument('--R1',
                        metavar='R1',
                        action='store',
                        dest='R1',
                        default='0.5',
                        help=helps['R1'])
    parser.add_argument('--R2',
                        metavar='R2',
                        action='store',
                        dest='R2',
                        default='1.0',
                        help=helps['R2'])
    parser.add_argument('--C1',
                        metavar='C1',
                        action='store',
                        dest='C1',
                        default='0.0,0.0',
                        help=helps['C1'])
    parser.add_argument('--C2',
                        metavar='C2',
                        action='store',
                        dest='C2',
                        default='0.0,0.0',
                        help=helps['C2'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=2,
                        help=helps['order'])
    parser.add_argument('-v',
                        '--viewpatch',
                        action='store_true',
                        dest='viewpatch',
                        default=False,
                        help=helps['viewpatch'])
    options = parser.parse_args()

    # Creation of the NURBS-patch with igakit
    R1 = eval(options.R1)
    R2 = eval(options.R2)
    C1 = list(eval(options.C1))
    C2 = list(eval(options.C2))
    order = options.order
    viewpatch = options.viewpatch
    create_patch(R1, R2, C1, C2, order=order, viewpatch=viewpatch)

    # Setting a Domain instance
    filename_domain = data_dir + '/meshes/iga/concentric_circles.iga'
    domain = IGDomain.from_file(filename_domain)

    # Sub-domains
    omega = domain.create_region('Omega', 'all')
    Gamma_out = domain.create_region('Gamma_out',
                                     'vertices of set xi01',
                                     kind='facet')
    Gamma_in = domain.create_region('Gamma_in',
                                    'vertices of set xi00',
                                    kind='facet')

    # Field (featuring order elevation)
    order_increase = order - domain.nurbs.degrees[0]
    order_increase *= int(order_increase > 0)
    field = Field.from_args('fu',
                            nm.float64,
                            'scalar',
                            omega,
                            approx_order='iga',
                            space='H1',
                            poly_space_base='iga')

    # Variables
    u = FieldVariable('u', 'unknown', field)  # unknown function
    v = FieldVariable('v', 'test', field,
                      primary_var_name='u')  # test function

    # Integral
    integral = Integral('i', order=2 * field.approx_order)

    # Term
    t = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u)

    # Equation
    eq = Equation('laplace', t)
    eqs = Equations([eq])

    # Boundary Conditions
    u_in = EssentialBC('u_in', Gamma_in, {'u.all': 7.0})
    u_out = EssentialBC('u_out', Gamma_out, {'u.all': 3.0})

    # solvers
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    # problem instance
    pb = Problem('potential', equations=eqs, active_only=True)

    # Set boundary conditions
    pb.set_bcs(ebcs=Conditions([u_in, u_out]))

    # solving
    pb.set_solver(nls)
    status = IndexedStruct()
    state = pb.solve(status=status, save_results=True, verbose=True)

    # Saving the results to a classic VTK file
    filename = os.path.join(options.output_dir, 'concentric_circles.vtk')
    ensure_path(filename)
    pb.save_state(filename, state)
Example #41
0
def main():
    # Aluminium and epoxy.
    default_pars = '70e9,0.35,2.799e3, 3.8e9,0.27,1.142e3'
    default_solver_conf = ("kind='eig.scipy',method='eigh',tol=1.0e-5,"
                           "maxiter=1000,which='LM',sigma=0.0")

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--pars',
                        metavar='young1,poisson1,density1'
                        ',young2,poisson2,density2',
                        action='store',
                        dest='pars',
                        default=default_pars,
                        help=helps['pars'])
    parser.add_argument('--conf',
                        metavar='filename',
                        action='store',
                        dest='conf',
                        default=None,
                        help=helps['conf'])
    parser.add_argument('--mesh-size',
                        type=float,
                        metavar='float',
                        action='store',
                        dest='mesh_size',
                        default=None,
                        help=helps['mesh_size'])
    parser.add_argument('--unit-multipliers',
                        metavar='c_time,c_length,c_mass',
                        action='store',
                        dest='unit_multipliers',
                        default='1.0,1.0,1.0',
                        help=helps['unit_multipliers'])
    parser.add_argument('--plane',
                        action='store',
                        dest='plane',
                        choices=['strain', 'stress'],
                        default='strain',
                        help=helps['plane'])
    parser.add_argument('--wave-dir',
                        metavar='float,float[,float]',
                        action='store',
                        dest='wave_dir',
                        default='1.0,0.0,0.0',
                        help=helps['wave_dir'])
    parser.add_argument('--mode',
                        action='store',
                        dest='mode',
                        choices=['omega', 'kappa'],
                        default='omega',
                        help=helps['mode'])
    parser.add_argument('--range',
                        metavar='start,stop,count',
                        action='store',
                        dest='range',
                        default='10,100,10',
                        help=helps['range'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    parser.add_argument('--refine',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='refine',
                        default=0,
                        help=helps['refine'])
    parser.add_argument('-n',
                        '--n-eigs',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='n_eigs',
                        default=6,
                        help=helps['n_eigs'])
    parser.add_argument('--eigs-only',
                        action='store_true',
                        dest='eigs_only',
                        default=False,
                        help=helps['eigs_only'])
    parser.add_argument('--solver-conf',
                        metavar='dict-like',
                        action='store',
                        dest='solver_conf',
                        default=default_solver_conf,
                        help=helps['solver_conf'])
    parser.add_argument('--save-materials',
                        action='store_true',
                        dest='save_materials',
                        default=False,
                        help=helps['save_materials'])
    parser.add_argument('--log-std-waves',
                        action='store_true',
                        dest='log_std_waves',
                        default=False,
                        help=helps['log_std_waves'])
    parser.add_argument('--silent',
                        action='store_true',
                        dest='silent',
                        default=False,
                        help=helps['silent'])
    parser.add_argument('-c',
                        '--clear',
                        action='store_true',
                        dest='clear',
                        default=False,
                        help=helps['clear'])
    parser.add_argument('-o',
                        '--output-dir',
                        metavar='path',
                        action='store',
                        dest='output_dir',
                        default='output',
                        help=helps['output_dir'])
    parser.add_argument('mesh_filename',
                        default='',
                        help=helps['mesh_filename'])
    options = parser.parse_args()

    output_dir = options.output_dir

    output.set_output(filename=os.path.join(output_dir, 'output_log.txt'),
                      combined=options.silent == False)

    if options.conf is not None:
        mod = import_file(options.conf)
        apply_units = mod.apply_units
        define = mod.define
        set_wave_dir = mod.set_wave_dir

    else:
        apply_units = apply_units_le
        define = define_le
        set_wave_dir = set_wave_dir_le

