Example #1
0
def test_Modules():
    from sympy.polys.domains import QQ
    from sympy.polys.agca import homomorphism

    R = QQ.old_poly_ring(x, y)
    F = R.free_module(2)
    M = F.submodule([x, y], [1, x**2])

    assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
    assert latex(M) == \
        r"\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>"

    I = R.ideal(x**2, y)
    assert latex(I) == r"\left< {x^{2}},{y} \right>"

    Q = F / M
    assert latex(
        Q
    ) == r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}"
    assert latex(Q.submodule([1, x**3/2], [2, y])) == \
        r"\left< {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}},{{\left[ {2},{y} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}} \right>"

    h = homomorphism(
        QQ.old_poly_ring(x).free_module(2),
        QQ.old_poly_ring(x).free_module(2), [0, 0])

    assert latex(
        h
    ) == r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : {{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
Example #2
0
def test_conversion():
    L = QQ.old_poly_ring(x, y, order="ilex")
    G = QQ.old_poly_ring(x, y)

    assert L.convert(x) == L.convert(G.convert(x), G)
    assert G.convert(x) == G.convert(L.convert(x), L)
    raises(CoercionFailed, lambda: G.convert(L.convert(1/(1 + x)), L))
Example #3
0
def test_conversion():
    L = QQ.old_poly_ring(x, y, order="ilex")
    G = QQ.old_poly_ring(x, y)

    assert L.convert(x) == L.convert(G.convert(x), G)
    assert G.convert(x) == G.convert(L.convert(x), L)
    raises(CoercionFailed, lambda: G.convert(L.convert(1/(1 + x)), L))
Example #4
0
def test_Modules():
    from sympy.polys.domains import QQ
    from sympy.polys.agca import homomorphism

    R = QQ.old_poly_ring(x, y)
    F = R.free_module(2)
    M = F.submodule([x, y], [1, x ** 2])

    assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
    assert latex(M) == r"\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>"

    I = R.ideal(x ** 2, y)
    assert latex(I) == r"\left< {x^{2}},{y} \right>"

    Q = F / M
    assert (
        latex(Q)
        == r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}"
    )
    assert (
        latex(Q.submodule([1, x ** 3 / 2], [2, y]))
        == r"\left< {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}},{{\left[ {2},{y} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}} \right>"
    )

    h = homomorphism(QQ.old_poly_ring(x).free_module(2), QQ.old_poly_ring(x).free_module(2), [0, 0])

    assert (
        latex(h)
        == r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : {{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
    )
Example #5
0
def test_GlobalPolynomialRing_convert():
    K1 = QQ.old_poly_ring(x)
    K2 = QQ[x]
    assert K1.convert(x) == K1.convert(K2.convert(x), K2)
    assert K2.convert(x) == K2.convert(K1.convert(x), K1)

    K1 = QQ.old_poly_ring(x, y)
    K2 = QQ[x]
    assert K1.convert(x) == K1.convert(K2.convert(x), K2)
    #assert K2.convert(x) == K2.convert(K1.convert(x), K1)

    K1 = ZZ.old_poly_ring(x, y)
    K2 = QQ[x]
    assert K1.convert(x) == K1.convert(K2.convert(x), K2)
Example #6
0
def test_QuotientRing():
    from sympy.polys.domains import QQ
    R = QQ.old_poly_ring(x) / [x**2 + 1]

    assert latex(
        R) == r"\frac{\mathbb{Q}\left[x\right]}{\left< {x^{2} + 1} \right>}"
    assert latex(R.one) == r"{1} + {\left< {x^{2} + 1} \right>}"
Example #7
0
def test_QuotientRing():
    from sympy.polys.domains import QQ
    R = QQ.old_poly_ring(x)/[x**2 + 1]

    assert latex(
        R) == r"\frac{\mathbb{Q}\left[x\right]}{\left< {x^{2} + 1} \right>}"
    assert latex(R.one) == r"{1} + {\left< {x^{2} + 1} \right>}"
Example #8
0
def test_globalring():
    Qxy = QQ.old_frac_field(x, y)
    R = QQ.old_poly_ring(x, y)
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) not in R
    assert Y in R
    assert X.ring == R
    assert X * (Y**2 + 1) == R.convert(x * (y**2 + 1))
    assert X * y == X * Y == R.convert(x * y) == x * Y
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X - y == X - Y == R.convert(x - y) == x - Y
    assert X + 1 == R.convert(x + 1)
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(ExactQuotientFailed, lambda: x/Y)
    raises(ExactQuotientFailed, lambda: X/y)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    assert R.from_FractionField(Qxy.convert(x)/y, Qxy) is None

