Example #1
0
def S0(x, y, l, z):
	somme = 0
	for m in range(1, z+1):
		if gamma(m) <= y:
			queueF.append([x/m, 0, (l*m)%4, 1])
			somme += mobius(m)*F_tilde()
	return somme
Example #2
0
def S3(x, y, l, z, limit):
	somme = 0
	a = biggest_prime_index_below_or_equal(limit)
	for b in range(1, a+1):
		pb = out[b]
		for m in range(z/pb+1, z+1):
			if delta(m) > pb and gamma(m) <= y:
				queueF.append([x/(m*pb), b-1, (l*m*pb)%4, 1])
				somme+=mobius(m)*F_tilde()
	return somme
Example #3
0
def S(x, y, l, z):
	somme = 0
	a = biggest_prime_index_below_or_equal(y)
	print ("a = ", a)
	for b in range(1, a+1):
		pb = out[b]
		print ("from ", z/pb+1, "to ", z)
		for m in range(z/pb+1, z+1):
			if delta(m) > pb and gamma(m) <= y:
				queueF.append([x/(m*pb), b-1, (l*m*pb)%4, 1])
				somme+=mobius(m)*F_tilde()
	return somme
Example #4
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(
        11, (10**50 + 151)**2
    ) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2 * p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))

    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
                 (262144, 1048576), (87169610025, 163443018796875),
                 (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
                    (26118163, 1303, 33333347), (1499, 7, 2663),
                    (595, 6, 2663), (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13 * 7) == 1
    assert mobius(1) == 1
    assert mobius(13 * 7 * 5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))
Example #5
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
          (26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663),
          (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13*7) == 1
    assert mobius(1) == 1
    assert mobius(13*7*5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))
Example #6
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(
        11, (10**50 + 151)**2
    ) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2 * p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))

    assert quadratic_residues(S.One) == [0]
    assert quadratic_residues(1) == [0]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345
    assert sqrt_mod(67, 101) == None
    assert sqrt_mod(1020, 104729) == None

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
                 (262144, 1048576), (87169610025, 163443018796875),
                 (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)

    #issue 10816
    assert is_nthpow_residue(1, 0, 1) is False
    assert is_nthpow_residue(1, 0, 2) is True
    assert is_nthpow_residue(3, 0, 2) is False
    assert is_nthpow_residue(0, 1, 8) is True
    assert is_nthpow_residue(2, 3, 2) is True
    assert is_nthpow_residue(2, 3, 9) is False
    assert is_nthpow_residue(3, 5, 30) is True
    assert is_nthpow_residue(21, 11, 20) is True
    assert is_nthpow_residue(7, 10, 20) is False
    assert is_nthpow_residue(5, 10, 20) is True
    assert is_nthpow_residue(3, 10, 48) is False
    assert is_nthpow_residue(1, 10, 40) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(1, 10, 24) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(2, 10, 48) is False
    assert is_nthpow_residue(81, 3, 972) is False
    assert is_nthpow_residue(243, 5, 5103) is True
    assert is_nthpow_residue(243, 3, 1240029) is False
    assert is_nthpow_residue(36010, 8, 87382) is True
    assert is_nthpow_residue(28552, 6, 2218) is True
    assert is_nthpow_residue(92712, 9, 50026) is True
    x = set([pow(i, 56, 1024) for i in range(1024)])
    assert set([a for a in range(1024) if is_nthpow_residue(a, 56, 1024)]) == x
    x = set([pow(i, 256, 2048) for i in range(2048)])
    assert set([a for a in range(2048)
                if is_nthpow_residue(a, 256, 2048)]) == x
    x = set([pow(i, 11, 324000) for i in range(1000)])
    assert [is_nthpow_residue(a, 11, 324000) for a in x]
    x = set([pow(i, 17, 22217575536) for i in range(1000)])
    assert [is_nthpow_residue(a, 17, 22217575536) for a in x]
    assert is_nthpow_residue(676, 3, 5364)
    assert is_nthpow_residue(9, 12, 36)
    assert is_nthpow_residue(32, 10, 41)
    assert is_nthpow_residue(4, 2, 64)
    assert is_nthpow_residue(31, 4, 41)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)

