def learn(self, Xtrain, ytrain): self.features = Xtrain.shape[1] if not self.usecolumnones: self.features -= 1 Xtrain = Xtrain[:,0:self.features] zeroindex = ytrain == 0 self.priozero = float(sum(zeroindex)/Xtrain.shape[0]) self.prioone = 1 - self.priozero classzero = Xtrain[zeroindex,:] classone = Xtrain[-zeroindex,:] self.meanstdev = np.empty((2,2,self.features)) for f in xrange(self.features): data = classzero[:,f] self.meanstdev[0,0,f] = utils.mean(data) self.meanstdev[0,1,f] = utils.stdev(data) data = classone[:,f] self.meanstdev[1,0,f] = utils.mean(data) self.meanstdev[1,1,f] = utils.stdev(data)
def learn(self, Xtrain, ytrain): # Separate by class separated = {} for tt in range(Xtrain.shape[0]): inputv = Xtrain[tt] outputy = ytrain[tt] if outputy not in separated: separated[outputy] = [] separated[outputy].append(inputv) for classValue, instances in separated.iteritems(): summ = [(utils.mean(attribute), utils.stdev(attribute)) for attribute in zip(*instances)] del summ[-1] self.summaries[classValue] = summ
def divide(self,ds): dividedDS = [(utils.mean(x), utils.stdev(x)) for x in zip(*ds)] del dividedDS[-1] return dividedDS
def end_game(self): self.mean_a = mean(self.a1) self.mean_a2 = mean(self.a2) self.mean_t1 = mean(self.time1) self.mean_t2 = mean(self.time2) self.mean_tC = mean(self.trap_body_c)