    options.pars = [float(ii) for ii in options.pars.split(',')]
    options.unit_multipliers = [
        float(ii) for ii in options.unit_multipliers.split(',')
    ]
    options.wave_dir = [float(ii) for ii in options.wave_dir.split(',')]
    aux = options.range.split(',')
    options.range = [float(aux[0]), float(aux[1]), int(aux[2])]
    options.solver_conf = dict_from_string(options.solver_conf)

    if options.clear:
        remove_files_patterns(output_dir, ['*.h5', '*.vtk', '*.txt'],
                              ignores=['output_log.txt'],
                              verbose=True)

    filename = os.path.join(output_dir, 'options.txt')
    ensure_path(filename)
    save_options(filename, [('options', vars(options))])

    pars = apply_units(options.pars, options.unit_multipliers)
    output('material parameters with applied unit multipliers:')
    output(pars)

    if options.mode == 'omega':
        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['wave_number', 'wave_number'],
                                         options.unit_multipliers)
        output('wave number range with applied unit multipliers:', rng)

    else:
        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['frequency', 'frequency'],
                                         options.unit_multipliers)
        output('frequency range with applied unit multipliers:', rng)

    define_problem = functools.partial(define,
                                       filename_mesh=options.mesh_filename,
                                       pars=pars,
                                       approx_order=options.order,
                                       refinement_level=options.refine,
                                       solver_conf=options.solver_conf,
                                       plane=options.plane)

    conf = ProblemConf.from_dict(define_problem(), sys.modules[__name__])

    pb = Problem.from_conf(conf)
    dim = pb.domain.shape.dim

    if dim != 2:
        options.plane = 'strain'

    wdir = nm.asarray(options.wave_dir[:dim], dtype=nm.float64)
    wdir = wdir / nm.linalg.norm(wdir)

    stepper = TimeStepper(rng[0], rng[1], dt=None, n_step=rng[2])

    bbox = pb.domain.mesh.get_bounding_box()
    size = (bbox[1] - bbox[0]).max()
    scaling0 = apply_unit_multipliers([1.0], ['length'],
                                      options.unit_multipliers)[0]
    scaling = scaling0
    if options.mesh_size is not None:
        scaling *= options.mesh_size / size
    output('scaling factor of periodic cell mesh coordinates:', scaling)
    output('new mesh size with applied unit multipliers:', scaling * size)
    pb.domain.mesh.coors[:] *= scaling
    pb.set_mesh_coors(pb.domain.mesh.coors, update_fields=True)

    bzone = 2.0 * nm.pi / (scaling * size)
    output('1. Brillouin zone size:', bzone * scaling0)
    output('1. Brillouin zone size with applied unit multipliers:', bzone)

    pb.time_update()
    pb.update_materials()

    if options.save_materials or options.log_std_waves:
        stiffness = pb.evaluate('ev_integrate_mat.2.Omega(m.D, u)',
                                mode='el_avg',
                                copy_materials=False,
                                verbose=False)
        young, poisson = mc.youngpoisson_from_stiffness(stiffness,
                                                        plane=options.plane)
        density = pb.evaluate('ev_integrate_mat.2.Omega(m.density, u)',
                              mode='el_avg',
                              copy_materials=False,
                              verbose=False)

    if options.save_materials:
        out = {}
        out['young'] = Struct(name='young',
                              mode='cell',
                              data=young[..., None, None])
        out['poisson'] = Struct(name='poisson',
                                mode='cell',
                                data=poisson[..., None, None])
        out['density'] = Struct(name='density', mode='cell', data=density)
        materials_filename = os.path.join(output_dir, 'materials.vtk')
        pb.save_state(materials_filename, out=out)

    # Set the normalized wave vector direction to the material(s).
    set_wave_dir(pb.get_materials(), wdir)

    conf = pb.solver_confs['eig']
    eig_solver = Solver.any_from_conf(conf)

    # Assemble the matrices.
    mtx_m = pb.mtx_a.copy()
    eq_m = pb.equations['M']
    mtx_m = eq_m.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)
    mtx_m.eliminate_zeros()

    mtx_k = pb.mtx_a.copy()
    eq_k = pb.equations['K']
    mtx_k = eq_k.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_k)
    mtx_k.eliminate_zeros()

    mtx_s = pb.mtx_a.copy()
    eq_s = pb.equations['S']
    mtx_s = eq_s.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_s)
    mtx_s.eliminate_zeros()

    mtx_r = pb.mtx_a.copy()
    eq_r = pb.equations['R']
    mtx_r = eq_r.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_r)
    mtx_r.eliminate_zeros()

    output('symmetry checks of real blocks:')
    output('M - M^T:', _max_diff_csr(mtx_m, mtx_m.T))
    output('K - K^T:', _max_diff_csr(mtx_k, mtx_k.T))
    output('S - S^T:', _max_diff_csr(mtx_s, mtx_s.T))
    output('R + R^T:', _max_diff_csr(mtx_r, -mtx_r.T))

    n_eigs = options.n_eigs
    if options.n_eigs > mtx_k.shape[0]:
        options.n_eigs = mtx_k.shape[0]
        n_eigs = None

    if options.mode == 'omega':
        eigenshapes_filename = os.path.join(
            output_dir, 'frequency-eigenshapes-%s.vtk' % stepper.suffix)

        extra = []
        extra_plot_kwargs = []
        if options.log_std_waves:
            lam, mu = mc.lame_from_youngpoisson(young,
                                                poisson,
                                                plane=options.plane)
            alam = nm.average(lam)
            amu = nm.average(mu)
            adensity = nm.average(density)

            cp = nm.sqrt((alam + 2.0 * amu) / adensity)
            cs = nm.sqrt(amu / adensity)
            output('average p-wave speed:', cp)
            output('average shear wave speed:', cs)

            extra = [r'$\omega_p$', r'$\omega_s$']
            extra_plot_kwargs = [{
                'ls': '--',
                'color': 'k'
            }, {
                'ls': '--',
                'color': 'gray'
            }]

        log = Log(
            [[r'$\lambda_{%d}$' % ii for ii in range(options.n_eigs)],
             [r'$\omega_{%d}$' % ii for ii in range(options.n_eigs)] + extra],
            plot_kwargs=[{}, [{}] * options.n_eigs + extra_plot_kwargs],
            yscales=['linear', 'linear'],
            xlabels=[r'$\kappa$', r'$\kappa$'],
            ylabels=[r'eigenvalues $\lambda_i$', r'frequencies $\omega_i$'],
            log_filename=os.path.join(output_dir, 'frequencies.txt'),
            aggregate=1000,
            sleep=0.1)

        for iv, wmag in stepper:
            output('step %d: wave vector %s' % (iv, wmag * wdir))