    assert nthroot_mod(29, 31, 74) == [45]
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
                    (26118163, 1303, 33333347), (1499, 7, 2663),
                    (595, 6, 2663), (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None
    assert nthroot_mod(16, 5, 36, True) == [4, 22]
    assert nthroot_mod(9, 16, 36, True) == [3, 9, 15, 21, 27, 33]
    assert nthroot_mod(4, 3, 3249000) == []
    assert nthroot_mod(36010, 8, 87382, True) == [40208, 47174]
    assert nthroot_mod(0, 12, 37, True) == [0]
    assert nthroot_mod(0, 7, 100,
                       True) == [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
    assert nthroot_mod(4, 4, 27, True) == [5, 22]
    assert nthroot_mod(4, 4, 121, True) == [19, 102]
    assert nthroot_mod(2, 3, 7, True) == []

    for p in range(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res == []

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13 * 7) == 1
    assert mobius(1) == 1
    assert mobius(13 * 7 * 5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))

    assert _discrete_log_trial_mul(587, 2**7, 2) == 7
    assert _discrete_log_trial_mul(941, 7**18, 7) == 18
    assert _discrete_log_trial_mul(389, 3**81, 3) == 81
    assert _discrete_log_trial_mul(191, 19**123, 19) == 123
    assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
    assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
    assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
    assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
    assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
    assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
    assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
    assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
    raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0))
    raises(ValueError,
           lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0))

    assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
    assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
    assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
    assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
    assert discrete_log(587, 2**9, 2) == 9
    assert discrete_log(2456747, 3**51, 3) == 51
    assert discrete_log(32942478, 11**127, 11) == 127
    assert discrete_log(432751500361, 7**324, 7) == 324
    args = 5779, 3528, 6215
    assert discrete_log(*args) == 687
    assert discrete_log(*Tuple(*args)) == 687
    assert quadratic_congruence(400, 85, 125,
                                1600) == [295, 615, 935, 1255, 1575]
    assert quadratic_congruence(3, 6, 5, 25) == [3, 20]
    assert quadratic_congruence(120, 80, 175, 500) == []
    assert quadratic_congruence(15, 14, 7, 2) == [1]
    assert quadratic_congruence(8, 15, 7, 29) == [10, 28]
    assert quadratic_congruence(160, 200, 300, 461) == [144, 431]
    assert quadratic_congruence(
        100000, 123456, 7415263,
        48112959837082048697) == [30417843635344493501, 36001135160550533083]
    assert quadratic_congruence(65, 121, 72, 277) == [249, 252]
    assert quadratic_congruence(5, 10, 14, 2) == [0]
    assert quadratic_congruence(10, 17, 19, 2) == [1]
    assert quadratic_congruence(10, 14, 20, 2) == [0, 1]
    assert polynomial_congruence(
        6 * x**5 + 10 * x**4 + 5 * x**3 + x**2 + x + 1, 972000) == [
            220999, 242999, 463999, 485999, 706999, 728999, 949999, 971999
        ]

    assert polynomial_congruence(x**3 - 10 * x**2 + 12 * x - 82,
                                 33075) == [30287]
    assert polynomial_congruence(x**2 + x + 47, 2401) == [785, 1615]
    assert polynomial_congruence(10 * x**2 + 14 * x + 20, 2) == [0, 1]
    assert polynomial_congruence(x**3 + 3, 16) == [5]
    assert polynomial_congruence(65 * x**2 + 121 * x + 72, 277) == [249, 252]
    assert polynomial_congruence(35 * x**3 - 6 * x**2 - 567 * x + 2308,
                                 148225) == [86957, 111157, 122531, 146731]
    assert polynomial_congruence(x**16 - 9, 36) == [3, 9, 15, 21, 27, 33]
    assert polynomial_congruence(x**6 - 2 * x**5 - 35, 6125) == [3257]
    raises(ValueError, lambda: polynomial_congruence(x**x, 6125))
    raises(ValueError, lambda: polynomial_congruence(x**i, 6125))
    raises(ValueError, lambda: polynomial_congruence(0.1 * x**2 + 6, 100))
Example #7
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2*p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))


    assert quadratic_residues(S.One) == [0]
    assert quadratic_residues(1) == [0]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
        (262144, 1048576), (87169610025, 163443018796875),
        (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)

