Example #1
0
    def filter(self, dataframe=None, store=True):

        # Retrieve the dataframe
        if dataframe is None:
            dataframe = self.spots

        # Connect positions together
        dataframe = tp.link(
            dataframe,
            self.search_range,
            memory=self.memory,
            adaptive_stop=self.adaptive_stop,
            adaptive_step=self.adaptive_step,
            neighbor_strategy=self.neighbor_strategy,
            link_strategy=self.link_strategy,
        )

        # Remove spurious trajectory
        if self.filter_stubs is not None:
            dataframe = tp.filtering.filter_stubs(dataframe,
                                                  threshold=self.filter_stubs)

        # Regenerate the index
        dataframe = dataframe.reset_index(drop=True)

        # Store in the instance
        if store:
            self.tracks = deepcopy(dataframe)

        return dataframe
Example #2
0
    def workerFunc(locData: Optional[pd.DataFrame], searchRange: float,
                   memory: int) -> Union[pd.DataFrame, None]:
        """Perform tracking

        Parameters
        ----------
        locData
            Localization data for tracking
        searchRange
            `search_range` parameter to :py:func:`trackpy.link`
        memory
            `memory` parameter to :py:func:`trackpy.link`

        Returns
        -------
        Tracked data
        """
        if locData is None:
            return None
        if not locData.size:
            ret = locData.copy()
            ret["particle"] = []
            return ret
        trackpy.quiet()
        return trackpy.link(locData, search_range=searchRange, memory=memory)
Example #3
0
def time_series_analysis(particles, max_dist=1, memory=3, properties=['area']):
    """
    Perform tracking of particles for times series data.

    Parameters
    ----------
    particles : Particle_list object.
    max_dist : int
        The maximum distance between the same particle in subsequent images.
    memory : int
        The number of frames to remember particles over.
    properties : list
        A list of particle properties to track over the time series.

    Returns
    -------
    Pandas DataFrame of tracjectories.

    """
    df = pd.DataFrame(columns=['y', 'x'] + properties + ['frame'])
    for particle in particles.list:
        pd_dict = {
            'x': particle.properties['x']['value'],
            'y': particle.properties['y']['value']
        }
        for property in properties:
            pd_dict.update({property: particle.properties[property]['value']})
        pd_dict.update({'frame': particle.properties['frame']['value']})
        df = df.append([pd_dict])

    t = trackpy.link(df, max_dist, memory=memory)
    return (t)
Example #4
0
    def test_link_memory(self):
        expected = pd.DataFrame(self.coords_link,
                                columns=self.pos_columns + ['frame'])
        expected['frame'] = expected['frame'].astype(np.int)
        actual = tp.link(expected, memory=self.memory, **self.link_params)
        expected['particle'] = self.expected_link_memory

        assert_traj_equal(actual, expected)
    def test_link_memory(self):
        expected = pd.DataFrame(self.coords_link,
                                columns=self.pos_columns + ['frame'])
        expected['frame'] = expected['frame'].astype(np.int)
        actual = tp.link(expected, memory=self.memory, **self.link_params)
        expected['particle'] = self.expected_link_memory

        assert_traj_equal(actual, expected)
Example #6
0
def localize(video, method='tf', background=None, dark_count=31):
    '''
    Returns DataFrame of particle parameters in each frame
    of a video linked with their trajectory index
    