            mtx_a = mtx_k + wmag**2 * mtx_s + (1j * wmag) * mtx_r
            mtx_b = mtx_m

            output('A - A^H:', _max_diff_csr(mtx_a, mtx_a.H))

            if options.eigs_only:
                eigs = eig_solver(mtx_a,
                                  mtx_b,
                                  n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(mtx_a,
                                         mtx_b,
                                         n_eigs=options.n_eigs,
                                         eigenvectors=True)
            omegas = nm.sqrt(eigs)

            output('eigs, omegas:\n', nm.c_[eigs, omegas])

            out = tuple(eigs) + tuple(omegas)
            if options.log_std_waves:
                out = out + (cp * wmag, cs * wmag)
            log(*out, x=[wmag, wmag])

            save_eigenvectors(eigenshapes_filename % iv, svecs, pb)

        log(save_figure=os.path.join(output_dir, 'frequencies.png'))
        log(finished=True)

    else:
        import scipy.sparse as sps
        from sksparse.cholmod import cholesky

        eigenshapes_filename = os.path.join(
            output_dir, 'wave-number-eigenshapes-%s.vtk' % stepper.suffix)

        factor = cholesky(mtx_s)
        perm = factor.P()
        ir = nm.arange(len(perm))
        mtx_p = sps.coo_matrix((nm.ones_like(perm), (ir, perm)))
        mtx_l = mtx_p.T * factor.L()
        mtx_eye = sps.eye(mtx_l.shape[0], dtype=nm.float64)

        output('S - LL^T:', _max_diff_csr(mtx_s, mtx_l * mtx_l.T))

        log = Log([[r'$\kappa_{%d}$' % ii for ii in range(options.n_eigs)]],
                  plot_kwargs=[{
                      'ls': 'None',
                      'marker': 'o'
                  }],
                  yscales=['linear'],
                  xlabels=[r'$\omega$'],
                  ylabels=[r'wave numbers $\kappa_i$'],
                  log_filename=os.path.join(output_dir, 'wave-numbers.txt'),
                  aggregate=1000,
                  sleep=0.1)
        for io, omega in stepper:
            output('step %d: frequency %s' % (io, omega))

            mtx_a = sps.bmat([[mtx_k - omega**2 * mtx_m, None],
                              [None, mtx_eye]])
            mtx_b = sps.bmat([[1j * mtx_r, mtx_l], [mtx_l.T, None]])

            output('A - A^T:', _max_diff_csr(mtx_a, mtx_a.T))
            output('A - A^H:', _max_diff_csr(mtx_a, mtx_a.T))
            output('B - B^H:', _max_diff_csr(mtx_b, mtx_b.H))

            if options.eigs_only:
                eigs = eig_solver(mtx_a,
                                  mtx_b,
                                  n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(mtx_a,
                                         mtx_b,
                                         n_eigs=options.n_eigs,
                                         eigenvectors=True)
            kappas = eigs

            output('kappas:\n', kappas[:, None])

            out = tuple(kappas)
            log(*out, x=[omega])

            save_eigenvectors(eigenshapes_filename % io, svecs, pb)

        log(save_figure=os.path.join(output_dir, 'wave-numbers.png'))
        log(finished=True)
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)
    gamma3_i = domain_i.create_region('Gamma3',
                                      'vertices in (y < %.10f)'
                                      % (min_y + eps_y),
                                      'facet', allow_empty=True)

    field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i,
                               approx_order=order_u)

    field2_i = Field.from_args('fp', nm.float64, 1, omega_i,
                               approx_order=order_p)

    output('field 1: number of local DOFs:', field1_i.n_nod)
    output('field 2: number of local DOFs:', field2_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
    v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
    p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
    q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132],
                                [0.092], [0.092], [0.092]])

    mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
                   k=1, alpha=alpha)
    integral = Integral('i', order=2*(max(order_u, order_p)))

    t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
                   integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
    t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
                   integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
    t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
                   integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
    t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
                   integral, omega_i, m=mat, q_i=q_i, p_i=p_i)

    eq1 = Equation('eq1', t11 - t12)
    eq2 = Equation('eq1', t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05})
    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function('bc_fun', bc_fun)
    ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
Example #43
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--diffusivity', metavar='float', type=float,
                      action='store', dest='diffusivity',
                      default=1e-5, help=helps['diffusivity'])
    parser.add_option('--ic-max', metavar='float', type=float,
                      action='store', dest='ic_max',
                      default=2.0, help=helps['ic_max'])
    parser.add_option('--order', metavar='int', type=int,
                      action='store', dest='order',
                      default=2, help=helps['order'])
    parser.add_option('-r', '--refine', metavar='int', type=int,
                      action='store', dest='refine',
                      default=0, help=helps['refine'])
    parser.add_option('-p', '--probe',
                      action="store_true", dest='probe',
                      default=False, help=helps['probe'])
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=helps['show'])
    options, args = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left',
                                'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right',
                                 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu', nm.float64, 'scalar', omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral, omega, m=m, s=s, T=T)
    t2 = Term.new('dw_volume_dot(s, dT/dt)',
                  integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0' : ic_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
                                   problem=pb)
    tss.init_time()

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_lines(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu', nm.float64, 'vector', omega,
                                approx_order=options.order - 1)
        dvel = FieldVariable('dvel', 'parameter', gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
                                approx_order=options.order - 1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a' : 1e-16, 'i_max' : 1}

        if options.show:
            plt.ion()

    # Solve the problem using the time stepping solver.
    suffix = tss.ts.suffix
    for step, time, state in tss():
        if options.probe:
            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
                         % order, copy_materials=False, mode='qp')
            project_by_component(dvel, dvel_qp, component, order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png'
                        % (suffix % step), bbox_inches='tight')

            if options.show:
                plt.draw()