    assert R._sdm_to_vector(R._vector_to_sdm([X, Y], R.order), 2) == [X, Y]
Example #9
0
def test_localring():
    Qxy = QQ.old_frac_field(x, y)
    R = QQ.old_poly_ring(x, y, order="ilex")
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) in R
    assert Y in R
    assert X.ring == R
    assert X*(Y**2 + 1)/(1 + X) == R.convert(x*(y**2 + 1)/(1 + x))
    assert X*y == X*Y
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(ExactQuotientFailed, lambda: x/Y)
    raises(ExactQuotientFailed, lambda: X/y)
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X - y == X - Y == R.convert(x - y) == x - Y
    assert X + 1 == R.convert(x + 1)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    raises(CoercionFailed, lambda: R.from_FractionField(Qxy.convert(x)/y, Qxy))
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(NotReversible, lambda: X.invert())

    assert R._sdm_to_vector(
        R._vector_to_sdm([X/(X + 1), Y/(1 + X*Y)], R.order), 2) == \
        [X*(1 + X*Y), Y*(1 + X)]
Example #10
0
def test_localring():
    Qxy = QQ.old_frac_field(x, y)
    R = QQ.old_poly_ring(x, y, order="ilex")
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) in R
    assert Y in R
    assert X.ring == R
    assert X*(Y**2 + 1)/(1 + X) == R.convert(x*(y**2 + 1)/(1 + x))
    assert X*y == X*Y
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(ExactQuotientFailed, lambda: x/Y)
    raises(ExactQuotientFailed, lambda: X/y)
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X - y == X - Y == R.convert(x - y) == x - Y
    assert X + 1 == R.convert(x + 1)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    raises(CoercionFailed, lambda: R.from_FractionField(Qxy.convert(x)/y, Qxy))
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(NotReversible, lambda: X.invert())

    assert R._sdm_to_vector(
        R._vector_to_sdm([X/(X + 1), Y/(1 + X*Y)], R.order), 2) == \
        [X*(1 + X*Y), Y*(1 + X)]
Example #11
0
def test_globalring():
    Qxy = QQ.old_frac_field(x, y)
    R = QQ.old_poly_ring(x, y)
    X = R.convert(x)
    Y = R.convert(y)

    assert x in R
    assert 1/x not in R
    assert 1/(1 + x) not in R
    assert Y in R
    assert X.ring == R
    assert X * (Y**2 + 1) == R.convert(x * (y**2 + 1))
    assert X * y == X * Y == R.convert(x * y) == x * Y
    assert X + y == X + Y == R.convert(x + y) == x + Y
    assert X - y == X - Y == R.convert(x - y) == x - Y
    assert X + 1 == R.convert(x + 1)
    raises(ExactQuotientFailed, lambda: X/Y)
    raises(ExactQuotientFailed, lambda: x/Y)
    raises(ExactQuotientFailed, lambda: X/y)
    assert X**2 / X == X

    assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
    assert R.from_FractionField(Qxy.convert(x), Qxy) == X
    assert R.from_FractionField(Qxy.convert(x)/y, Qxy) is None

    assert R._sdm_to_vector(R._vector_to_sdm([X, Y], R.order), 2) == [X, Y]
Example #12
0
def test_units():
    R = QQ.old_poly_ring(x)
    assert R.is_unit(R.convert(1))
    assert R.is_unit(R.convert(2))
    assert not R.is_unit(R.convert(x))
    assert not R.is_unit(R.convert(1 + x))

    R = QQ.old_poly_ring(x, order='ilex')
    assert R.is_unit(R.convert(1))
    assert R.is_unit(R.convert(2))
    assert not R.is_unit(R.convert(x))
    assert R.is_unit(R.convert(1 + x))

    R = ZZ.old_poly_ring(x)
    assert R.is_unit(R.convert(1))
    assert not R.is_unit(R.convert(2))
    assert not R.is_unit(R.convert(x))
    assert not R.is_unit(R.convert(1 + x))
Example #13
0
def test_units():
    R = QQ.old_poly_ring(x)
    assert R.is_unit(R.convert(1))
    assert R.is_unit(R.convert(2))
    assert not R.is_unit(R.convert(x))
    assert not R.is_unit(R.convert(1 + x))