    Args:
        video: video filename
    Keywords:
        background: background image for normalization
        dark_count: dark count of camera
    '''
    if method == 'tf':
        trk = tracker.tracker()
    # Create VideoCapture to read video
    cap = cv2.VideoCapture(video)
    # Initialize components to build overall dataset.
    frame_no = 0
    data = []
    while(cap.isOpened()):
        ret, image = cap.read()
        if ret is False:
            break
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # Normalize image
        if background is not None:
            image = (image - dark_count) / (background - dark_count)
        # Find features in each frame
        if method == 'tf':
            features = trk.predict(inflate(image))
        elif method == 'oat':
            features, circ = oat(image, frame_no)
        else:
            raise(ValueError("method must be either \'oat\' or \'tf\'"))
        for feature in features:
            # Build dataset over all frames.
            feature = np.append(feature, frame_no)
            data.append(feature)
        # Advance frame_no
        frame_no += 1
    cap.release()
    # Put data set in DataFrame and link
    result_df = pd.DataFrame(columns=['x', 'y', 'w', 'h', 'frame'], data=data)
    linked_df = tp.link(result_df, search_range=5, pos_columns=['y', 'x'])
    return linked_df
Example #7
0
    def link(self, search_range: int = 5, memory: int = 2, **configs):
        # Make sure particles have been located
        if self.locations is None:
            print(' ! No locations found.')
            return

        configs['search_range'] = search_range
        configs['memory'] = memory

        # self.link_config has the highest priority
        configs.update(self.link_configs)

        # Link locations
        self.trajectories = tp.link(self.locations, **configs)
        console.show_status('Linking completed. Configurations:')
        console.supplement(configs)

        self.effective_link_config = configs

        self._draw()
Example #8
0
def get_link(locs, search_range, memory):
    '''
    Apply trackpy.link_df() (`trackpy`_) on localizations with given search_range and memory to get trajectories sorted by group and frame.
    All tracks shorter or equal to 10 frames are removed.
    
    Args:
        locs(pandas.DataFrame):        Localizations as generated by `picasso.localize`_  as pandas.DataFrame
        info(picasso.io):              Info _locs.yaml to _locs.hdf5 localizations as list of dictionaries.
        search_range(int):             Localizations within search_range (spatial) will be connected to tracks (see trackpy.link_df)
        memory(int):                   Localizations within memory (temporal) will be connected to tracks (see trackpy.link_df)
        
    Return:
        pandas.DataFrame:
            Linked trajectories using trackpy.link().
            
                - ``group`` instead of ``particle`` column for `picasso.render`_ compatibility.
                - All trajectories with <= 10 localizations are already removed!!  
    '''
    ### Link locs
    link = tp.link(
        locs,
        search_range,
        memory=memory,
        link_strategy='hybrid',
    )
    ### Sort and rename
    print('Sorting by [group,frame] ... ')
    link.sort_values(by=['particle', 'frame'], ascending=True, inplace=True)
    link = link.rename(
        columns={'particle':
                 'group'})  # Rename to groups for picasso compatibility

    ### Throw away tracks with only 10 localizations
    link = drop_shorttracks(link)

    return link
Example #9
0
 def link(self, search_range=15, memory=3):
     self.data.df = tp.link(self.data.df.reset_index(),
                            search_range,
                            memory=memory).set_index('frame')
     self.data.save()
Example #10
0
 def link(self, *args, **kwargs):
     kwargs.update(self.linker_opts)
     return tp.link(*args, **kwargs)
Example #11
0
import filehandling
from particletracking import dataframes
import trackpy as tp

# direc1 = filehandling.open_directory(initialdir='/media/data/Data')
# files1 = filehandling.get_directory_filenames(direc1+'/*.hdf5')
#
# direc2 = filehandling.open_directory(initialdir='/media/data/Data')
# files2 = filehandling.get_directory_filenames(direc1+'/*.hdf5')
#
# files = files1 + files2

files = ["/media/data/Data/FirstOrder/PhaseDiagram/FlatPlate2Feb2021/2000.hdf5",]

for file in files:
    with dataframes.DataStore(file) as data:
        d = data.df.copy()
        print(d.head())
    d = d.reset_index()
    print(d.head())
    d = tp.link(d, d.r.mean())
Example #12
0
 def link(self, *args, **kwargs):
     kwargs.update(self.linker_opts)
     return tp.link(*args, **kwargs)
Example #13
0
link_distance = tracking_setting['link_distance']
memory = tracking_setting['memory']
adaptive_step = tracking_setting['adaptive_step']
adaptive_stop = tracking_setting['adaptive_stop']

df_data_tracked = pd.DataFrame()
for pos in pos_list:
    print("tracking nuclei for Pos %d...." % int(pos))

