def test_random_descent():
    # Test that both random and cyclic selection give the same results.
    # Ensure that the test models fully converge and check a wide
    # range of conditions.

    # This uses the coordinate descent algo using the gram trick.
    X, y, _, _ = build_dataset(n_samples=50, n_features=20)
    clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(X, y)
    clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42)
    clf_random.fit(X, y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # This uses the descent algo without the gram trick
    clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(X.T, y[:20])
    clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42)
    clf_random.fit(X.T, y[:20])
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Sparse Case
    clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(sparse.csr_matrix(X), y)
    clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42)
    clf_random.fit(sparse.csr_matrix(X), y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Multioutput case.
    new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis]))
    clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(X, new_y)
    clf_random = MultiTaskElasticNet(selection='random', tol=1e-8,
                                     random_state=42)
    clf_random.fit(X, new_y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Raise error when selection is not in cyclic or random.
    clf_random = ElasticNet(selection='invalid')
    assert_raises(ValueError, clf_random.fit, X, y)
Example #2
0
def test_correct_RandomProjection_dimensions_embedding():
    for RandomProjection in all_RandomProjection:
        rp = RandomProjection(n_components='auto', random_state=0,
                              eps=0.5).fit(data)

        # the number of components is adjusted from the shape of the training
        # set
        assert rp.n_components == 'auto'
        assert rp.n_components_ == 110

        if RandomProjection in all_SparseRandomProjection:
            assert rp.density == 'auto'
            assert_almost_equal(rp.density_, 0.03, 2)

        assert rp.components_.shape == (110, n_features)

        projected_1 = rp.transform(data)
        assert projected_1.shape == (n_samples, 110)

        # once the RP is 'fitted' the projection is always the same
        projected_2 = rp.transform(data)
        assert_array_equal(projected_1, projected_2)

        # fit transform with same random seed will lead to the same results
        rp2 = RandomProjection(random_state=0, eps=0.5)
        projected_3 = rp2.fit_transform(data)
        assert_array_equal(projected_1, projected_3)

        # Try to transform with an input X of size different from fitted.
        assert_raises(ValueError, rp.transform, data[:, 1:5])

        # it is also possible to fix the number of components and the density
        # level
        if RandomProjection in all_SparseRandomProjection:
            rp = RandomProjection(n_components=100,
                                  density=0.001,
                                  random_state=0)
            projected = rp.fit_transform(data)
            assert projected.shape == (n_samples, 100)
            assert rp.components_.shape == (100, n_features)
            assert rp.components_.nnz < 115  # close to 1% density
            assert 85 < rp.components_.nnz  # close to 1% density
def test_inplace_swap_column():
    X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]],
                 dtype=np.float64)
    X_csr = sp.csr_matrix(X)
    X_csc = sp.csc_matrix(X)

    swap = linalg.get_blas_funcs(('swap', ), (X, ))
    swap = swap[0]
    X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
    inplace_swap_column(X_csr, 0, -1)
    inplace_swap_column(X_csc, 0, -1)
    assert_array_equal(X_csr.toarray(), X_csc.toarray())
    assert_array_equal(X, X_csc.toarray())
    assert_array_equal(X, X_csr.toarray())

    X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
    inplace_swap_column(X_csr, 0, 1)
    inplace_swap_column(X_csc, 0, 1)
    assert_array_equal(X_csr.toarray(), X_csc.toarray())
    assert_array_equal(X, X_csc.toarray())
    assert_array_equal(X, X_csr.toarray())
    assert_raises(TypeError, inplace_swap_column, X_csr.tolil())

