Example #1
0
def calculatePromoterActivity(annotationFile,
                              bamFile,
                              projectName,
                              projectFolder,
                              refseqToNameDict,
                              background=False):
    '''
    calculates the level of acetylation at each TF promoter
    '''

    print 'GENERATING AN ACTIVITY TABLE USING CHIP DATA'

    annotTable = utils.parseTable(annotationFile, '\t')
    output = []
    counter = 0

    bam = utils.Bam(bamFile)

    if background:
        background = utils.Bam(background)

    startDict = utils.makeStartDict(annotationFile)

    tssLoci = []
    for gene in startDict:
        tssLoci.append(utils.makeTSSLocus(gene, startDict, 2500, 2500))
    tssCollection = utils.LocusCollection(tssLoci, 50)

    gff = utils.locusCollectionToGFF(tssCollection)

    outputname = projectFolder + projectName + '_TSS.gff'
    utils.unParseTable(gff, outputname, '\t')

    mappingCmd = 'bamliquidator_batch'
    mappingCmd += ' -r ' + outputname
    mappingCmd += ' -o ' + projectFolder + 'bamliquidator'
    mappingCmd += ' -m -e 200 '
    mappingCmd += bamFile

    subprocess.call(mappingCmd, shell=True)

    print mappingCmd
Example #2
0
def calculatePromoterActivity(annotationFile, bamFile, projectName, projectFolder, refseqToNameDict):
    '''
    calculates the level of H3K27ac at each promoter from a H3K27ac bam file
    '''

    print 'IDENTIFY EXPRESSED GENES'

    annotTable = utils.parseTable(annotationFile, '\t')
    output = []
    counter = 0

    bam = utils.Bam(bamFile)

    startDict = utils.makeStartDict(annotationFile)

    tssLoci = []
    for gene in startDict:
        tssLoci.append(utils.makeTSSLocus(gene,startDict,1000,1000))
    tssCollection = utils.LocusCollection(tssLoci,50)

    gff = utils.locusCollectionToGFF(tssCollection)


    outputname = projectFolder + projectName + '_TSS.gff'
    utils.unParseTable(gff, outputname, '\t')

    # run bamToGFF.py to quantify signal at each TSS +/- 1kb

    mappingCmd = 'python ./bamToGFF.py'
    mappingCmd += ' -r '
    mappingCmd += ' -d '
    mappingCmd += ' -o ' + projectFolder + 'matrix.gff'
    mappingCmd += ' -m 1 -f 0 -e 200 '
    mappingCmd += ' -i ' + projectFolder + projectName + '_TSS.gff'
    mappingCmd += ' -b ' + bamFile

    call(mappingCmd, shell=True)

    print  mappingCmd
Example #3
0
def make_probe_to_gene_dict(annotFile, array_1_path, array_2_path):
    '''
    keyed by probe ID w/ gene as value
    '''
    #see if it already exists
    pickle_path = '%soberthuer_outcome/probe_dict.pkl' % (projectFolder)
    if utils.checkOutput(pickle_path, 0, 0):
        print('loading previously made probe dict at %s' % (pickle_path))
        probe_gene_dict = pickle.load(open(pickle_path, "rb"))
        return probe_gene_dict

    #we want to intersect refseq common names w/ the array
    startDict = utils.makeStartDict(annotFile)

    ref_name_list = utils.uniquify(
        [startDict[refID]['name'] for refID in startDict.keys()])
    probe_gene_dict = {}

    array_1 = utils.parseTable(array_1_path, '\t')
    array_2 = utils.parseTable(array_2_path, '\t')
    ticker = 0
    for line in array_1 + array_2:
        if len(line) < 5:
            continue
        ticker += 1
        probe_id = line[4]
        name = line[-1]
        # print(probe_id)
        # print(name)
        # if ticker== 10:
        #     sys.exit()
        # print(line)