    #issue 10816
    assert is_nthpow_residue(1, 0, 1) is False
    assert is_nthpow_residue(1, 0, 2) is True
    assert is_nthpow_residue(3, 0, 2) is False
    assert is_nthpow_residue(0, 1, 8) is True
    assert is_nthpow_residue(2, 3, 2) is False
    assert is_nthpow_residue(2, 3, 9) is False
    assert is_nthpow_residue(3, 5, 30) is True
    assert is_nthpow_residue(21, 11, 20) is True
    assert is_nthpow_residue(7, 10, 20) is False
    assert is_nthpow_residue(5, 10, 20) is True
    assert is_nthpow_residue(3, 10, 48) is False
    assert is_nthpow_residue(1, 10, 40) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(1, 10, 24) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(2, 10, 48) is False
    assert is_nthpow_residue(81, 3, 972) is False
    assert is_nthpow_residue(243, 5, 5103) is True
    assert is_nthpow_residue(243, 3, 1240029) is False
    x = set([pow(i, 56, 1024) for i in range(1024)])
    assert set([a for a in range(1024) if is_nthpow_residue(a, 56, 1024)]) == x
    x = set([ pow(i, 256, 2048) for i in range(2048)])
    assert set([a for a in range(2048) if is_nthpow_residue(a, 256, 2048)]) == x
    x = set([ pow(i, 11, 324000) for i in range(1000)])
    assert [ is_nthpow_residue(a, 11, 324000) for a in x]
    x = set([ pow(i, 17, 22217575536) for i in range(1000)])
    assert [ is_nthpow_residue(a, 17, 22217575536) for a in x]
    assert is_nthpow_residue(676, 3, 5364)
    assert is_nthpow_residue(9, 12, 36)
    assert is_nthpow_residue(32, 10, 41)
    assert is_nthpow_residue(4, 2, 64)
    assert is_nthpow_residue(31, 4, 41)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(29, 31, 74) == 31
    assert nthroot_mod(*Tuple(29, 31, 74)) == 31
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
          (26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663),
          (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None
    raises(NotImplementedError, lambda: nthroot_mod(16, 5, 36))
    raises(NotImplementedError, lambda: nthroot_mod(9, 16, 36))

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13*7) == 1
    assert mobius(1) == 1
    assert mobius(13*7*5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))

    assert _discrete_log_trial_mul(587, 2**7, 2) == 7
    assert _discrete_log_trial_mul(941, 7**18, 7) == 18
    assert _discrete_log_trial_mul(389, 3**81, 3) == 81
    assert _discrete_log_trial_mul(191, 19**123, 19) == 123
    assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
    assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
    assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
    assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
    assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
    assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
    assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
    assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
    raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0))
    raises(ValueError, lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0))

    assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
    assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
    assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
    assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
    assert discrete_log(587, 2**9, 2) == 9
    assert discrete_log(2456747, 3**51, 3) == 51
    assert discrete_log(32942478, 11**127, 11) == 127
    assert discrete_log(432751500361, 7**324, 7) == 324
    args = 5779, 3528, 6215
    assert discrete_log(*args) == 687
    assert discrete_log(*Tuple(*args)) == 687
def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)

    assert list(sieve.primerange(10, 1)) == []
    assert list(sieve.primerange(5, 9)) == [5, 7]
    sieve._reset(prime=True)
    assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]

    assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
    sieve._reset(totient=True)
    assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
    assert list(sieve.totientrange(
        900, 1000)) == [totient(x) for x in range(900, 1000)]
    assert list(sieve.totientrange(0, 1)) == []
    assert list(sieve.totientrange(1, 2)) == [1]

    assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
    sieve._reset(mobius=True)
    assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
    assert list(sieve.mobiusrange(
        1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
    assert list(sieve.mobiusrange(0, 1)) == []
    assert list(sieve.mobiusrange(1, 2)) == [1]