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                           % (val.min(), val.mean(), val.max()))
                output.level -= 2
def run(domain, order):
    omega = domain.create_region('Omega', 'all')
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Gamma3',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Gamma4',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2 * order)

    t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    fix1 = EssentialBC('fix1', gamma1, {'u.0': 0.4})
    fix2 = EssentialBC('fix2', gamma2, {'u.0': 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function('dof_map_fun', per.match_x_line)
    shift_fun = Function('shift_fun', get_shift)

    sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0': 'u.0'},
                               dof_map_fun,
                               'shifted_periodic',
                               arguments=(shift_fun, ))

    ls = ScipyDirect({})

    pb = Problem('laplace', equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({},
                 lin_solver=ls,
                 fun=ev.eval_residual,
                 fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
Example #45
0
def create_local_problem(omega_gi, order):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)

    field_i = Field.from_args('fu', nm.float64, 1, omega_i,
                              approx_order=order)

    output('number of local field DOFs:', field_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field_i)
    v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i')

    integral = Integral('i', order=2*order)

    mat = Material('m', lam=10, mu=5)
    t1 = Term.new('dw_laplace(m.lam, v_i, u_i)',
                  integral, omega_i, m=mat, v_i=v_i, u_i=u_i)

    def _get_load(coors):
        val = nm.ones_like(coors[:, 0])
        for coor in coors.T:
            val *= nm.sin(4 * nm.pi * coor)
        return val

    def get_load(ts, coors, mode=None, **kwargs):
        if mode == 'qp':
            return {'val' : _get_load(coors).reshape(coors.shape[0], 1, 1)}

    load = Material('load', function=Function('get_load', get_load))

    t2 = Term.new('dw_volume_lvf(load.val, v_i)',
                  integral, omega_i, load=load, v_i=v_i)

    eq = Equation('balance', t1 - 100 * t2)
    eqs = Equations([eq])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all' : 0.1})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2]))
    pb.update_materials()

    return pb
Example #46
0
vm_stresses = np.zeros([len(z_displacements), 2])
for i, z_displacement in enumerate(z_displacements):

    fix_bot = EssentialBC('fix_bot', bot, {'u.all': 0.0})
    fix_top = EssentialBC('fix_top', top, {
        'u.[0,1]': 0.0,
        'u.[2]': -z_displacement
    })

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)
    # 'i_max': 1, 'eps_a': 1e-10

    pb = Problem('elasticity', equations=eqs)
    pb.save_regions_as_groups('regions')

    pb.set_bcs(ebcs=Conditions([fix_bot, fix_top]))

    pb.set_solver(nls)

    status = IndexedStruct()
    state = pb.solve(status=status)

    strain = pb.evaluate('ev_cauchy_strain.2.Omega(u)', u=u, mode='el_avg')
    stress = pb.evaluate('ev_cauchy_stress.2.Omega(m.D, u)',
                         m=m,
                         u=u,
                         mode='el_avg')
    vms = get_von_mises_stress(stress.squeeze())
Example #47
0
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d', '--dims', metavar='dims',
                        action='store', dest='dims',
                        default='[1.0, 1.0]', help=helps['dims'])
    parser.add_argument('-c', '--centre', metavar='centre',
                        action='store', dest='centre',
                        default='[0.0, 0.0]', help=helps['centre'])
    parser.add_argument('-s', '--shape', metavar='shape',
                        action='store', dest='shape',
                        default='[11, 11]', help=helps['shape'])
    parser.add_argument('-b', '--bc-kind', metavar='kind',
                        action='store', dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free', help=helps['bc_kind'])
    parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1',
                        type=int, action='store', dest='axis',
                        default=-1, help=helps['axis'])
    parser.add_argument('--young', metavar='float', type=float,
                        action='store', dest='young',
                        default=6.80e+10, help=helps['young'])
    parser.add_argument('--poisson', metavar='float', type=float,
                        action='store', dest='poisson',
                        default=0.36, help=helps['poisson'])
    parser.add_argument('--density', metavar='float', type=float,
                        action='store', dest='density',
                        default=2700.0, help=helps['density'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    parser.add_argument('-n', '--n-eigs', metavar='int', type=int,
                        action='store', dest='n_eigs',
                        default=6, help=helps['n_eigs'])
    parser.add_argument('-i', '--ignore', metavar='int', type=int,
                        action='store', dest='ignore',
                        default=None, help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    parser.add_argument('filename', nargs='?', default=None)
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')
    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) / 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e'
               % (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]),
                    dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg', verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements',
                                    ['rel_scaling=%s' % scaling,
                                     'color_kind="tensors"',
                                     'color_name="strain%03d"' % ii])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds, only_names=sorted(ds.keys()),
             is_scalar_bar=False, is_wireframe=True)
Example #48
0
def make_l2_projection_data(target,
                            eval_data,
                            order=None,
                            ls=None,
                            nls_options=None):
    """
    Project scalar data to a scalar `target` field variable using the
    :math:`L^2` dot product.

    Parameters
    ----------
    target : FieldVariable instance
        The target variable.
    eval_data : callable or array
        Either a material-like function `eval_data()`, or an array of values in
        quadrature points that has to be reshapable to the shape required by
        `order`.
    order : int, optional
        The quadrature order. If not given, it is set to
        `2 * target.field.approx_order`.
    """
    if order is None:
        order = 2 * target.field.approx_order
    integral = Integral('i', order=order)

    un = FieldVariable('u', 'unknown', target.field)

    v = FieldVariable('v', 'test', un.field, primary_var_name=un.name)
    lhs = Term.new('dw_volume_dot(v, %s)' % un.name,
                   integral,
                   un.field.region,
                   v=v,
                   **{un.name: un})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            if callable(eval_data):
                val = eval_data(ts, coors, mode, **kwargs)

            else:
                val = eval_data.reshape((coors.shape[0], 1, 1))

            return {'val': val}

    m = Material('m', function=_eval_data)
    rhs = Term.new('dw_volume_lvf(m.val, v)',
                   integral,
                   un.field.region,
                   m=m,
                   v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    if ls is None:
        ls = ScipyDirect({})

    if nls_options is None:
        nls_options = {}

    nls_status = IndexedStruct()
    nls = Newton(nls_options, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the un variable with the projection solution.
    pb.solve()

    # Copy the projection solution to target.
    target.set_data(un())

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
Example #49
0
    # vol = mesh.cmesh.get_volumes(3)
    # np.savetxt('tmp_vol.dat', vol)
    # vol = np.loadtxt('tmp_vol.dat')
    #
    # vm_stresses[i, 0] = np.sum(vms * vol) / np.sum(vol)
    # vm_stresses[i, 1] = np.max(vms)
    #
    # pb.save_state('voronoi_foam_%f.vtk' % z_displacement, state)
    #
    ### Solvers ###
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'i_max': 20}, lin_solver=ls, status=nls_status)

    ### Problem ###
    pb = Problem('hyper', equations=equations)
    pb.set_bcs(ebcs=ebcs)
    pb.set_ics(ics=Conditions([]))
    tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb)
    pb.set_solver(tss)

    ### Solution ###
    axial_stress = []
    axial_displacement = []

    def stress_strain_fun(*args, **kwargs):
        return stress_strain(*args,
                             order=order,
                             global_stress=axial_stress,
                             global_displacement=axial_displacement,
                             **kwargs)
Example #50
0
def recover_micro_hook(micro_filename, region, macro,
                       naming_scheme='step_iel',
                       recovery_file_tag='',
                       define_args=None, verbose=False):
    # Create a micro-problem instance.
    required, other = get_standard_keywords()
    required.remove('equations')
    conf = ProblemConf.from_file(micro_filename, required, other,
                                 verbose=False, define_args=define_args)

    coefs_filename = conf.options.get('coefs_filename', 'coefs')
    output_dir = conf.options.get('output_dir', '.')
    coefs_filename = op.join(output_dir, coefs_filename) + '.h5'