    X = np.array([[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]],
                 dtype=np.float32)
    X_csr = sp.csr_matrix(X)
    X_csc = sp.csc_matrix(X)
    swap = linalg.get_blas_funcs(('swap', ), (X, ))
    swap = swap[0]
    X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
    inplace_swap_column(X_csr, 0, -1)
    inplace_swap_column(X_csc, 0, -1)
    assert_array_equal(X_csr.toarray(), X_csc.toarray())
    assert_array_equal(X, X_csc.toarray())
    assert_array_equal(X, X_csr.toarray())
    X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
    inplace_swap_column(X_csr, 0, 1)
    inplace_swap_column(X_csc, 0, 1)
    assert_array_equal(X_csr.toarray(), X_csc.toarray())
    assert_array_equal(X, X_csc.toarray())
    assert_array_equal(X, X_csr.toarray())
    assert_raises(TypeError, inplace_swap_column, X_csr.tolil())
Example #4
0
def test_ransac_max_trials():
    base_estimator = LinearRegression()

    ransac_estimator = RANSACRegressor(base_estimator,
                                       min_samples=2,
                                       residual_threshold=5,
                                       max_trials=0,
                                       random_state=0)
    assert_raises(ValueError, ransac_estimator.fit, X, y)

    # there is a 1e-9 chance it will take these many trials. No good reason
    # 1e-2 isn't enough, can still happen
    # 2 is the what ransac defines  as min_samples = X.shape[1] + 1
    max_trials = _dynamic_max_trials(
        len(X) - len(outliers), X.shape[0], 2, 1 - 1e-9)
    ransac_estimator = RANSACRegressor(base_estimator, min_samples=2)
    for i in range(50):
        ransac_estimator.set_params(min_samples=2, random_state=i)
        ransac_estimator.fit(X, y)
        assert ransac_estimator.n_trials_ < max_trials + 1
Example #5
0
def test_config_context():
    assert get_config() == {'assume_finite': False, 'working_memory': 1024,
                            'print_changed_only': True}

    # Not using as a context manager affects nothing
    config_context(assume_finite=True)
    assert get_config()['assume_finite'] is False

    with config_context(assume_finite=True):
        assert get_config() == {'assume_finite': True, 'working_memory': 1024,
                                'print_changed_only': True}
    assert get_config()['assume_finite'] is False

    with config_context(assume_finite=True):
        with config_context(assume_finite=None):
            assert get_config()['assume_finite'] is True

        assert get_config()['assume_finite'] is True

        with config_context(assume_finite=False):
            assert get_config()['assume_finite'] is False

            with config_context(assume_finite=None):
                assert get_config()['assume_finite'] is False

                # global setting will not be retained outside of context that
                # did not modify this setting
                set_config(assume_finite=True)
                assert get_config()['assume_finite'] is True

            assert get_config()['assume_finite'] is False

        assert get_config()['assume_finite'] is True

    assert get_config() == {'assume_finite': False, 'working_memory': 1024,
                            'print_changed_only': True}

    # No positional arguments
    assert_raises(TypeError, config_context, True)
    # No unknown arguments
    assert_raises(TypeError, config_context(do_something_else=True).__enter__)
Example #6
0
def test_bagging_classifier_with_missing_inputs():
    # Check that SerialBaggingClassifier can accept X with missing/infinite data
    X = np.array([[1, 3, 5], [2, None, 6], [2, np.nan, 6], [2, np.inf, 6],
                  [2, np.NINF, 6]])
    y = np.array([3, 6, 6, 6, 6])
    classifier = DecisionTreeClassifier()
    pipeline = make_pipeline(FunctionTransformer(replace), classifier)
    pipeline.fit(X, y).predict(X)
    bagging_classifier = SerialBaggingClassifier(pipeline)
    bagging_classifier.fit(X, y)
    y_hat = bagging_classifier.predict(X)
    assert y.shape == y_hat.shape
    bagging_classifier.predict_log_proba(X)
    bagging_classifier.predict_proba(X)

    # Verify that exceptions can be raised by wrapper classifier
    classifier = DecisionTreeClassifier()
    pipeline = make_pipeline(classifier)
    assert_raises(ValueError, pipeline.fit, X, y)
    bagging_classifier = SerialBaggingClassifier(pipeline)
    assert_raises(ValueError, bagging_classifier.fit, X, y)
Example #7
0
def test_transformation_dimensions():
    X = np.arange(12).reshape(4, 3)
    y = [1, 1, 2, 2]