        if ref_name_list.count(name) > 0:
            probe_gene_dict[probe_id] = name

    pickle.dump(probe_gene_dict, open(pickle_path, 'wb'))
    return probe_gene_dict
Example #4
0
def findCanidateTFs(annotationFile, enhancerLoci, expressedNM, expressionDictNM,
                    bamFile, TFlist, refseqToNameDict, projectFolder, projectName, promoter):
    '''                                                           
    Assign each Super-Enhancer to the closest active TSS to its center
    Return a dictionary keyed by TF that points to a list of loci
    '''

    print 'FINDING CANIDATE TFs'

    enhancerAssignment = []
    TFtoEnhancerDict = defaultdict(list)

    startDict = utils.makeStartDict(annotationFile)    

    tssLoci = []
    for gene in expressedNM:
        tssLoci.append(utils.makeTSSLocus(gene,startDict,1000,1000))
    tssCollection = utils.LocusCollection(tssLoci,50)    


    # Loop through enhancers
    for enhancer in enhancerLoci:
        

        # If the enhancer overlaps a TSS, save it
        overlappingLoci = tssCollection.getOverlap(enhancer, 'both')
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # Find all gene TSS within 100 kb
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,100000,100000),'both')
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())
        
        # If no genes are within 100 kb, find the closest active gene
        closestGene = ''
        if len(overlappingGenes) == 0 and len(proximalGenes) == 0:
        
            distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,1000000,1000000),'both')
            distalGenes =[]
            for distalLocus in distalLoci:
                distalGenes.append(distalLocus.ID())

            enhancerCenter = (int(enhancer.start()) + int(enhancer.end())) / 2
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in distalGenes]
            if distList:
                closestGene = distalGenes[distList.index(min(distList))]


        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)
 

        # If a TSS overlaps an enhancer, assign them together
        if overlappingGenes:
            for gene in overlappingGenes:
                if gene in TFlist:
                    TFtoEnhancerDict[gene].append(enhancer)
                    enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
                
        # Otherwise, assign the enhancer to the most active gene in 100 kb
        elif not overlappingGenes and proximalGenes:
            highestGene = ''
            highestActivity = 0
            for gene in proximalGenes:
                if expressionDictNM[gene] > highestActivity:
                    highestActivity = expressionDictNM[gene]
                    highestGene = gene
            if highestGene in TFlist:
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
            
        elif not overlappingGenes and not proximalGenes and closestGene:
            if closestGene in TFlist:
                gene = closestGene
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])

    # Add promoter is it's not contained in the super
    if promoter:
        for gene in TFtoEnhancerDict.keys():
            promoter = utils.Locus(startDict[gene]['chr'], int(startDict[gene]['start'][0]) - 2000, 
                                   int(startDict[gene]['start'][0]) + 2000, startDict[gene]['sense'])
            overlapBool = False
            for enhancer in TFtoEnhancerDict[gene]:
                if promoter.overlaps(enhancer):
                    overlapBool = True
            if not overlapBool:
                TFtoEnhancerDict[gene].append(promoter)

    seAssignmentFile = projectFolder + projectName + '_ENHANCER_ASSIGNMENT.txt'
    utils.unParseTable(enhancerAssignment, seAssignmentFile, '\t')

    return TFtoEnhancerDict
Example #5
0
def make_shep_on_mycn_landscape(shep_on_dataFile):

    '''
    finds mycn peaks in shep21 that are conserved in nb and segregates them into promoter or enhancer
    '''
    dataDict = pipeline_dfci.loadDataTable(shep_on_dataFile)


    print('LOADING SHEP ON MYCN SITES')
    #load all of the shep_on sites
    # shep_on_gff_path = '%smeta_rose/SHEP_ON_MYC/gff/HG19_SHEP_ON_MYC_ALL_-0_+0.gff' % (projectFolder)
    # shep_on_gff = utils.parseTable(shep_on_gff_path,'\t')

    shep_on_bed_path = '%sSHEP_6HR_MYCN_peaks.bed' % (macsEnrichedFolder)
    shep_on_bed = utils.parseTable(shep_on_bed_path,'\t')
    shep_on_gff = utils.bedToGFF(shep_on_bed)
    