    R = QQ.old_poly_ring(x, order='ilex')
    assert R.is_unit(R.convert(1))
    assert R.is_unit(R.convert(2))
    assert not R.is_unit(R.convert(x))
    assert R.is_unit(R.convert(1 + x))

    R = ZZ.old_poly_ring(x)
    assert R.is_unit(R.convert(1))
    assert not R.is_unit(R.convert(2))
    assert not R.is_unit(R.convert(x))
    assert not R.is_unit(R.convert(1 + x))
Example #14
0
def _create_table(table):
    """
    Creates the look-up table. For a similar implementation
    see meijerint._create_lookup_table.
    """

    def add(formula, annihilator, arg, x0=0, y0=[]):
        """
        Adds a formula in the dictionary
        """
        table.setdefault(_mytype(formula, x_1), []).append((formula,
            HolonomicFunction(annihilator, arg, x0, y0)))

    R = QQ.old_poly_ring(x_1)
    _, Dx = DifferentialOperators(R, 'Dx')

    from sympy import (sin, cos, exp, log, erf, sqrt, pi,
        sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi)

    # add some basic functions
    add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
    add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
    add(exp(x_1), Dx - 1, x_1, 0, 1)
    add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])

    add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
    add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
    add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])

    add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
    add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])

    add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)

    add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
    add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)

    add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
Example #15
0
def _convert_poly_rat(func, x, initcond=True):
    """Converts Polynomials and Rationals to Holonomic.
    """

    ispoly = func.is_polynomial()
    if not ispoly:
        israt = func.is_rational_function()
    else:
        israt = True

    if not (ispoly or israt):
        return None

    R = QQ.old_poly_ring(x)
    _, Dx = DifferentialOperators(R, 'Dx')

    if ispoly:
        # differential equation satisfied by polynomial
        sol = func * Dx - func.diff()
        sol = _normalize(sol.listofpoly, sol.parent, negative=False)

    elif israt:
        order = 1
        p, q = func.as_numer_denom()
        # differential equation satisfied by rational
        sol = p * q * Dx + p * q.diff() - q * p.diff()
        sol = _normalize(sol.listofpoly, sol.parent, negative=False)

    if not initcond:
        return HolonomicFunction(sol, x)

    x0 = 0
    y0 = _find_conditions(func, x, x0, sol.order)
    while not y0:
        x0 += 1
        y0 = _find_conditions(func, x, x0, sol.order)

    return HolonomicFunction(sol, x, x0, y0)
Example #16
0
def from_hyper(func, x0=0, evalf=False):
    """
    Converts Hypergeometric Function to Holonomic.
    func is the Hypergeometric Function and x0 be the point at
    which initial conditions are required.
    Examples
    =======

    >>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators
    >>> from sympy import symbols, hyper, S
    >>> x = symbols('x')
    >>> from_hyper(hyper([], [S(3)/2], x**2/4))
    HolonomicFunction((-x) + (2)Dx + (x)Dx**2, x), f(1) = sinh(1) , f'(1) = -sinh(1) + cosh(1)

    """

    a = func.ap
    b = func.bq
    z = func.args[2]
    x = z.atoms(Symbol).pop()
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    r1 = 1
    for i in range(len(a)):
        r1 = r1 * (x * Dx + a[i])
    r2 = Dx
    for i in range(len(b)):
        r2 = r2 * (x * Dx + b[i] - 1)
    sol = r1 - r2

    simp = hyperexpand(func)

    if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
        return HolonomicFunction(sol, x).composition(z)

    def _find_conditions(simp, x, x0, order, evalf=False):
        y0 = []
        for i in range(order):
            if evalf:
                val = simp.subs(x, x0).evalf()
            else:
                val = simp.subs(x, x0)
            if isinstance(val, Infinity) or isinstance(val, NaN):
                return None
            y0.append(val)
            simp = simp.diff()
        return y0

    if not isinstance(simp, hyper):
        y0 = _find_conditions(simp, x, x0, sol.order)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order)

        return HolonomicFunction(sol, x, x0, y0).composition(z)
    if isinstance(simp, hyper):
        x0 = 1
        y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        return HolonomicFunction(sol, x, x0, y0).composition(z)

    return HolonomicFunction(sol, x).composition(z)
Example #17
0
def test_PolynomialRingBase():
    from sympy.polys.domains import QQ
    assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
    assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
        r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
Example #18
0
def test_PolynomialRingBase():
    from sympy.polys.domains import QQ
    assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
    assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
        r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
Example #19
0
def from_hyper(func, x0=0, evalf=False):
    """
    Converts Hypergeometric Function to Holonomic.
    func is the Hypergeometric Function and x0 be the point at
    which initial conditions are required.