    df_select = df_data.loc[df_data['Pos'] == pos].copy().reset_index(
        drop=True)

    df_select = tp.link(df_select,
                        link_distance,
                        pos_columns=['cent_x', 'cent_y'],
                        t_column='frame',
                        memory=memory,
                        adaptive_step=adaptive_step,
                        adaptive_stop=adaptive_stop)
    df_select = df_select.rename(columns={'particle': 'ID'})
    df_select = df_select.sort_values(['frame', 'ID'])
    df_select['ID'] = df_select['ID'] + 1  # to make it start from 1

    df_data_tracked = pd.concat((df_data_tracked, df_select))

    print("Done!\n")

df_data = df_data_tracked.reset_index(drop=True)

del df_data_tracked
del df_select
Example #14
0
path = r'C:\Users\elpresidente_2\Desktop\MatlabPA14\Particle Tracking\cropped_movie'
frames = pims.open(path + r'\*.tif')
print(type(frames))
proc_frames = []
# First detect particles in each frame
for frame in frames:
    frame_ = cv2.GaussianBlur(frame, (5, 5), 0)
    frame = cv2.adaptiveThreshold(frame_, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                  cv2.THRESH_BINARY, 9, 2)
    proc_frames.append(frame)

loc = tp.batch(proc_frames, 13, invert=True,
               minmass=2000)  # Found minmass from histogram

t = tp.link(loc, 9, memory=4)
t1 = tp.filter_stubs(t, 20)
plt.figure()
tp.plot_traj(t1)
plt.show()

#tp.annotate(f, frames[0])

#fig, ax = plt.subplots()
#ax.hist(f['mass'], bins=20)
#ax.set_xlabel('mass')
#ax.set_ylabel('count')
#plt.show()

#f = tp.locate(th3, 13, invert=True, minmass = 2000)
#tp.annotate(f, frame)
Example #15
0
dfn = os.path.join(output_dir, 'tracking.pickle')
if not os.path.exists(dfn):
    print("Tracking points...")
    import trackpy as tp
    # Open the 3D movie
    vol = open_3D_movie(mfn)

    # Identify the points in the volume
    data = tp.batch(vol, 5)
    # Note: the second parameter is the size in the frame.  In this case,
    #   5 is approximately right, but you would need to tweak for a different
    #   data set!

    # Link the particles into tracks
    data = tp.link(data, 10, memory=3)
    print(f'Found {data.particle.max()+1} particle tracks')

    # Find the physical coordinates.  These will appear as the columns "xc", "yc",
    # and "zc" in the data frame *after* you run this command, and will be in the
    # physical units of the data (i.e. L and not N)
    vol.distortion.update_data_frame(data)

    # Save to a pickle file
    with open(dfn, "wb") as f:
        pickle.dump(data, f)
else:
    print(f"Found existing track data, delete {dfn} to regenerate...")

with open(dfn, "rb") as f:
    data = pickle.load(f)
Example #16
0
    plt.figure()
    plot_blobs(substack[i][:, :, 2], blobs)
    plt.savefig(f'img_w_blobs_{i}.png')
    plt.close()
#%%
all_blob_data = []
for i, each in tqdm.tqdm(enumerate(allblobs)):
    blob_locs = pd.DataFrame(data={'x': [], 'y': [], 'frame': []})
    blob_locs['x'] = each[:, 1]
    blob_locs['y'] = each[:, 0]
    blob_locs['frame'] = i
    all_blob_data.append(blob_locs)
allblob_data = pd.concat(all_blob_data).reset_index(drop=True)

#%% Link blob blocations into tracks
linked = tp.link(allblob_data, search_range=30, memory=5)
filt_linked = tp.filter_stubs(linked)
by_pid = filt_linked.groupby('particle')