    #now get the conserved NB MYCN regions
    nb_conserved_mycn_gff_file = '%sHG19_NB_MYCN_CONSERVED_-0_+0.gff' % (gffFolder)
    nb_conserved_mycn_collection = utils.gffToLocusCollection(nb_conserved_mycn_gff_file)

    print('LOADING SHEP ACTIVE ENHANCERS') 
    #make a collection of enhancers
    shep_enhancer_file = '%smeta_rose/SHEP_ON_H3K27AC/SHEP_ON_H3K27AC_AllEnhancers.table.txt' % (projectFolder)
    shep_enhancer_collection = utils.makeSECollection(shep_enhancer_file,'SHEP_H3K27AC')

    #now get the active promoters
    print('LOADING SHEP ACTIVE PROMOTERS')
    startDict = utils.makeStartDict(annotFile)
    shep_transcribed_file = '%sHG19_SHEP_ON_H3K27AC_ACTIVE.txt' % (geneListFolder)
    shep_transcribed_table = utils.parseTable(shep_transcribed_file,'\t')
    transcribedList = [line[1] for line in shep_transcribed_table]
    tssLoci = []
    for refID in transcribedList:
        tssLoci.append(utils.makeTSSLocus(refID,startDict,1000,1000))

    shep_tss_collection = utils.LocusCollection(tssLoci,50)

    #now initialize the 6 gffs we will need
    shep_mycn_gff = [] 
    shep_mycn_gff_5kb = []
    shep_mycn_gff_1kb = []

    shep_mycn_promoter_gff = []
    shep_mycn_promoter_gff_1kb = []
    shep_mycn_promoter_gff_5kb = []

    shep_mycn_enhancer_gff = []
    shep_mycn_enhancer_gff_1kb = []
    shep_mycn_enhancer_gff_5kb = []

    #and their respective file names
    shep_mycn_gff_file = '%sHG19_SHEP_MYCN_CONSERVED_-0_+0.gff' % (gffFolder)
    shep_mycn_gff_5kb_file = '%sHG19_SHEP_MYCN_CONSERVED_-5kb_+5kb.gff' % (gffFolder)
    shep_mycn_gff_1kb_file = '%sHG19_SHEP_MYCN_CONSERVED_-1kb_+1kb.gff' % (gffFolder)

    shep_mycn_promoter_gff_file = '%sHG19_SHEP_MYCN_CONSERVED_PROMOTER_-0_+0.gff' % (gffFolder)
    shep_mycn_promoter_gff_5kb_file = '%sHG19_SHEP_MYCN_CONSERVED_PROMOTER_-5kb_+5kb.gff' % (gffFolder)
    shep_mycn_promoter_gff_1kb_file = '%sHG19_SHEP_MYCN_CONSERVED_PROMOTER_-1kb_+1kb.gff' % (gffFolder)

    shep_mycn_enhancer_gff_file = '%sHG19_SHEP_MYCN_CONSERVED_ENHANCER_-0_+0.gff' % (gffFolder)
    shep_mycn_enhancer_gff_5kb_file = '%sHG19_SHEP_MYCN_CONSERVED_ENHANCER_-5kb_+5kb.gff' % (gffFolder)
    shep_mycn_enhancer_gff_1kb_file = '%sHG19_SHEP_MYCN_CONSERVED_ENHANCER_-1kb_+1kb.gff' % (gffFolder)

    print('ITERATING THROUGH SHEP MYCN PEAKS')

    ticker = 0
    enhancer = 0
    promoter = 0 

    other = 0
    for line in shep_on_gff:
        if ticker % 1000 == 0:
            print ticker
        ticker+=1
        peakID = '%s_%s' % ('SHEP_MYCN',str(ticker))

        lineLocus = utils.Locus(line[0],line[3],line[4],'.',peakID)