    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(
        1050, 1100)) == [1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))
Example #9
0
def test_generate():
    from sympy.ntheory.generate import sieve
    sieve._reset()
    assert nextprime(-4) == 2
    assert nextprime(2) == 3
    assert nextprime(5) == 7
    assert nextprime(12) == 13
    assert prevprime(3) == 2
    assert prevprime(7) == 5
    assert prevprime(13) == 11
    assert prevprime(19) == 17
    assert prevprime(20) == 19

    sieve.extend_to_no(9)
    assert sieve._list[-1] == 23

    assert sieve._list[-1] < 31
    assert 31 in sieve

    assert nextprime(90) == 97
    assert nextprime(10**40) == (10**40 + 121)
    assert prevprime(97) == 89
    assert prevprime(10**40) == (10**40 - 17)

    assert list(sieve.primerange(10, 1)) == []
    assert list(sieve.primerange(5, 9)) == [5, 7]
    sieve._reset(prime=True)
    assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]

    assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
    sieve._reset(totient=True)
    assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
    assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
    assert list(sieve.totientrange(0, 1)) == []
    assert list(sieve.totientrange(1, 2)) == [1]

    assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
    sieve._reset(mobius=True)
    assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
    assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
    assert list(sieve.mobiusrange(0, 1)) == []
    assert list(sieve.mobiusrange(1, 2)) == [1]

    assert list(primerange(10, 1)) == []
    assert list(primerange(2, 7)) == [2, 3, 5]
    assert list(primerange(2, 10)) == [2, 3, 5, 7]
    assert list(primerange(1050, 1100)) == [1051, 1061,
        1063, 1069, 1087, 1091, 1093, 1097]
    s = Sieve()
    for i in range(30, 2350, 376):
        for j in range(2, 5096, 1139):
            A = list(s.primerange(i, i + j))
            B = list(primerange(i, i + j))
            assert A == B
    s = Sieve()
    assert s[10] == 29

    assert nextprime(2, 2) == 5

    raises(ValueError, lambda: totient(0))

    raises(ValueError, lambda: reduced_totient(0))

    raises(ValueError, lambda: primorial(0))

    assert mr(1, [2]) is False

    func = lambda i: (i**2 + 1) % 51
    assert next(cycle_length(func, 4)) == (6, 2)
    assert list(cycle_length(func, 4, values=True)) == \
        [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
    assert next(cycle_length(func, 4, nmax=5)) == (5, None)
    assert list(cycle_length(func, 4, nmax=5, values=True)) == \
        [17, 35, 2, 5, 26]
    sieve.extend(3000)
    assert nextprime(2968) == 2969
    assert prevprime(2930) == 2927
    raises(ValueError, lambda: prevprime(1))
Example #10
0
def test_residue():
    assert n_order(2, 13) == 12
    assert [n_order(a, 7) for a in range(1, 7)] == \
           [1, 3, 6, 3, 6, 2]
    assert n_order(5, 17) == 16
    assert n_order(17, 11) == n_order(6, 11)
    assert n_order(101, 119) == 6
    assert n_order(
        11, (10**50 + 151)**2
    ) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
    raises(ValueError, lambda: n_order(6, 9))

    assert is_primitive_root(2, 7) is False
    assert is_primitive_root(3, 8) is False
    assert is_primitive_root(11, 14) is False
    assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
    raises(ValueError, lambda: is_primitive_root(3, 6))

    assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
       None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
       None, 2, 7, 2, None, 2, None]

    for p in primerange(3, 100):
        it = _primitive_root_prime_iter(p)
        assert len(list(it)) == totient(totient(p))
    assert primitive_root(97) == 5
    assert primitive_root(97**2) == 5
    assert primitive_root(40487) == 5
    # note that primitive_root(40487) + 40487 = 40492 is a primitive root
    # of 40487**2, but it is not the smallest
    assert primitive_root(40487**2) == 10
    assert primitive_root(82) == 7
    p = 10**50 + 151
    assert primitive_root(p) == 11
    assert primitive_root(2 * p) == 11
    assert primitive_root(p**2) == 11
    raises(ValueError, lambda: primitive_root(-3))