    # Fail if transformation input dimension does not match inputs dimensions
    transformation = np.array([[1, 2], [3, 4]])
    assert_raises(ValueError,
                  NeighborhoodComponentsAnalysis(init=transformation).fit, X,
                  y)

    # Fail if transformation output dimension is larger than
    # transformation input dimension
    transformation = np.array([[1, 2], [3, 4], [5, 6]])
    # len(transformation) > len(transformation[0])
    assert_raises(ValueError,
                  NeighborhoodComponentsAnalysis(init=transformation).fit, X,
                  y)

    # Pass otherwise
    transformation = np.arange(9).reshape(3, 3)
    NeighborhoodComponentsAnalysis(init=transformation).fit(X, y)
def test_discretenb_input_check_partial_fit(cls):
    # check shape consistency
    assert_raises(ValueError,
                  cls().partial_fit,
                  X2,
                  y2[:-1],
                  classes=np.unique(y2))

    # classes is required for first call to partial fit
    assert_raises(ValueError, cls().partial_fit, X2, y2)

    # check consistency of consecutive classes values
    clf = cls()
    clf.partial_fit(X2, y2, classes=np.unique(y2))
    assert_raises(ValueError, clf.partial_fit, X2, y2, classes=np.arange(42))

    # check consistency of input shape for partial_fit
    assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2)

    # check consistency of input shape for predict
    assert_raises(ValueError, clf.predict, X2[:, :-1])
Example #9
0
def test_features_zero_var():
    # Test that features with 0 variance throw error

    X = np.empty((10, 2))
    X[:, 0] = -0.13725701
    X[:, 1] = -0.9853293
    y = np.zeros((10))
    y[0] = 1

    clf = NearestCentroid(shrink_threshold=0.1)
    with assert_raises(ValueError):
        clf.fit(X, y)
Example #10
0
def test_column_or_1d():
    EXAMPLES = [
        ("binary", ["spam", "egg", "spam"]),
        ("binary", [0, 1, 0, 1]),
        ("continuous", np.arange(10) / 20.),
        ("multiclass", [1, 2, 3]),
        ("multiclass", [0, 1, 2, 2, 0]),
        ("multiclass", [[1], [2], [3]]),
        ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]),
        ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("continuous-multioutput", np.arange(30).reshape((-1, 3))),
    ]

    for y_type, y in EXAMPLES:
        if y_type in ["binary", 'multiclass', "continuous"]:
            assert_array_equal(column_or_1d(y), np.ravel(y))
        else:
            assert_raises(ValueError, column_or_1d, y)
Example #11
0
def test_lasso_lars_ic():
    # Test the LassoLarsIC object by checking that
    # - some good features are selected.
    # - alpha_bic > alpha_aic
    # - n_nonzero_bic < n_nonzero_aic
    lars_bic = linear_model.LassoLarsIC('bic')
    lars_aic = linear_model.LassoLarsIC('aic')
    rng = np.random.RandomState(42)
    X = diabetes.data
    X = np.c_[X, rng.randn(X.shape[0], 5)]  # add 5 bad features
    lars_bic.fit(X, y)
    lars_aic.fit(X, y)
    nonzero_bic = np.where(lars_bic.coef_)[0]
    nonzero_aic = np.where(lars_aic.coef_)[0]
    assert lars_bic.alpha_ > lars_aic.alpha_
    assert len(nonzero_bic) < len(nonzero_aic)
    assert np.max(nonzero_bic) < diabetes.data.shape[1]