        if nb_conserved_mycn_collection.getOverlap(lineLocus):
            gffLine = [line[0],peakID,peakID,line[3],line[4],'','.','',peakID]
            peakCenter = (int(line[3]) + int(line[4]))/2
            gffLine_5kb = [line[0],peakID,peakID,peakCenter - 5000,peakCenter + 5000,'','.','',peakID]
            #the 1kb is not a center +/- but a flank
            gffLine_1kb = [line[0],peakID,peakID,int(line[3]) - 1000,int(line[4]) + 1000,'','.','',peakID]

            shep_mycn_gff.append(gffLine)
            shep_mycn_gff_5kb.append(gffLine_5kb)
            shep_mycn_gff_1kb.append(gffLine_1kb)

            #tss overlap should take precedence over enhancer overlap
            if shep_tss_collection.getOverlap(lineLocus,'both'):
                shep_mycn_promoter_gff.append(gffLine)
                shep_mycn_promoter_gff_5kb.append(gffLine_5kb)
                shep_mycn_promoter_gff_1kb.append(gffLine_1kb)
                promoter+=1
            #now check for enhancer overlap
            elif shep_enhancer_collection.getOverlap(lineLocus,'both'):
                shep_mycn_enhancer_gff.append(gffLine)
                shep_mycn_enhancer_gff_5kb.append(gffLine_5kb)
                shep_mycn_enhancer_gff_1kb.append(gffLine_1kb)
                enhancer+=1
            else:
                other+=1
    
    print('Of %s shep on mycn peaks' % (len(shep_on_gff)))
    print('%s are promoter' % (promoter))
    print('%s are enhancer' % (enhancer))
    print('%s are other' % (other))
    #now write out the gffs
    utils.unParseTable(shep_mycn_gff,shep_mycn_gff_file,'\t')
    utils.unParseTable(shep_mycn_gff_5kb,shep_mycn_gff_5kb_file,'\t')
    utils.unParseTable(shep_mycn_gff_1kb,shep_mycn_gff_1kb_file,'\t')

    utils.unParseTable(shep_mycn_promoter_gff,shep_mycn_promoter_gff_file,'\t')
    utils.unParseTable(shep_mycn_promoter_gff_5kb,shep_mycn_promoter_gff_5kb_file,'\t')
    utils.unParseTable(shep_mycn_promoter_gff_1kb,shep_mycn_promoter_gff_1kb_file,'\t')

    utils.unParseTable(shep_mycn_enhancer_gff,shep_mycn_enhancer_gff_file,'\t')
    utils.unParseTable(shep_mycn_enhancer_gff_5kb,shep_mycn_enhancer_gff_5kb_file,'\t')
    utils.unParseTable(shep_mycn_enhancer_gff_1kb,shep_mycn_enhancer_gff_1kb_file,'\t')
Example #6
0
def main():
    '''
    main run call
    '''
    debug = False

    from optparse import OptionParser
    usage = "usage: %prog [options] -g [GENOME] -i [INPUT_REGION_GFF] -r [RANKBY_BAM_FILE] -o [OUTPUT_FOLDER] [OPTIONAL_FLAGS]"
    parser = OptionParser(usage=usage)
    # required flags
    parser.add_option(
        "-i",
        "--i",
        dest="input",
        nargs=1,
        default=None,
        help=
        "Enter a comma separated list of .gff or .bed file of binding sites used to make enhancers"
    )
    parser.add_option("-r",
                      "--rankby",
                      dest="rankby",
                      nargs=1,
                      default=None,
                      help="Enter a comma separated list of bams to rank by")
    parser.add_option("-o",
                      "--out",
                      dest="out",
                      nargs=1,
                      default=None,
                      help="Enter an output folder")
    parser.add_option("-g",
                      "--genome",
                      dest="genome",
                      nargs=1,
                      default=None,
                      help="Enter the genome build (MM9,MM8,HG18,HG19)")