#%%
# Remove all tracks which are suspiciously stationary
def startend_travelled(track_df):
    if track_df.shape[0] < 2:
        return 0

    start_pos = track_df.loc[np.min(track_df.index), ['x', 'y']]
    end_pos = track_df.loc[np.max(track_df.index), ['x', 'y']]
    dist = np.sqrt(np.sum((end_pos - start_pos)**2))
    return dist
@author: MattiaV
"""

from MTM import matchTemplates
import cv2
from skimage import io
import matplotlib.pyplot as plt
from template_opt import Template90
from track import make_batch
import trackpy as tp

fileID = r"C:\Users\MattiaV\Desktop\università\Interships\DynamicsOfGranularShapes\ParticleTracking\Images\First frames\*.png"
images = io.imread_collection(fileID) 
temp_draft1 = images[0][320:433,520:650]
temp0 = temp_draft1[23:92,28:105]

Temp = Template90(temp0)
list_template = Temp.create()

features_match = {'N_obj':50, 'threshold':0.55, 'method':cv2.TM_CCOEFF_NORMED, 'max_overlap':0.22}
batch = make_batch(images, list_template, features_match)

t0 = tp.link(batch, 50, memory = 3)

t1 = tp.filter_stubs(t0, 4)
# Compare the number of particles in the unfiltered and filtered data.
print('Before:', t0['particle'].nunique())
print('After:', t1['particle'].nunique())

plt.figure()
tp.plot_traj(t1);
Example #18
0
v = pims.ImageSequence(impath)
# take reader that provides uint8!
assert np.issubdtype(v.dtype, np.uint8)
v0 = tp.invert_image(v[0])
v0_bp = tp.bandpass(v0, lshort=1, llong=9)
expected_find = tp.grey_dilation(v0, separation=9)
expected_find_bandpass = tp.grey_dilation(v0_bp, separation=9)
expected_refine = tp.refine_com(v0, v0_bp, radius=4,
                                coords=expected_find_bandpass)
expected_refine = expected_refine[expected_refine['mass'] >= 140]
expected_refine_coords = expected_refine[pos_columns].values
expected_locate = tp.locate(v0, diameter=9, minmass=140)
expected_locate_coords = expected_locate[pos_columns].values
df = tp.locate(v0, diameter=9)
df = df[(df['x'] < 64) & (df['y'] < 64)]
expected_characterize = df[pos_columns + char_columns].values

f = tp.batch(tp.invert_image(v), 9, minmass=140)
f_crop = f[(f['x'] < 320) & (f['x'] > 280) & (f['y'] < 280) & (f['x'] > 240)]
f_linked = tp.link(f_crop, search_range=5, memory=0)
f_linked_memory = tp.link(f_crop, search_range=5, memory=2)
link_coords = f_linked[pos_columns + ['frame']].values
expected_linked = f_linked['particle'].values
expected_linked_memory = f_linked_memory['particle'].values

np.savez_compressed(npzpath, expected_find, expected_find_bandpass,
                    expected_refine_coords, expected_locate_coords,
                    link_coords, expected_linked, expected_linked_memory,
                    expected_characterize)
Example #19
0
    def analyze(self, plot_gif=False):
        self.drifts = []
        self.v_drift_mag = []
        self.D_constants = []
        self.D_constants2 = []
        self.msd_slope = []
        self.msd_intercept = []
        self.mu_hats = []
        self.ed = []
        self.em = []
        self.frames = []
        self.dataframes = []

        for i, path in enumerate(self.SXM_PATH):
            frames = SXMReader(path)
            self.frames.append(frames)
            self.NM_PER_PIXEL = frames.meters_per_pixel * 1e9
            molecule_size, min_mass, max_mass, separation, min_size, max_ecc, adaptive_stop, search_range, _ = self.PARAMS[
                i]
            f = tp.batch(frames,
                         molecule_size,
                         minmass=min_mass,
                         separation=separation)
            t = tp.link(f,
                        search_range=search_range,
                        adaptive_stop=adaptive_stop)
            t1 = t[((t['mass'] > min_mass) & (t['size'] > min_size)
                    & (t['ecc'] < max_ecc)) & (t['mass'] < max_mass)]
            t2 = tp.filter_stubs(t, 3)
            # Compare the number of particles in the unfiltered and filtered data.
            print('Before:', t['particle'].nunique())
            print('After:', t2['particle'].nunique())