    # test error on unknown IC
    lars_broken = linear_model.LassoLarsIC('<unknown>')
    assert_raises(ValueError, lars_broken.fit, X, y)
Example #12
0
def test_clone_buggy():
    # Check that clone raises an error on buggy estimators.
    buggy = Buggy()
    buggy.a = 2
    assert_raises(RuntimeError, clone, buggy)

    no_estimator = NoEstimator()
    assert_raises(TypeError, clone, no_estimator)

    varg_est = VargEstimator()
    assert_raises(RuntimeError, clone, varg_est)

    est = ModifyInitParams()
    assert_raises(RuntimeError, clone, est)
Example #13
0
def test_plot_partial_dependence_multiclass(pyplot):
    # Test partial dependence plot function on multi-class input.
    clf = GradientBoostingClassifier(n_estimators=10, random_state=1)
    clf.fit(iris.data, iris.target)

    grid_resolution = 25
    fig, axs = plot_partial_dependence(clf,
                                       iris.data, [0, 1],
                                       label=0,
                                       grid_resolution=grid_resolution)
    assert len(axs) == 2
    assert all(ax.has_data for ax in axs)

    # now with symbol labels
    target = iris.target_names[iris.target]
    clf = GradientBoostingClassifier(n_estimators=10, random_state=1)
    clf.fit(iris.data, target)

    grid_resolution = 25
    fig, axs = plot_partial_dependence(clf,
                                       iris.data, [0, 1],
                                       label='setosa',
                                       grid_resolution=grid_resolution)
    assert len(axs) == 2
    assert all(ax.has_data for ax in axs)

    # label not in gbrt.classes_
    assert_raises(ValueError,
                  plot_partial_dependence,
                  clf,
                  iris.data, [0, 1],
                  label='foobar',
                  grid_resolution=grid_resolution)

    # label not provided
    assert_raises(ValueError,
                  plot_partial_dependence,
                  clf,
                  iris.data, [0, 1],
                  grid_resolution=grid_resolution)
Example #14
0
def test_ransac_dynamic_max_trials():
    # Numbers hand-calculated and confirmed on page 119 (Table 4.3) in
    #   Hartley, R.~I. and Zisserman, A., 2004,
    #   Multiple View Geometry in Computer Vision, Second Edition,
    #   Cambridge University Press, ISBN: 0521540518

    # e = 0%, min_samples = X
    assert _dynamic_max_trials(100, 100, 2, 0.99) == 1

    # e = 5%, min_samples = 2
    assert _dynamic_max_trials(95, 100, 2, 0.99) == 2
    # e = 10%, min_samples = 2
    assert _dynamic_max_trials(90, 100, 2, 0.99) == 3
    # e = 30%, min_samples = 2
    assert _dynamic_max_trials(70, 100, 2, 0.99) == 7
    # e = 50%, min_samples = 2
    assert _dynamic_max_trials(50, 100, 2, 0.99) == 17

    # e = 5%, min_samples = 8
    assert _dynamic_max_trials(95, 100, 8, 0.99) == 5
    # e = 10%, min_samples = 8
    assert _dynamic_max_trials(90, 100, 8, 0.99) == 9
    # e = 30%, min_samples = 8
    assert _dynamic_max_trials(70, 100, 8, 0.99) == 78
    # e = 50%, min_samples = 8
    assert _dynamic_max_trials(50, 100, 8, 0.99) == 1177

    # e = 0%, min_samples = 10
    assert _dynamic_max_trials(1, 100, 10, 0) == 0
    assert _dynamic_max_trials(1, 100, 10, 1) == float('inf')