    # optional flags
    parser.add_option(
        "-n",
        "--name",
        dest="name",
        nargs=1,
        default=None,
        help="Provide a name for the analysis otherwise ROSE will guess")
    parser.add_option(
        "-c",
        "--control",
        dest="control",
        nargs=1,
        default=None,
        help=
        "Enter a comma separated list of control bams. Can either provide a single control bam for all rankby bams, or provide a control bam for each individual bam"
    )
    parser.add_option(
        "-s",
        "--stitch",
        dest="stitch",
        nargs=1,
        default='',
        help=
        "Enter a max linking distance for stitching. Default will determine optimal stitching parameter"
    )
    parser.add_option(
        "-t",
        "--tss",
        dest="tss",
        nargs=1,
        default=0,
        help="Enter a distance from TSS to exclude. 0 = no TSS exclusion")

    parser.add_option(
        "--mask",
        dest="mask",
        nargs=1,
        default=None,
        help=
        "Mask a set of regions from analysis.  Provide a .bed or .gff of masking regions"
    )

    # RETRIEVING FLAGS
    (options, args) = parser.parse_args()

    if not options.input or not options.rankby or not options.out or not options.genome:
        print('hi there')
        parser.print_help()
        exit()

    # making the out folder if it doesn't exist
    outFolder = utils.formatFolder(options.out, True)

    # figuring out folder schema
    gffFolder = utils.formatFolder(outFolder + 'gff/', True)
    mappedFolder = utils.formatFolder(outFolder + 'mappedGFF/', True)

    # GETTING INPUT FILE(s)

    inputList = [
        inputFile for inputFile in options.input.split(',')
        if len(inputFile) > 1
    ]

    #converting all input files into GFFs and moving into the GFF folder
    inputGFFList = []
    for inputFile in inputList:
        if inputFile.split('.')[-1] == 'bed':
            # CONVERTING A BED TO GFF
            inputGFFName = inputFile.split('/')[-1][
                0:-4]  #strips the last 4 characters i.e. '.bed'
            inputGFFFile = '%s%s.gff' % (gffFolder, inputGFFName)
            utils.bedToGFF(inputFile, inputGFFFile)
        elif options.input.split('.')[-1] == 'gff':
            # COPY THE INPUT GFF TO THE GFF FOLDER

            os.system('cp %s %s' % (inputFile, gffFolder))
            inputGFFFile = '%s%s' % (gffFolder, inputFile.split('/')[-1])

        else:
            print(
                'WARNING: INPUT FILE DOES NOT END IN .gff or .bed. ASSUMING .gff FILE FORMAT'
            )
            # COPY THE INPUT GFF TO THE GFF FOLDER
            os.system('cp %s %s' % (inputFile, gffFolder))
            inputGFFFile = '%s%s' % (gffFolder, inputFile.split('/')[-1])
        inputGFFList.append(inputGFFFile)

    # GETTING THE LIST OF BAMFILES TO PROCESS
    #either same number of bams for rankby and control
    #or only 1 control #or none!
    #bamlist should be all rankby bams followed by control bams

    bamFileList = []
    if options.control:
        controlBamList = [
            bam for bam in options.control.split(',') if len(bam) > 0
        ]
        rankbyBamList = [
            bam for bam in options.rankby.split(',') if len(bam) > 0
        ]

        if len(controlBamList) == len(rankbyBamList):
            #case where an equal number of backgrounds are given
            bamFileList = rankbyBamList + controlBamList
        elif len(controlBamList) == 1:
            #case where a universal background is applied
            bamFileList = rankbyBamList + controlBamList * len(rankbyBamList)
        else:
            print(
                'ERROR: EITHER PROVIDE A SINGLE CONTROL BAM FOR ALL SAMPLES, OR ONE CONTROL BAM FOR EACH SAMPLE'
            )
            sys.exit()
    else:
        bamFileList = [
            bam for bam in options.rankby.split(',') if len(bam) > 0
        ]