            if plot_gif == True:
                moviename = "{}-{}".format(min(self.fileranges[i]),
                                           max(self.fileranges[i]))
                singlemoviefolder = self.MOVIE_FOLDER + moviename + "/"
                if not os.path.exists(singlemoviefolder):
                    os.makedirs(singlemoviefolder)
                mpl.rcParams.update({'font.size': 14, 'font.weight': 'bold'})
                mpl.rc('image', origin='lower')
                mpl.rc('text', usetex=False)
                mpl.rc('text', color='orange')

                fns = []
                for j, frame in enumerate(frames):
                    fig = plt.figure(figsize=(5, 5))
                    tp.plot_traj(t2[(t2['frame'] <= j)],
                                 superimpose=frames[j],
                                 label=True)
                    fn = singlemoviefolder + "Image_{}.png".format(
                        self.fileranges[i][j])
                    fig.savefig(fn)
                    fns.append(fn)
                    ax = plt.gca()  # get the axis
                    ax.set_ylim(ax.get_ylim()[::-1])  # invert the axis
                    ax.xaxis.tick_top()  # and move the X-Axis
                    ax.yaxis.set_ticks(np.arange(0, 16, 1))  # set y-ticks
                    ax.yaxis.tick_left()  # remove right y-Ticks
                    plt.clf()
                mpl.rc('text', color='black')
                images = []
                for fn in fns:
                    images.append(imageio.imread(fn))
                imageio.mimsave(singlemoviefolder + moviename + '.gif',
                                images,
                                duration=0.5)
                self._cleanup_png(singlemoviefolder)

            # Compute drifts
            d = tp.compute_drift(t2)
            d.loc[0] = [0, 0]
            t3 = t2.copy()
            # Storing drifts
            self.drifts.append(d)

            # Method 1 of calculating D: variance of all displacements of Delta_t=1
            displacements = self._calculate_displacements(t3)
            self.D_constants.append(
                (displacements.dx.var() + displacements.dy.var()) /
                4)  # r^2 = x^2 + y^2 = 2Dt + 2Dt
            self.mu_hats.append(np.mean(displacements[['dx', 'dy']], axis=0))

            # Method 2 of calculating D: linear fit to MSD
            em = tp.emsd(t3,
                         frames.meters_per_pixel * 1e9,
                         self.DIFFUSION_TIME,
                         max_lagtime=len(frames),
                         detail=True)
            self.em.append(em)
            self.ed.append([em['<x>'], em['<y>']])
            result = linregress(em.index[:-8] * self.DIFFUSION_TIME,
                                em['msd'][:-8])
            self.msd_slope.append(result.slope)
            self.msd_intercept.append(result.intercept)
            self.D_constants2.append(result.slope / 4)

            # Store dataframe for future analysis
            self.dataframes.append(t3)
        self.v_drift_mag = np.linalg.norm(self.mu_hats, 2, axis=1)
Example #20
0
def linking_trackpy(features,
                    field_in,
                    dt,
                    dxy,
                    v_max=None,
                    d_max=None,
                    d_min=None,
                    subnetwork_size=None,
                    memory=0,
                    stubs=1,
                    time_cell_min=None,
                    order=1,
                    extrapolate=0,
                    method_linking='random',
                    adaptive_step=None,
                    adaptive_stop=None,
                    cell_number_start=1):
    """
    Function to perform the linking of features in trajectories
    
    Parameters:
    features:     pandas.DataFrame 
                  Detected features to be linked             
    v_max:        float
                  speed at which features are allowed to move
    dt:           float
                  time resolution of tracked features
    dxy:          float
                  grid spacing of input data
    memory        int
                  number of output timesteps features allowed to vanish for to be still considered tracked
    subnetwork_size int
                    maximim size of subnetwork for linking  
    method_detection: str('trackpy' or 'threshold')
                      flag choosing method used for feature detection
    method_linking:   str('predict' or 'random')
                      flag choosing method used for trajectory linking
    """
    #    from trackpy import link_df
    import trackpy as tp
    from copy import deepcopy
    #    from trackpy import filter_stubs
    #    from .utils import add_coordinates