    # Coefficients and correctors
    coefs = Coefficients.from_file_hdf5(coefs_filename)
    corrs = get_correctors_from_file(dump_names=coefs.dump_names)

    recovery_hook = conf.options.get('recovery_hook', None)

    if recovery_hook is not None:
        recovery_hook = conf.get_function(recovery_hook)
        pb = Problem.from_conf(conf, init_equations=False, init_solvers=False)

        format = get_print_info(pb.domain.mesh.n_el, fill='0')[1]

        output('recovering microsctructures...')
        tt = time.clock()
        output_fun = output.output_function
        output_level = output.level
        for ii, iel in enumerate(region.cells):
            output.level = output_level
            output('micro: %d (el=%d)' % (ii, iel))

            local_macro = {}
            for k, v in six.iteritems(macro):
                local_macro[k] = v[ii, 0]

            output.set_output(quiet=not(verbose))
            out = recovery_hook(pb, corrs, local_macro)
            output.output_function = output_fun

            if ii == 0:
                new_keys = []
                new_data = {}
                new_idxs = []
                for k in six.iterkeys(local_macro):
                    if k not in macro:
                        new_keys.append(k)
                        new_data[k] = []

            new_idxs.append(ii)
            for jj in new_keys:
                new_data[jj].append(local_macro[jj])

            # save data
            if out is not None:
                suffix = format % iel
                micro_name = pb.get_output_name(extra='recovered_'
                                                + recovery_file_tag + suffix)
                filename = op.join(output_dir, op.basename(micro_name))
                fpv = pb.conf.options.get('file_per_var', False)
                pb.save_state(filename, out=out,
                              file_per_var=fpv)

        output('...done in %.2f s' % (time.clock() - tt))

        for jj in new_keys:
            lout = new_data[jj]
            macro[jj] = nm.zeros((nm.max(new_idxs) + 1, 1) + lout[0].shape,
                                 dtype=lout[0].dtype)
            out = macro[jj]
            for kk, ii in enumerate(new_idxs):
                out[ii, 0] = lout[kk]
Example #51
0
def recover_micro_hook( micro_filename, region, macro,
                        naming_scheme = 'step_iel',
                        recovery_file_tag='' ):

    # Create a micro-problem instance.
    required, other = get_standard_keywords()
    required.remove( 'equations' )
    pb = Problem.from_conf_file(micro_filename, required=required, other=other,
                                init_equations=False, init_solvers=False)

    coefs_filename = pb.conf.options.get('coefs_filename', 'coefs')
    output_dir = pb.conf.options.get('output_dir', '.')
    coefs_filename = op.join(output_dir, coefs_filename) + '.h5'

    # Coefficients and correctors
    coefs = Coefficients.from_file_hdf5( coefs_filename )
    corrs = get_correctors_from_file( dump_names = coefs.dump_names ) 

    recovery_hook = pb.conf.options.get('recovery_hook', None)

    if recovery_hook is not None:
        recovery_hook = pb.conf.get_function(recovery_hook)

        aux = max(pb.domain.shape.n_gr, 2)
        format = get_print_info( aux, fill = '0' )[1] \
            + '_' + get_print_info( pb.domain.mesh.n_el, fill = '0' )[1]

        for ig, ii, iel in region.iter_cells():
            print 'ig: %d, ii: %d, iel: %d' % (ig, ii, iel)

            local_macro = {}
            for k, v in macro.iteritems():
                local_macro[k] = v[ii,0]

            out = recovery_hook( pb, corrs, local_macro )

            if ii == 0:
                new_keys = []
                new_data = {}
                new_idxs = []
                for k in local_macro.iterkeys():
                    if k not in macro:
                        new_keys.append(k)
                        new_data[k] = []

            new_idxs.append(ii)
            for jj in new_keys:
                new_data[jj].append(local_macro[jj])

            # save data
            if out is not None:
                suffix = format % (ig, iel)
                micro_name = pb.get_output_name(extra='recovered_'\
                                                + recovery_file_tag + suffix)
                filename = op.join(output_dir, op.basename(micro_name))
                fpv = pb.conf.options.get('file_per_var', False)
                pb.save_state(filename, out=out,
                              file_per_var=fpv)

        for jj in new_keys:
            lout = new_data[jj]
            macro[jj] = nm.zeros((nm.max(new_idxs) + 1,1) + lout[0].shape,
                                 dtype=lout[0].dtype)
            out = macro[jj]
            for kk, ii in enumerate(new_idxs):
                out[ii,0] = lout[kk]
Example #52
0
def recover_micro_hook_eps(micro_filename, region,
                           eval_var, nodal_values, const_values, eps0,
                           recovery_file_tag='',
                           define_args=None, verbose=False):
    # Create a micro-problem instance.
    required, other = get_standard_keywords()
    required.remove('equations')
    conf = ProblemConf.from_file(micro_filename, required, other,
                                 verbose=False, define_args=define_args)

    coefs_filename = conf.options.get('coefs_filename', 'coefs')
    output_dir = conf.options.get('output_dir', '.')
    coefs_filename = op.join(output_dir, coefs_filename) + '.h5'

    # Coefficients and correctors
    coefs = Coefficients.from_file_hdf5(coefs_filename)
    corrs = get_correctors_from_file(dump_names=coefs.dump_names)

    recovery_hook = conf.options.get('recovery_hook', None)

    if recovery_hook is not None:
        recovery_hook = conf.get_function(recovery_hook)
        pb = Problem.from_conf(conf, init_equations=False, init_solvers=False)