    # Stitch parameter
    if options.stitch == '':
        stitchWindow = ''
    else:
        stitchWindow = int(options.stitch)

    # tss options
    tssWindow = int(options.tss)
    if tssWindow != 0:
        removeTSS = True
    else:
        removeTSS = False

    # GETTING THE GENOME
    genome = string.upper(options.genome)
    print('USING %s AS THE GENOME' % (genome))

    # GETTING THE CORRECT ANNOT FILE

    genomeDict = {
        'HG18': '%s/annotation/hg18_refseq.ucsc' % (pipeline_dir),
        'MM9': '%s/annotation/mm9_refseq.ucsc' % (pipeline_dir),
        'HG19': '%s/annotation/hg19_refseq.ucsc' % (pipeline_dir),
        'MM8': '%s/annotation/mm8_refseq.ucsc' % (pipeline_dir),
        'MM10': '%s/annotation/mm10_refseq.ucsc' % (pipeline_dir),
        'RN4': '%s/annotation/rn4_refseq.ucsc' % (pipeline_dir),
    }

    try:
        annotFile = genomeDict[genome.upper()]
    except KeyError:
        print('ERROR: UNSUPPORTED GENOMES TYPE %s' % (genome))
        sys.exit()

    #FINDING THE ANALYSIS NAME
    if options.name:
        inputName = options.name
    else:
        inputName = inputGFFList[0].split('/')[-1].split('.')[0]
    print('USING %s AS THE ANALYSIS NAME' % (inputName))

    print('FORMATTING INPUT REGIONS')
    # MAKING THE RAW INPUT FILE FROM THE INPUT GFFs
    #use a simpler unique region naming system
    if len(inputGFFList) == 1:
        inputGFF = utils.parseTable(inputGFFList[0], '\t')
    else:
        inputLoci = []
        for gffFile in inputGFFList:
            print('\tprocessing %s' % (gffFile))
            gff = utils.parseTable(gffFile, '\t')
            gffCollection = utils.gffToLocusCollection(gff, 50)
            inputLoci += gffCollection.getLoci()

        inputCollection = utils.LocusCollection(inputLoci, 50)
        inputCollection = inputCollection.stitchCollection(
        )  # stitches to produce unique regions

        inputGFF = utils.locusCollectionToGFF(inputCollection)

    formattedGFF = []
    #now number things appropriately
    for i, line in enumerate(inputGFF):

        #use the coordinates to make a new id inputname_chr_sense_start_stop
        chrom = line[0]
        coords = [int(line[3]), int(line[4])]
        sense = line[6]

        lineID = '%s_%s' % (inputName, str(i + 1))  #1 indexing

        newLine = [
            chrom, lineID, lineID,
            min(coords),
            max(coords), '', sense, '', lineID
        ]
        formattedGFF.append(newLine)

    #name of the master input gff file
    masterGFFFile = '%s%s_%s_ALL_-0_+0.gff' % (gffFolder, string.upper(genome),
                                               inputName)
    utils.unParseTable(formattedGFF, masterGFFFile, '\t')

    print('USING %s AS THE INPUT GFF' % (masterGFFFile))

    # MAKING THE START DICT
    print('MAKING START DICT')
    startDict = utils.makeStartDict(annotFile)

    #GET CHROMS FOUND IN THE BAMS
    print('GETTING CHROMS IN BAMFILES')
    bamChromList = getBamChromList(bamFileList)
    print("USING THE FOLLOWING CHROMS")
    print(bamChromList)

    #LOADING IN THE GFF AND FILTERING BY CHROM
    print('LOADING AND FILTERING THE GFF')
    inputGFF = filterGFF(masterGFFFile, bamChromList)
    # LOADING IN THE BOUND REGION REFERENCE COLLECTION
    print('LOADING IN GFF REGIONS')
    referenceCollection = utils.gffToLocusCollection(inputGFF)

    print('CHECKING REFERENCE COLLECTION:')
    checkRefCollection(referenceCollection)