    base_estimator = LinearRegression()
    ransac_estimator = RANSACRegressor(base_estimator,
                                       min_samples=2,
                                       stop_probability=-0.1)
    assert_raises(ValueError, ransac_estimator.fit, X, y)
    ransac_estimator = RANSACRegressor(base_estimator,
                                       min_samples=2,
                                       stop_probability=1.1)
    assert_raises(ValueError, ransac_estimator.fit, X, y)
Example #15
0
def test_ransac_min_n_samples():
    base_estimator = LinearRegression()
    ransac_estimator1 = RANSACRegressor(base_estimator, min_samples=2,
                                        residual_threshold=5, random_state=0)
    ransac_estimator2 = RANSACRegressor(base_estimator,
                                        min_samples=2. / X.shape[0],
                                        residual_threshold=5, random_state=0)
    ransac_estimator3 = RANSACRegressor(base_estimator, min_samples=-1,
                                        residual_threshold=5, random_state=0)
    ransac_estimator4 = RANSACRegressor(base_estimator, min_samples=5.2,
                                        residual_threshold=5, random_state=0)
    ransac_estimator5 = RANSACRegressor(base_estimator, min_samples=2.0,
                                        residual_threshold=5, random_state=0)
    ransac_estimator6 = RANSACRegressor(base_estimator,
                                        residual_threshold=5, random_state=0)
    ransac_estimator7 = RANSACRegressor(base_estimator,
                                        min_samples=X.shape[0] + 1,
                                        residual_threshold=5, random_state=0)

    ransac_estimator1.fit(X, y)
    ransac_estimator2.fit(X, y)
    ransac_estimator5.fit(X, y)
    ransac_estimator6.fit(X, y)

    assert_array_almost_equal(ransac_estimator1.predict(X),
                              ransac_estimator2.predict(X))
    assert_array_almost_equal(ransac_estimator1.predict(X),
                              ransac_estimator5.predict(X))
    assert_array_almost_equal(ransac_estimator1.predict(X),
                              ransac_estimator6.predict(X))

    assert_raises(ValueError, ransac_estimator3.fit, X, y)
    assert_raises(ValueError, ransac_estimator4.fit, X, y)
    assert_raises(ValueError, ransac_estimator7.fit, X, y)
Example #16
0
def test_multi_output_exceptions():
    # NotFittedError when fit is not done but score, predict and
    # and predict_proba are called
    moc = MultiOutputClassifier(LinearSVC(random_state=0))
    assert_raises(NotFittedError, moc.predict, y)
    assert_raises(NotFittedError, moc.predict_proba, y)
    assert_raises(NotFittedError, moc.score, X, y)
    # ValueError when number of outputs is different
    # for fit and score
    y_new = np.column_stack((y1, y2))
    moc.fit(X, y)
    assert_raises(ValueError, moc.score, X, y_new)
    # ValueError when y is continuous
    assert_raise_message(ValueError, "Unknown label type", moc.fit, X, X[:, 1])
Example #17
0
def check_min_samples_split(name):
    X, y = hastie_X, hastie_y
    ForestEstimator = FOREST_ESTIMATORS[name]

    # test boundary value
    assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y)
    assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y)
    assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y)

    est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0)
    est.fit(X, y)
    node_idx = est.estimators_[0].tree_.children_left != -1
    node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]

    assert np.min(node_samples) > len(X) * 0.5 - 1, (
        "Failed with {0}".format(name))

    est = ForestEstimator(min_samples_split=0.5,
                          n_estimators=1,
                          random_state=0)
    est.fit(X, y)
    node_idx = est.estimators_[0].tree_.children_left != -1
    node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]

    assert np.min(node_samples) > len(X) * 0.5 - 1, (
        "Failed with {0}".format(name))
Example #18
0
def test_unique_labels():
    # Empty iterable
    assert_raises(ValueError, unique_labels)

    # Multiclass problem
    assert_array_equal(unique_labels(range(10)), np.arange(10))
    assert_array_equal(unique_labels(np.arange(10)), np.arange(10))
    assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4]))

    # Multilabel indicator
    assert_array_equal(unique_labels(np.array([[0, 0, 1],
                                               [1, 0, 1],
                                               [0, 0, 0]])),
                       np.arange(3))

    assert_array_equal(unique_labels(np.array([[0, 0, 1],
                                               [0, 0, 0]])),
                       np.arange(3))