        # Get tiling of a given region
        rcoors = region.domain.mesh.coors[region.get_entities(0), :]
        rcmin = nm.min(rcoors, axis=0)
        rcmax = nm.max(rcoors, axis=0)
        nn = nm.round((rcmax - rcmin) / eps0)
        if nm.prod(nn) == 0:
            output('inconsistency in recovery region and microstructure size!')
            return

        cs = []
        for ii, n in enumerate(nn):
            cs.append(nm.arange(n) * eps0 + rcmin[ii])

        x0 = nm.empty((int(nm.prod(nn)), nn.shape[0]), dtype=nm.float64)
        for ii, icoor in enumerate(nm.meshgrid(*cs, indexing='ij')):
            x0[:, ii] = icoor.flatten()

        mesh = pb.domain.mesh
        coors, conn, outs, ndoffset = [], [], [], 0
        # Recover region
        mic_coors = (mesh.coors - mesh.get_bounding_box()[0, :]) * eps0
        evfield = eval_var.field

        output('recovering microsctructures...')
        tt = time.clock()
        output_fun = output.output_function
        output_level = output.level

        for ii, c0 in enumerate(x0):
            local_macro = {'eps0': eps0}
            local_coors = mic_coors + c0
            # Inside recovery region?
            v = nm.ones((evfield.region.entities[0].shape[0], 1))
            v[evfield.vertex_remap[region.entities[0]]] = 0
            no = nm.sum(v)
            aux = evfield.evaluate_at(local_coors, v)
            if (nm.sum(aux) / no) > 1e-3:
                continue

            output.level = output_level
            output('micro: %d' % ii)

            for k, v in six.iteritems(nodal_values):
                local_macro[k] = evfield.evaluate_at(local_coors, v)
            for k, v in six.iteritems(const_values):
                local_macro[k] = v

            output.set_output(quiet=not(verbose))
            outs.append(recovery_hook(pb, corrs, local_macro))
            output.output_function = output_fun
            coors.append(local_coors)
            conn.append(mesh.get_conn(mesh.descs[0]) + ndoffset)
            ndoffset += mesh.n_nod

    output('...done in %.2f s' % (time.clock() - tt))

    # Collect output variables
    outvars = {}
    for k, v in six.iteritems(outs[0]):
        if v.var_name in outvars:
            outvars[v.var_name].append(k)
        else:
            outvars[v.var_name] = [k]

    # Split output by variables/regions
    pvs = pb.create_variables(outvars.keys())
    outregs = {k: pvs[k].field.region.get_entities(-1) for k in outvars.keys()}
    nrve = len(coors)
    coors = nm.vstack(coors)
    ngroups = nm.tile(mesh.cmesh.vertex_groups.squeeze(), (nrve,))
    conn = nm.vstack(conn)
    cgroups = nm.tile(mesh.cmesh.cell_groups.squeeze(), (nrve,))

    # Get region mesh and data
    for k, cidxs in six.iteritems(outregs):
        gcidxs = nm.hstack([cidxs + mesh.n_el * ii for ii in range(nrve)])
        rconn = conn[gcidxs]
        remap = -nm.ones((coors.shape[0],), dtype=nm.int32)
        remap[rconn] = 1
        vidxs = nm.where(remap > 0)[0]
        remap[vidxs] = nm.arange(len(vidxs))
        rconn = remap[rconn]
        rcoors = coors[vidxs, :]

        out = {}
        for ifield in outvars[k]:
            data = [outs[ii][ifield].data for ii in range(nrve)]
            out[ifield] = Struct(name='output_data',
                                 mode=outs[0][ifield].mode,
                                 dofs=None,
                                 var_name=k,
                                 data=nm.vstack(data))

        micro_name = pb.get_output_name(extra='recovered%s_%s'
                                        % (recovery_file_tag, k))
        filename = op.join(output_dir, op.basename(micro_name))
        mesh_out = Mesh.from_data('recovery_%s' % k, rcoors, ngroups[vidxs],
                                  [rconn], [cgroups[gcidxs]], [mesh.descs[0]])
        mesh_out.write(filename, io='auto', out=out)
Example #53
0
    def init_subproblems(self, conf, **kwargs):
        from sfepy.discrete.state import State
        from sfepy.discrete import Problem
        from sfepy.base.conf import ProblemConf, get_standard_keywords
        from scipy.spatial import cKDTree as KDTree

        # init subproblems
        problem = self.context
        pb_vars = problem.get_variables()
        # get "master" DofInfo and last index
        pb_adi_indx = problem.equations.variables.adi.indx
        self.adi_indx = pb_adi_indx.copy()
        last_indx = -1
        for ii in six.itervalues(self.adi_indx):
            last_indx = nm.max([last_indx, ii.stop])

        # coupling variables
        self.cvars_to_pb = {}
        for jj in conf.coupling_variables:
            self.cvars_to_pb[jj] = [None, None]
            if jj in pb_vars.names:
                if pb_vars[jj].dual_var_name is not None:
                    self.cvars_to_pb[jj][0] = -1

                else:
                    self.cvars_to_pb[jj][1] = -1

        # init subproblems
        self.subpb = []
        required, other = get_standard_keywords()
        master_prefix = output.get_output_prefix()
        for ii, ifname in enumerate(conf.others):
            sub_prefix = master_prefix[:-1] + '-sub%d:' % (ii + 1)
            output.set_output_prefix(sub_prefix)
            kwargs['master_problem'] = problem
            confi = ProblemConf.from_file(ifname,
                                          required,
                                          other,
                                          define_args=kwargs)
            pbi = Problem.from_conf(confi, init_equations=True)
            sti = State(pbi.equations.variables)
            pbi.equations.set_data(None, ignore_unknown=True)
            pbi.time_update()
            pbi.update_materials()
            sti.apply_ebc()
            pbi_vars = pbi.get_variables()
            output.set_output_prefix(master_prefix)
            self.subpb.append([pbi, sti, None])

            # append "slave" DofInfo
            for jj in pbi_vars.names:
                if not (pbi_vars[jj].is_state()):
                    continue

                didx = pbi.equations.variables.adi.indx[jj]
                ndof = didx.stop - didx.start
                if jj in self.adi_indx:
                    if ndof != \
                      (self.adi_indx[jj].stop - self.adi_indx[jj].start):
                        raise ValueError('DOFs do not match!')

                else:
                    self.adi_indx.update(
                        {jj: slice(last_indx, last_indx + ndof, None)})
                    last_indx += ndof

            for jj in conf.coupling_variables:
                if jj in pbi_vars.names:
                    if pbi_vars[jj].dual_var_name is not None:
                        self.cvars_to_pb[jj][0] = ii

                    else:
                        self.cvars_to_pb[jj][1] = ii

        self.subpb.append([problem, None, None])

        self.cvars_to_pb_map = {}
        for varname, pbs in six.iteritems(self.cvars_to_pb):
            # match field nodes
            coors = []
            for ii in pbs:
                pbi = self.subpb[ii][0]
                pbi_vars = pbi.get_variables()
                fcoors = pbi_vars[varname].field.coors
                dc = nm.abs(nm.max(fcoors, axis=0)\
                            - nm.min(fcoors, axis=0))
                ax = nm.where(dc > 1e-9)[0]
                coors.append(fcoors[:, ax])

            if len(coors[0]) != len(coors[1]):
                raise ValueError('number of nodes does not match!')