    Examples
    =======

    >>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators
    >>> from sympy import symbols, hyper, S
    >>> x = symbols('x')
    >>> from_hyper(hyper([], [S(3)/2], x**2/4))
    HolonomicFunction((-x) + (2)Dx + (x)Dx**2, x), f(1) = sinh(1), f'(1) = -sinh(1) + cosh(1)
    """

    a = func.ap
    b = func.bq
    z = func.args[2]
    x = z.atoms(Symbol).pop()
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')

    # generalized hypergeometric differential equation
    r1 = 1
    for i in range(len(a)):
        r1 = r1 * (x * Dx + a[i])
    r2 = Dx
    for i in range(len(b)):
        r2 = r2 * (x * Dx + b[i] - 1)
    sol = r1 - r2

    simp = hyperexpand(func)

    if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
        return HolonomicFunction(sol, x).composition(z)

    def _find_conditions(simp, x, x0, order, evalf=False):
        y0 = []
        for i in range(order):
            if evalf:
                val = simp.subs(x, x0).evalf()
            else:
                val = simp.subs(x, x0)
            # return None if it is Infinite or NaN
            if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN):
                return None
            y0.append(val)
            simp = simp.diff()
        return y0

    # if the function is known symbolically
    if not isinstance(simp, hyper):
        y0 = _find_conditions(simp, x, x0, sol.order)
        while not y0:
            # if values don't exist at 0, then try to find initial
            # conditions at 1. If it doesn't exist at 1 too then
            # try 2 and so on.
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order)

        return HolonomicFunction(sol, x).composition(z, x0, y0)

    if isinstance(simp, hyper):
        x0 = 1
        # use evalf if the function can't be simpified
        y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        return HolonomicFunction(sol, x).composition(z, x0, y0)

    return HolonomicFunction(sol, x).composition(z)
Example #20
0
def test_build_order():
    R = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y)))
    assert R.order((1, 5)) == ((1,), (-5,))
Example #21
0
def from_meijerg(func, x0=0, evalf=False):
    """
    Converts a Meijer G-function to Holonomic.
    func is the Hypergeometric Function and x0 be the point at
    which initial conditions are required.

    Examples
    =======

    >>> from sympy.holonomic.holonomic import from_meijerg, DifferentialOperators
    >>> from sympy import symbols, meijerg, S
    >>> x = symbols('x')
    >>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
    HolonomicFunction((1) + (1)Dx**2, x), f(0) = 0, f'(0) = 1/sqrt(pi)
    """

    a = func.ap
    b = func.bq
    n = len(func.an)
    m = len(func.bm)
    p = len(a)
    z = func.args[2]
    x = z.atoms(Symbol).pop()
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')

    # compute the differential equation satisfied by the
    # Meijer G-function.
    mnp = (-1)**(m + n - p)
    r1 = x * mnp

    for i in range(len(a)):
        r1 *= x * Dx + 1 - a[i]

    r2 = 1

    for i in range(len(b)):
        r2 *= x * Dx - b[i]

    sol = r1 - r2

    simp = hyperexpand(func)

    if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
        return HolonomicFunction(sol, x).composition(z)

    def _find_conditions(simp, x, x0, order, evalf=False):
        y0 = []
        for i in range(order):
            if evalf:
                val = simp.subs(x, x0).evalf()
            else:
                val = simp.subs(x, x0)
            if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN):
                return None
            y0.append(val)
            simp = simp.diff()
        return y0

    # computing initial conditions
    if not isinstance(simp, meijerg):
        y0 = _find_conditions(simp, x, x0, sol.order)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order)

        return HolonomicFunction(sol, x).composition(z, x0, y0)

    if isinstance(simp, meijerg):
        x0 = 1
        y0 = _find_conditions(simp, x, x0, sol.order, evalf)
        while not y0:
            x0 += 1
            y0 = _find_conditions(simp, x, x0, sol.order, evalf)

        return HolonomicFunction(sol, x).composition(z, x0, y0)

    return HolonomicFunction(sol, x).composition(z)
Example #22
0
def test_build_order():
    R = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y)))
    assert R.order((1, 5)) == ((1,), (-5,))