    assert is_quad_residue(3, 7) is False
    assert is_quad_residue(10, 13) is True
    assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
    assert is_quad_residue(207, 251) is True
    assert is_quad_residue(0, 1) is True
    assert is_quad_residue(1, 1) is True
    assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
    assert is_quad_residue(1, 4) is True
    assert is_quad_residue(2, 27) is False
    assert is_quad_residue(13122380800, 13604889600) is True
    assert [j for j in range(14) if is_quad_residue(j, 14)] == \
           [0, 1, 2, 4, 7, 8, 9, 11]
    raises(ValueError, lambda: is_quad_residue(1.1, 2))
    raises(ValueError, lambda: is_quad_residue(2, 0))

    assert quadratic_residues(12) == [0, 1, 4, 9]
    assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
    assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
      [1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]

    assert list(sqrt_mod_iter(6, 2)) == [0]
    assert sqrt_mod(3, 13) == 4
    assert sqrt_mod(3, -13) == 4
    assert sqrt_mod(6, 23) == 11
    assert sqrt_mod(345, 690) == 345

    for p in range(3, 100):
        d = defaultdict(list)
        for i in range(p):
            d[pow(i, 2, p)].append(i)
        for i in range(1, p):
            it = sqrt_mod_iter(i, p)
            v = sqrt_mod(i, p, True)
            if v:
                v = sorted(v)
                assert d[i] == v
            else:
                assert not d[i]

    assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
    assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
    assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
    assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
    assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
            126, 144, 153, 171, 180, 198, 207, 225, 234]
    assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
            333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
    assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
            981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]

    for a, p in [(26214400, 32768000000), (26214400, 16384000000),
                 (262144, 1048576), (87169610025, 163443018796875),
                 (22315420166400, 167365651248000000)]:
        assert pow(sqrt_mod(a, p), 2, p) == a

    n = 70
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 2)
    it = sqrt_mod_iter(a, p)
    for i in range(10):
        assert pow(next(it), 2, p) == a
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 3)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a
    n = 100
    a, p = 5**2 * 3**n * 2**n, 5**6 * 3**(n + 1) * 2**(n + 1)
    it = sqrt_mod_iter(a, p)
    for i in range(2):
        assert pow(next(it), 2, p) == a

    assert type(next(sqrt_mod_iter(9, 27))) is int
    assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
    assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))

    assert is_nthpow_residue(2, 1, 5)

    #issue 10816
    assert is_nthpow_residue(1, 0, 1) is False
    assert is_nthpow_residue(1, 0, 2) is True
    assert is_nthpow_residue(3, 0, 2) is False
    assert is_nthpow_residue(0, 1, 8) is True
    assert is_nthpow_residue(2, 3, 2) is False
    assert is_nthpow_residue(2, 3, 9) is False
    assert is_nthpow_residue(3, 5, 30) is True
    assert is_nthpow_residue(21, 11, 20) is True
    assert is_nthpow_residue(7, 10, 20) is False
    assert is_nthpow_residue(5, 10, 20) is True
    assert is_nthpow_residue(3, 10, 48) is False
    assert is_nthpow_residue(1, 10, 40) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(1, 10, 24) is True
    assert is_nthpow_residue(3, 10, 24) is False
    assert is_nthpow_residue(2, 10, 48) is False
    assert is_nthpow_residue(81, 3, 972) is False
    assert is_nthpow_residue(243, 5, 5103) is True
    assert is_nthpow_residue(243, 3, 1240029) is False
    x = set([pow(i, 56, 1024) for i in range(1024)])
    assert set([a for a in range(1024) if is_nthpow_residue(a, 56, 1024)]) == x
    x = set([pow(i, 256, 2048) for i in range(2048)])
    assert set([a for a in range(2048)
                if is_nthpow_residue(a, 256, 2048)]) == x
    x = set([pow(i, 11, 324000) for i in range(1000)])
    assert [is_nthpow_residue(a, 11, 324000) for a in x]
    x = set([pow(i, 17, 22217575536) for i in range(1000)])
    assert [is_nthpow_residue(a, 17, 22217575536) for a in x]
    assert is_nthpow_residue(676, 3, 5364)
    assert is_nthpow_residue(9, 12, 36)
    assert is_nthpow_residue(32, 10, 41)
    assert is_nthpow_residue(4, 2, 64)
    assert is_nthpow_residue(31, 4, 41)
    assert not is_nthpow_residue(2, 2, 5)
    assert is_nthpow_residue(8547, 12, 10007)
    assert nthroot_mod(1801, 11, 2663) == 44
    for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
                    (26118163, 1303, 33333347), (1499, 7, 2663),
                    (595, 6, 2663), (1714, 12, 2663), (28477, 9, 33343)]:
        r = nthroot_mod(a, q, p)
        assert pow(r, q, p) == a
    assert nthroot_mod(11, 3, 109) is None
    raises(NotImplementedError, lambda: nthroot_mod(16, 5, 36))
    raises(NotImplementedError, lambda: nthroot_mod(9, 16, 36))