            kdtree = KDTree(coors[0])
            map_12 = kdtree.query(coors[1])[1]

            pbi1 = self.subpb[pbs[0]][0]
            pbi1_vars = pbi1.get_variables()
            eq_map_1 = pbi1_vars[varname].eq_map

            pbi2 = self.subpb[pbs[1]][0]
            pbi2_vars = pbi2.get_variables()
            eq_map_2 = pbi2_vars[varname].eq_map

            dpn = eq_map_2.dpn
            nnd = map_12.shape[0]

            map_12_nd = nm.zeros((nnd * dpn, ), dtype=nm.int32)
            if dpn > 1:
                for ii in range(dpn):
                    map_12_nd[ii::dpn] = map_12 * dpn + ii
            else:
                map_12_nd = map_12

            idx = nm.where(eq_map_2.eq >= 0)[0]
            self.cvars_to_pb_map[varname] = eq_map_1.eq[map_12[idx]]
Example #54
0
# ----------------------------
def ic_wrap(x, ic=None):
    return ghump(x - .3)


ic_fun = Function('ic_fun', ic_wrap)
ics = InitialCondition('ic', omega, {'u.0': ic_fun})

# ------------------
# | Create problem |
# ------------------
pb = Problem(problem_name,
             equations=eqs,
             conf=Struct(options={"save_times": save_timestn},
                         ics={},
                         ebcs={},
                         epbcs={},
                         lcbcs={},
                         materials={}),
             active_only=False)
pb.setup_output(output_dir=output_folder, output_format=output_format)
pb.set_ics(Conditions([ics]))

# ------------------
# | Create limiter |
# ------------------
limiter = MomentLimiter1D

# ---------------------------
# | Set time discretization |
# ---------------------------
Example #55
0
def main():
    import os
    from sfepy.base.base import spause, output
    from sfepy.base.conf import ProblemConf, get_standard_keywords
    from sfepy.discrete import Problem
    import sfepy.homogenization.coefs_base as cb

    parser = ArgumentParser(description=__doc__)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-n', '--no-pauses',
                        action="store_true", dest='no_pauses',
                        default=False, help=helps['no_pauses'])
    options = parser.parse_args()

    if options.no_pauses:
        def spause(*args):
            output(*args)

    nm.set_printoptions(precision=3)

    spause(r""">>>
First, this file will be read in place of an input
(problem description) file.
Press 'q' to quit the example, press any other key to continue...""")
    required, other = get_standard_keywords()
    required.remove('equations')
    # Use this file as the input file.
    conf = ProblemConf.from_file(__file__, required, other)
    print(list(conf.to_dict().keys()))
    spause(r""">>>
...the read input as a dict (keys only for brevity).
['q'/other key to quit/continue...]""")

    spause(r""">>>
Now the input will be used to create a Problem instance.
['q'/other key to quit/continue...]""")
    problem = Problem.from_conf(conf, init_equations=False)
    # The homogenization mini-apps need the output_dir.
    output_dir = ''
    problem.output_dir = output_dir
    print(problem)
    spause(r""">>>
...the Problem instance.
['q'/other key to quit/continue...]""")

    spause(r""">>>
The homogenized elastic coefficient $E_{ijkl}$ is expressed
using $\Pi$ operators, computed now. In fact, those operators are permuted
coordinates of the mesh nodes.
['q'/other key to quit/continue...]""")
    req = conf.requirements['pis']
    mini_app = cb.ShapeDimDim('pis', problem, req)
    pis = mini_app()
    print(pis)
    spause(r""">>>
...the $\Pi$ operators.
['q'/other key to quit/continue...]""")

    spause(r""">>>
Next, $E_{ijkl}$ needs so called steady state correctors $\bar{\omega}^{rs}$,
computed now.
['q'/other key to quit/continue...]""")
    req = conf.requirements['corrs_rs']

    save_name = req.get('save_name', '')
    name = os.path.join(output_dir, save_name)

    mini_app = cb.CorrDimDim('steady rs correctors', problem, req)
    mini_app.setup_output(save_format='vtk',
                          file_per_var=False)
    corrs_rs = mini_app(data={'pis': pis})
    print(corrs_rs)
    spause(r""">>>
...the $\bar{\omega}^{rs}$ correctors.
The results are saved in: %s.%s

Try to display them with:

   python postproc.py %s.%s

['q'/other key to quit/continue...]""" % (2 * (name, problem.output_format)))

    spause(r""">>>
Then the volume of the domain is needed.
['q'/other key to quit/continue...]""")
    volume = problem.evaluate('d_volume.i3.Y(uc)')
    print(volume)

    spause(r""">>>
...the volume.
['q'/other key to quit/continue...]""")

    spause(r""">>>
Finally, $E_{ijkl}$ can be computed.
['q'/other key to quit/continue...]""")
    mini_app = cb.CoefSymSym('homogenized elastic tensor',
                             problem, conf.coefs['E'])
    c_e = mini_app(volume, data={'pis': pis, 'corrs_rs' : corrs_rs})
    print(r""">>>
The homogenized elastic coefficient $E_{ijkl}$, symmetric storage
with rows, columns in 11, 22, 12 ordering:""")
    print(c_e)
Example #56
0
    def from_conf(conf, options):
        from sfepy.discrete import Problem

        problem = Problem.from_conf(conf)
        test = Test(problem=problem, conf=conf, options=options)
        return test
Example #57
0
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-d',
                      '--dims',
                      metavar='dims',
                      action='store',
                      dest='dims',
                      default='[1.0, 1.0]',
                      help=helps['dims'])
    parser.add_option('-c',
                      '--centre',
                      metavar='centre',
                      action='store',
                      dest='centre',
                      default='[0.0, 0.0]',
                      help=helps['centre'])
    parser.add_option('-s',
                      '--shape',
                      metavar='shape',
                      action='store',
                      dest='shape',
                      default='[11, 11]',
                      help=helps['shape'])
    parser.add_option('-b',
                      '--bc-kind',
                      metavar='kind',
                      action='store',
                      dest='bc_kind',
                      choices=['free', 'clamped'],
                      default='free',
                      help=helps['bc_kind'])
    parser.add_option('--young',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='young',
                      default=6.80e+10,
                      help=helps['young'])
    parser.add_option('--poisson',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='poisson',
                      default=0.36,
                      help=helps['poisson'])
    parser.add_option('--density',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='density',
                      default=2700.0,
                      help=helps['density'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=1,
                      help=helps['order'])
    parser.add_option('-n',
                      '--n-eigs',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='n_eigs',
                      default=6,
                      help=helps['order'])
    parser.add_option('',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    dims = nm.array(eval(options.dims), dtype=nm.float64)
    dim = len(dims)
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

    output('dimensions:', dims)
    output('centre:    ', centre)
    output('shape:     ', shape)
    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)