    # calculate search range based on timestep and grid spacing
    if v_max is not None:
        search_range = int(dt * v_max / dxy)

    # calculate search range based on timestep and grid spacing
    if d_max is not None:
        search_range = int(d_max / dxy)

    # calculate search range based on timestep and grid spacing
    if d_min is not None:
        search_range = max(search_range, int(d_min / dxy))

    if time_cell_min:
        stubs = np.floor(time_cell_min / dt) + 1

    logging.debug('stubs: ' + str(stubs))

    logging.debug('start linking features into trajectories')

    #If subnetwork size given, set maximum subnet size
    if subnetwork_size is not None:
        tp.linking.Linker.MAX_SUB_NET_SIZE = subnetwork_size
    # deep copy to preserve features field:
    features_linking = deepcopy(features)

    if method_linking is 'random':
        #     link features into trajectories:
        trajectories_unfiltered = tp.link(features_linking,
                                          search_range=search_range,
                                          memory=memory,
                                          t_column='frame',
                                          pos_columns=['hdim_2', 'hdim_1'],
                                          adaptive_step=adaptive_step,
                                          adaptive_stop=adaptive_stop,
                                          neighbor_strategy='KDTree',
                                          link_strategy='auto')
    elif method_linking is 'predict':

        pred = tp.predict.NearestVelocityPredict(span=1)
        trajectories_unfiltered = pred.link_df(
            features_linking,
            search_range=search_range,
            memory=memory,
            pos_columns=['hdim_1', 'hdim_2'],
            t_column='frame',
            neighbor_strategy='KDTree',
            link_strategy='auto',
            adaptive_step=adaptive_step,
            adaptive_stop=adaptive_stop
            #                                 copy_features=False, diagnostics=False,
            #                                 hash_size=None, box_size=None, verify_integrity=True,
            #                                 retain_index=False
        )
    else:
        raise ValueError('method_linking unknown')

        # Filter trajectories to exclude short trajectories that are likely to be spurious


#    trajectories_filtered = filter_stubs(trajectories_unfiltered,threshold=stubs)
#    trajectories_filtered=trajectories_filtered.reset_index(drop=True)

# Reset particle numbers from the arbitray numbers at the end of the feature detection and linking to consecutive cell numbers
# keep 'particle' for reference to the feature detection step.
    trajectories_unfiltered['cell'] = None
    for i_particle, particle in enumerate(
            pd.Series.unique(trajectories_unfiltered['particle'])):
        cell = int(i_particle + cell_number_start)
        trajectories_unfiltered.loc[trajectories_unfiltered['particle'] ==
                                    particle, 'cell'] = cell
    trajectories_unfiltered.drop(columns=['particle'], inplace=True)

    trajectories_bycell = trajectories_unfiltered.groupby('cell')
    for cell, trajectories_cell in trajectories_bycell:
        logging.debug("cell: " + str(cell))
        logging.debug("feature: " + str(trajectories_cell['feature'].values))
        logging.debug("trajectories_cell.shape[0]: " +
                      str(trajectories_cell.shape[0]))

        if trajectories_cell.shape[0] < stubs:
            logging.debug("cell" + str(cell) + "  is a stub (" +
                          str(trajectories_cell.shape[0]) +
                          "), setting cell number to Nan..")
            trajectories_unfiltered.loc[trajectories_unfiltered['cell'] ==
                                        cell, 'cell'] = np.nan

    trajectories_filtered = trajectories_unfiltered

    #Interpolate to fill the gaps in the trajectories (left from allowing memory in the linking)
    trajectories_filtered_unfilled = deepcopy(trajectories_filtered)