    for p in primerange(5, 100):
        qv = range(3, p, 4)
        for q in qv:
            d = defaultdict(list)
            for i in range(p):
                d[pow(i, q, p)].append(i)
            for a in range(1, p - 1):
                res = nthroot_mod(a, q, p, True)
                if d[a]:
                    assert d[a] == res
                else:
                    assert res is None

    assert legendre_symbol(5, 11) == 1
    assert legendre_symbol(25, 41) == 1
    assert legendre_symbol(67, 101) == -1
    assert legendre_symbol(0, 13) == 0
    assert legendre_symbol(9, 3) == 0
    raises(ValueError, lambda: legendre_symbol(2, 4))

    assert jacobi_symbol(25, 41) == 1
    assert jacobi_symbol(-23, 83) == -1
    assert jacobi_symbol(3, 9) == 0
    assert jacobi_symbol(42, 97) == -1
    assert jacobi_symbol(3, 5) == -1
    assert jacobi_symbol(7, 9) == 1
    assert jacobi_symbol(0, 3) == 0
    assert jacobi_symbol(0, 1) == 1
    assert jacobi_symbol(2, 1) == 1
    assert jacobi_symbol(1, 3) == 1
    raises(ValueError, lambda: jacobi_symbol(3, 8))

    assert mobius(13 * 7) == 1
    assert mobius(1) == 1
    assert mobius(13 * 7 * 5) == -1
    assert mobius(13**2) == 0
    raises(ValueError, lambda: mobius(-3))

    p = Symbol('p', integer=True, positive=True, prime=True)
    x = Symbol('x', positive=True)
    i = Symbol('i', integer=True)
    assert mobius(p) == -1
    raises(TypeError, lambda: mobius(x))
    raises(ValueError, lambda: mobius(i))

    assert _discrete_log_trial_mul(587, 2**7, 2) == 7
    assert _discrete_log_trial_mul(941, 7**18, 7) == 18
    assert _discrete_log_trial_mul(389, 3**81, 3) == 81
    assert _discrete_log_trial_mul(191, 19**123, 19) == 123
    assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
    assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
    assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
    assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
    assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
    assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
    assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
    assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
    assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
    assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
    assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
    assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
    assert discrete_log(587, 2**9, 2) == 9
    assert discrete_log(2456747, 3**51, 3) == 51
    assert discrete_log(32942478, 11**127, 11) == 127
    assert discrete_log(432751500361, 7**324, 7) == 324
Example #11
0
"""
Project Euler Problem 72:

Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper
fraction.

If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that there are 21 elements in this set.

How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?
"""

# The number of coprimes to n less than n is phi(n) where phi(n) is Euler's totient function
# Therefore this problem asks for sum_{i=2}^1000000 phi(i)
# sum_{i=1}^n phi(i) = (1 + sum_{i=1}^n mu(n)*floor(n/i)^2) / 2, then subtract 1 to remove 1/1 as a possibility
# (sum_{i=1}^{10^6} phi(i) was computed at https://oeis.org/A064018, but this works too)
# Runs in ~3 minutes and consumes ~1 GB of RAM

from sympy.ntheory import mobius

n = 1000000

print((sum(
  mobius(i) * (n // i)**2
  for i in range(1, n + 1)
) + 1) // 2 - 1)