    # Build the problem definition.
    mesh = gen_block_mesh(dims, shape, centre, name='mesh')
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_y - min_y)
    omega = domain.create_region('Omega', 'all')
    bottom = domain.create_region('Bottom',
                                  'vertices in (y < %.10f)' % (min_y + eps),
                                  'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) / 2

    else:
        fixed_b = EssentialBC('FixedB', bottom, {'u.all': 0.0})
        pb.time_update(ebcs=Conditions([fixed_b]))
        n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = sla.eigsh(mtx_k,
                                k=options.n_eigs + n_rbm,
                                M=mtx_m,
                                which='SM',
                                tol=1e-5,
                                maxiter=10000)
    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    output('eigenvalues:', eigs)
    output('eigen-frequencies:', nm.sqrt(eigs))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in xrange(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in xrange(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in xrange(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)
Example #58
0
def main(argv=None):
    options = parse_args(argv=argv)

    # vvvvvvvvvvvvvvvv #
    approx_order = 2
    # ^^^^^^^^^^^^^^^^ #

    # Setup output names
    outputs_folder = options.output_dir

    domain_name = "domain_1D"
    problem_name = "iburgers_1D"
    output_folder = pjoin(outputs_folder, problem_name, str(approx_order))
    output_format = "vtk"
    save_timestn = 100
    clear_folder(pjoin(output_folder, "*." + output_format))
    configure_output({
        'output_screen':
        True,
        'output_log_name':
        pjoin(output_folder, f"last_run_{problem_name}_{approx_order}.txt")
    })

    # ------------
    # | Get mesh |
    # ------------
    X1 = 0.
    XN = 1.
    n_nod = 100
    n_el = n_nod - 1
    mesh = get_gen_1D_mesh_hook(X1, XN, n_nod).read(None)

    # -----------------------------
    # | Create problem components |
    # -----------------------------

    integral = Integral('i', order=approx_order * 2)
    domain = FEDomain(domain_name, mesh)
    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Gamma1', 'vertices in x == %.10f' % X1,
                                'vertex')
    right = domain.create_region('Gamma2', 'vertices in x == %.10f' % XN,
                                 'vertex')
    field = DGField('dgfu',
                    nm.float64,
                    'scalar',
                    omega,
                    approx_order=approx_order)

    u = FieldVariable('u', 'unknown', field, history=1)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    MassT = Term.new('dw_dot(v, u)', integral, omega, u=u, v=v)

    velo = nm.array(1.0)

    def adv_fun(u):
        vu = velo.T * u[..., None]
        return vu

    def adv_fun_d(u):
        v1 = velo.T * nm.ones(u.shape + (1, ))
        return v1

    burg_velo = velo.T / nm.linalg.norm(velo)

    def burg_fun(u):
        vu = burg_velo * u[..., None]**2
        return vu

    def burg_fun_d(u):
        v1 = 2 * burg_velo * u[..., None]
        return v1

    StiffT = Term.new('dw_ns_dot_grad_s(fun, fun_d, u[-1], v)',
                      integral,
                      omega,
                      u=u,
                      v=v,
                      fun=burg_fun,
                      fun_d=burg_fun_d)

    # alpha = Material('alpha', val=[.0])
    # FluxT = AdvectDGFluxTerm("adv_lf_flux(a.val, v, u)", "a.val, v,  u[-1]",
    #                          integral, omega, u=u, v=v, a=a, alpha=alpha)

    FluxT = Term.new('dw_dg_nonlinear_laxfrie_flux(fun, fun_d, v, u[-1])',
                     integral,
                     omega,
                     u=u,
                     v=v,
                     fun=burg_fun,
                     fun_d=burg_fun_d)

    eq = Equation('balance', MassT - StiffT + FluxT)
    eqs = Equations([eq])

    # ------------------------------
    # | Create boundary conditions |
    # ------------------------------
    left_fix_u = EssentialBC('left_fix_u', left, {'u.all': 1.0})
    right_fix_u = EssentialBC('right_fix_u', right, {'u.all': 0.0})

    # ----------------------------
    # | Create initial condition |
    # ----------------------------
    def ghump(x):
        """
        Nice gaussian.
        """
        return nm.exp(-200 * x**2)

    def ic_wrap(x, ic=None):
        return ghump(x - .3)

    ic_fun = Function('ic_fun', ic_wrap)
    ics = InitialCondition('ic', omega, {'u.0': ic_fun})

    # ------------------
    # | Create problem |
    # ------------------
    pb = Problem(problem_name,
                 equations=eqs,
                 conf=Struct(options={"save_times": save_timestn},
                             ics={},
                             ebcs={},
                             epbcs={},
                             lcbcs={},
                             materials={}),
                 active_only=False)
    pb.setup_output(output_dir=output_folder, output_format=output_format)
    pb.set_ics(Conditions([ics]))

    # ------------------
    # | Create limiter |
    # ------------------
    limiter = MomentLimiter1D

    # ---------------------------
    # | Set time discretization |
    # ---------------------------
    CFL = .2
    max_velo = nm.max(nm.abs(velo))
    t0 = 0
    t1 = .2
    dx = nm.min(mesh.cmesh.get_volumes(1))
    dt = dx / max_velo * CFL / (2 * approx_order + 1)
    tn = int(nm.ceil((t1 - t0) / dt))
    dtdx = dt / dx

    # ------------------
    # | Create solver |
    # ------------------
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status)

    tss_conf = {
        't0': t0,
        't1': t1,
        'n_step': tn,
        'limiters': {
            "dgfu": limiter
        }
    }

    tss = TVDRK3StepSolver(tss_conf, nls=nls, context=pb, verbose=True)

    # ---------
    # | Solve |
    # ---------
    pb.set_solver(tss)
    state_end = pb.solve()

    output("Solved equation \n\n\t\t u_t - div(f(u))) = 0\n")
    output(f"With IC: {ic_fun.name}")
    # output("and EBCs: {}".format(pb.ebcs.names))
    # output("and EPBCS: {}".format(pb.epbcs.names))
    output("-------------------------------------")
    output(f"Approximation order is {approx_order}")
    output(f"Space divided into {mesh.n_el} cells, " +
           f"{len(mesh.coors)} steps, step size is {dx}")
    output(f"Time divided into {tn - 1} nodes, {tn} steps, step size is {dt}")
    output(f"CFL coefficient was {CFL} and " +
           f"order correction {1 / (2 * approx_order + 1)}")
    output(f"Courant number c = max(abs(u)) * dt/dx = {max_velo * dtdx}")
    output("------------------------------------------")
    output(f"Time stepping solver is {tss.name}")
    output(f"Limiter used: {limiter.name}")
    output("======================================")

    # ----------
    # | Plot 1D|
    # ----------
    if options.plot:
        load_and_plot_fun(output_folder, domain_name, t0, t1,
                          min(tn, save_timestn), ic_fun)