    #    trajectories_filtered_filled=fill_gaps(trajectories_filtered_unfilled,order=order,
    #                                extrapolate=extrapolate,frame_max=field_in.shape[0]-1,
    #                                hdim_1_max=field_in.shape[1],hdim_2_max=field_in.shape[2])
    #     add coorinates from input fields to output trajectories (time,dimensions)
    #    logging.debug('start adding coordinates to trajectories')
    #    trajectories_filtered_filled=add_coordinates(trajectories_filtered_filled,field_in)
    #     add time coordinate relative to cell initiation:
    #    logging.debug('start adding cell time to trajectories')
    trajectories_filtered_filled = trajectories_filtered_unfilled
    trajectories_final = add_cell_time(trajectories_filtered_filled)

    # add coordinate to raw features identified:
    logging.debug('start adding coordinates to detected features')
    logging.debug('feature linking completed')

    return trajectories_final
Example #21
0
def Link(searchRange, memory, minFrames):
    t = tp.link(f, search_range = searchRange, memory = memory)
    t1 = tp.filter_stubs(t, minFrames)
    plt.figure()
    tp.plot_traj(t1, label = True)
    return t1
Example #22
0
# take reader that provides uint8!
assert np.issubdtype(v.dtype, np.uint8)
v0 = tp.invert_image(v[0])
v0_bp = tp.bandpass(v0, lshort=1, llong=9)
expected_find = tp.grey_dilation(v0, separation=9)
expected_find_bandpass = tp.grey_dilation(v0_bp, separation=9)
expected_refine = tp.refine_com(v0,
                                v0_bp,
                                radius=4,
                                coords=expected_find_bandpass)
expected_refine = expected_refine[expected_refine['mass'] >= 140]
expected_refine_coords = expected_refine[pos_columns].values
expected_locate = tp.locate(v0, diameter=9, minmass=140)
expected_locate_coords = expected_locate[pos_columns].values
df = tp.locate(v0, diameter=9)
df = df[(df['x'] < 64) & (df['y'] < 64)]
expected_characterize = df[pos_columns + char_columns].values

f = tp.batch(tp.invert_image(v), 9, minmass=140)
f_crop = f[(f['x'] < 320) & (f['x'] > 280) & (f['y'] < 280) & (f['x'] > 240)]
f_linked = tp.link(f_crop, search_range=5, memory=0)
f_linked_memory = tp.link(f_crop, search_range=5, memory=2)
link_coords = f_linked[pos_columns + ['frame']].values
expected_linked = f_linked['particle'].values
expected_linked_memory = f_linked_memory['particle'].values

np.savez_compressed(npzpath, expected_find, expected_find_bandpass,
                    expected_refine_coords, expected_locate_coords,
                    link_coords, expected_linked, expected_linked_memory,
                    expected_characterize)
Example #23
0
    median = np.median(temp, axis=2)

    @pims.pipeline
    def removeBack(frame, median):
        frame = frame - median
        return frame

    frames = removeBack(frames, median)

    break
    #frames = cropImage(frames)

    #fig.savefig(SavePath + '/Line.jpg')

    f = tp.batch(frames, estimateFeatureSize, minmass=minMass)
    t = tp.link(f, 60, memory=80)

    t1 = tp.filter_stubs(t, 10)
    tp.plot_traj(t1)

    Ntrajs = np.max(np.array(t1['particle'])) + 1

    minMoveDistance = 1
    print('there are %s trajectories' % Ntrajs)
    t2 = t1[0:0]
    for i in range(Ntrajs):
        tNew = t1[t1['particle'] == i]
        if (len(tNew) < 30):
            continue
        #distData = tp.motion.msd(tNew,1,1,len(tNew))
        #dist = distData.iloc[-1,:]['msd']
Example #24
0
 def link(self, *args, **kwargs):
     kwargs.update(self.linker_opts)
     return tp.link(args[0], validate_tuple(args[1], 2),
                    *args[2:], **kwargs)
Example #25
0
 def link(self, *args, **kwargs):
     kwargs.update(self.linker_opts)
     return tp.link(args[0], validate_tuple(args[1], 2), *args[2:],
                    **kwargs)