    # Several arrays passed
    assert_array_equal(unique_labels([4, 0, 2], range(5)),
                       np.arange(5))
    assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)),
                       np.arange(3))

    # Border line case with binary indicator matrix
    assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5)))
    assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5)))
    assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))),
                       np.arange(5))
Example #19
0
def test_sparse_random_projection_transformer_invalid_density():
    for RandomProjection in all_SparseRandomProjection:
        assert_raises(ValueError, RandomProjection(density=1.1).fit, data)

        assert_raises(ValueError, RandomProjection(density=0).fit, data)

        assert_raises(ValueError, RandomProjection(density=-0.1).fit, data)
Example #20
0
def test_bagging_regressor_with_missing_inputs():
    # Check that SerialBaggingRegressor can accept X with missing/infinite data
    X = np.array([[1, 3, 5], [2, None, 6], [2, np.nan, 6], [2, np.inf, 6],
                  [2, np.NINF, 6]])
    y_values = [
        np.array([2, 3, 3, 3, 3]),
        np.array([[2, 1, 9], [3, 6, 8], [3, 6, 8], [3, 6, 8], [3, 6, 8]]),
    ]
    for y in y_values:
        regressor = DecisionTreeRegressor()
        pipeline = make_pipeline(FunctionTransformer(replace), regressor)
        pipeline.fit(X, y).predict(X)
        bagging_regressor = SerialBaggingRegressor(pipeline)
        y_hat = bagging_regressor.fit(X, y).predict(X)
        assert y.shape == y_hat.shape

        # Verify that exceptions can be raised by wrapper regressor
        regressor = DecisionTreeRegressor()
        pipeline = make_pipeline(regressor)
        assert_raises(ValueError, pipeline.fit, X, y)
        bagging_regressor = SerialBaggingRegressor(pipeline)
        assert_raises(ValueError, bagging_regressor.fit, X, y)
Example #21
0
def test_skewed_chi2_sampler():
    # test that RBFSampler approximates kernel on random data

    # compute exact kernel
    c = 0.03
    # set on negative component but greater than c to ensure that the kernel
    # approximation is valid on the group (-c; +\infty) endowed with the skewed
    # multiplication.
    Y[0, 0] = -c / 2.

    # abbreviations for easier formula
    X_c = (X + c)[:, np.newaxis, :]
    Y_c = (Y + c)[np.newaxis, :, :]

    # we do it in log-space in the hope that it's more stable
    # this array is n_samples_x x n_samples_y big x n_features
    log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) -
                  np.log(X_c + Y_c))
    # reduce to n_samples_x x n_samples_y by summing over features in log-space
    kernel = np.exp(log_kernel.sum(axis=2))

    # approximate kernel mapping
    transform = SkewedChi2Sampler(skewedness=c,
                                  n_components=1000,
                                  random_state=42)
    X_trans = transform.fit_transform(X)
    Y_trans = transform.transform(Y)

    kernel_approx = np.dot(X_trans, Y_trans.T)
    assert_array_almost_equal(kernel, kernel_approx, 1)
    assert np.isfinite(kernel).all(), \
        'NaNs found in the Gram matrix'
    assert np.isfinite(kernel_approx).all(), \
        'NaNs found in the approximate Gram matrix'

    # test error is raised on when inputs contains values smaller than -c
    Y_neg = Y.copy()
    Y_neg[0, 0] = -c * 2.
    assert_raises(ValueError, transform.transform, Y_neg)
def test_min_max_axis_errors():
    X = np.array([[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]],
                 dtype=np.float64)
    X_csr = sp.csr_matrix(X)
    X_csc = sp.csc_matrix(X)
    assert_raises(TypeError, min_max_axis, X_csr.tolil(), axis=0)
    assert_raises(ValueError, min_max_axis, X_csr, axis=2)
    assert_raises(ValueError, min_max_axis, X_csc, axis=-3)
Example #23
0
def test_callback(capsys):
    X = iris_data
    y = iris_target

    nca = NeighborhoodComponentsAnalysis(callback='my_cb')
    assert_raises(ValueError, nca.fit, X, y)

    max_iter = 10

    def my_cb(transformation, n_iter):
        assert transformation.shape == (iris_data.shape[1]**2, )
        rem_iter = max_iter - n_iter
        print('{} iterations remaining...'.format(rem_iter))

    # assert that my_cb is called
    nca = NeighborhoodComponentsAnalysis(max_iter=max_iter,
                                         callback=my_cb,
                                         verbose=1)
    nca.fit(iris_data, iris_target)
    out, _ = capsys.readouterr()

    # check output
    assert ('{} iterations remaining...'.format(max_iter - 1) in out)
Example #24
0
def test_params_validation():
    # Test that invalid parameters raise value error
    X = np.arange(12).reshape(4, 3)
    y = [1, 1, 2, 2]
    NCA = NeighborhoodComponentsAnalysis
    rng = np.random.RandomState(42)

    # TypeError
    assert_raises(TypeError, NCA(max_iter='21').fit, X, y)
    assert_raises(TypeError, NCA(verbose='true').fit, X, y)
    assert_raises(TypeError, NCA(tol='1').fit, X, y)
    assert_raises(TypeError, NCA(n_components='invalid').fit, X, y)
    assert_raises(TypeError, NCA(warm_start=1).fit, X, y)

    # ValueError
    assert_raise_message(
        ValueError, "`init` must be 'auto', 'pca', 'lda', 'identity', "
        "'random' or a numpy array of shape "
        "(n_components, n_features).",
        NCA(init=1).fit, X, y)
    assert_raise_message(ValueError, '`max_iter`= -1, must be >= 1.',
                         NCA(max_iter=-1).fit, X, y)

    init = rng.rand(5, 3)
    assert_raise_message(
        ValueError, 'The output dimensionality ({}) of the given linear '
        'transformation `init` cannot be greater than its '
        'input dimensionality ({}).'.format(init.shape[0], init.shape[1]),
        NCA(init=init).fit, X, y)

    n_components = 10
    assert_raise_message(
        ValueError, 'The preferred dimensionality of the '
        'projected space `n_components` ({}) cannot '
        'be greater than the given data '
        'dimensionality ({})!'.format(n_components, X.shape[1]),
        NCA(n_components=n_components).fit, X, y)
Example #25
0
def test_calibration_curve():
    """Check calibration_curve function"""
    y_true = np.array([0, 0, 0, 1, 1, 1])
    y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.])
    prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2)
    prob_true_unnormalized, prob_pred_unnormalized = \
        calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True)
    assert len(prob_true) == len(prob_pred)
    assert len(prob_true) == 2
    assert_almost_equal(prob_true, [0, 1])
    assert_almost_equal(prob_pred, [0.1, 0.9])
    assert_almost_equal(prob_true, prob_true_unnormalized)
    assert_almost_equal(prob_pred, prob_pred_unnormalized)

    # probabilities outside [0, 1] should not be accepted when normalize
    # is set to False
    assert_raises(ValueError,
                  calibration_curve, [1.1], [-0.1],
                  normalize=False)

    # test that quantiles work as expected
    y_true2 = np.array([0, 0, 0, 0, 1, 1])
    y_pred2 = np.array([0., 0.1, 0.2, 0.5, 0.9, 1.])
    prob_true_quantile, prob_pred_quantile = calibration_curve(
        y_true2, y_pred2, n_bins=2, strategy='quantile')

    assert len(prob_true_quantile) == len(prob_pred_quantile)
    assert len(prob_true_quantile) == 2
    assert_almost_equal(prob_true_quantile, [0, 2 / 3])
    assert_almost_equal(prob_pred_quantile, [0.1, 0.8])

    # Check that error is raised when invalid strategy is selected
    assert_raises(ValueError,
                  calibration_curve,
                  y_true2,
                  y_pred2,
                  strategy='percentile')
Example #26
0
def test_set_pipeline_steps():
    transf1 = Transf()
    transf2 = Transf()
    pipeline = Pipeline([('mock', transf1)])
    assert pipeline.named_steps['mock'] is transf1

    # Directly setting attr
    pipeline.steps = [('mock2', transf2)]
    assert 'mock' not in pipeline.named_steps
    assert pipeline.named_steps['mock2'] is transf2
    assert [('mock2', transf2)] == pipeline.steps

    # Using set_params
    pipeline.set_params(steps=[('mock', transf1)])
    assert [('mock', transf1)] == pipeline.steps

    # Using set_params to replace single step
    pipeline.set_params(mock=transf2)
    assert [('mock', transf2)] == pipeline.steps

    # With invalid data
    pipeline.set_params(steps=[('junk', ())])
    assert_raises(TypeError, pipeline.fit, [[1]], [1])
    assert_raises(TypeError, pipeline.fit_transform, [[1]], [1])
Example #27
0
def test_ridge_individual_penalties():
    # Tests the ridge object using individual penalties

    rng = np.random.RandomState(42)

    n_samples, n_features, n_targets = 20, 10, 5
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples, n_targets)

    penalties = np.arange(n_targets)

    coef_cholesky = np.array([
        Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_
        for alpha, target in zip(penalties, y.T)])

    coefs_indiv_pen = [
        Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_
        for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky', 'sag', 'saga']]
    for coef_indiv_pen in coefs_indiv_pen:
        assert_array_almost_equal(coef_cholesky, coef_indiv_pen)

    # Test error is raised when number of targets and penalties do not match.
    ridge = Ridge(alpha=penalties[:-1])
    assert_raises(ValueError, ridge.fit, X, y)
Example #28
0
def test_qda():
    # QDA classification.
    # This checks that QDA implements fit and predict and returns
    # correct values for a simple toy dataset.
    clf = QuadraticDiscriminantAnalysis()
    y_pred = clf.fit(X6, y6).predict(X6)
    assert_array_equal(y_pred, y6)

    # Assure that it works with 1D data
    y_pred1 = clf.fit(X7, y6).predict(X7)
    assert_array_equal(y_pred1, y6)

    # Test probas estimates
    y_proba_pred1 = clf.predict_proba(X7)
    assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6)
    y_log_proba_pred1 = clf.predict_log_proba(X7)
    assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8)

    y_pred3 = clf.fit(X6, y7).predict(X6)
    # QDA shouldn't be able to separate those
    assert np.any(y_pred3 != y7)

    # Classes should have at least 2 elements
    assert_raises(ValueError, clf.fit, X6, y4)
Example #29
0
def check_edge_case_of_sample_int(sample_without_replacement):

    # n_population < n_sample
    assert_raises(ValueError, sample_without_replacement, 0, 1)
    assert_raises(ValueError, sample_without_replacement, 1, 2)

    # n_population == n_samples
    assert sample_without_replacement(0, 0).shape == (0, )

    assert sample_without_replacement(1, 1).shape == (1, )

    # n_population >= n_samples
    assert sample_without_replacement(5, 0).shape == (0, )
    assert sample_without_replacement(5, 1).shape == (1, )

    # n_population < 0 or n_samples < 0
    assert_raises(ValueError, sample_without_replacement, -1, 5)
    assert_raises(ValueError, sample_without_replacement, 5, -1)
Example #30
0
def test_ovr_exceptions():
    ovr = OneVsRestClassifier(LinearSVC(random_state=0))
    assert_raises(ValueError, ovr.predict, [])

    # Fail on multioutput data
    assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit,
                  np.array([[1, 0], [0, 1]]),
                  np.array([[1, 2], [3, 1]]))
    assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit,
                  np.array([[1, 0], [0, 1]]),
                  np.array([[1.5, 2.4], [3.1, 0.8]]))