    # MASKING REFERENCE COLLECTION
    # see if there's a mask
    if options.mask:
        maskFile = options.mask
        # if it's a bed file
        if maskFile.split('.')[-1].upper() == 'BED':
            maskGFF = utils.bedToGFF(maskFile)
        elif maskFile.split('.')[-1].upper() == 'GFF':
            maskGFF = utils.parseTable(maskFile, '\t')
        else:
            print("MASK MUST BE A .gff or .bed FILE")
            sys.exit()
        maskCollection = utils.gffToLocusCollection(maskGFF)

        # now mask the reference loci
        referenceLoci = referenceCollection.getLoci()
        filteredLoci = [
            locus for locus in referenceLoci
            if len(maskCollection.getOverlap(locus, 'both')) == 0
        ]
        print("FILTERED OUT %s LOCI THAT WERE MASKED IN %s" %
              (len(referenceLoci) - len(filteredLoci), maskFile))
        referenceCollection = utils.LocusCollection(filteredLoci, 50)

    # NOW STITCH REGIONS
    print('STITCHING REGIONS TOGETHER')
    stitchedCollection, debugOutput, stitchWindow = regionStitching(
        referenceCollection, inputName, outFolder, stitchWindow, tssWindow,
        annotFile, removeTSS)

    # NOW MAKE A STITCHED COLLECTION GFF
    print('MAKING GFF FROM STITCHED COLLECTION')
    stitchedGFF = utils.locusCollectionToGFF(stitchedCollection)

    print(stitchWindow)
    print(type(stitchWindow))
    if not removeTSS:
        stitchedGFFFile = '%s%s_%sKB_STITCHED.gff' % (gffFolder, inputName,
                                                      str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED' % (inputName,
                                                str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED.debug' % (gffFolder, inputName,
                                                     str(stitchWindow / 1000))
    else:
        stitchedGFFFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.gff' % (
            gffFolder, inputName, str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED_TSS_DISTAL' % (
            inputName, str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.debug' % (
            gffFolder, inputName, str(stitchWindow / 1000))

    # WRITING DEBUG OUTPUT TO DISK

    if debug:
        print('WRITING DEBUG OUTPUT TO DISK AS %s' % (debugOutFile))
        utils.unParseTable(debugOutput, debugOutFile, '\t')

    # WRITE THE GFF TO DISK
    print('WRITING STITCHED GFF TO DISK AS %s' % (stitchedGFFFile))
    utils.unParseTable(stitchedGFF, stitchedGFFFile, '\t')

    # SETTING UP THE OVERALL OUTPUT FILE
    outputFile1 = outFolder + stitchedGFFName + '_ENHANCER_REGION_MAP.txt'
    print('OUTPUT WILL BE WRITTEN TO  %s' % (outputFile1))

    # MAPPING TO THE NON STITCHED (ORIGINAL GFF)
    # MAPPING TO THE STITCHED GFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.

    bamFileListUnique = list(bamFileList)
    bamFileListUnique = utils.uniquify(bamFileListUnique)
    #prevent redundant mapping
    print("MAPPING TO THE FOLLOWING BAMS:")
    print(bamFileListUnique)
    for bamFile in bamFileListUnique:

        bamFileName = bamFile.split('/')[-1]

        # MAPPING TO THE STITCHED GFF
        mappedOut1Folder = '%s%s_%s_MAPPED' % (mappedFolder, stitchedGFFName,
                                               bamFileName)
        mappedOut1File = '%s%s_%s_MAPPED/matrix.txt' % (
            mappedFolder, stitchedGFFName, bamFileName)
        if utils.checkOutput(mappedOut1File, 0.2, 0.2):
            print("FOUND %s MAPPING DATA FOR BAM: %s" %
                  (stitchedGFFFile, mappedOut1File))
        else:
            cmd1 = bamliquidator_path + " --sense . -e 200 --match_bamToGFF -r %s -o %s %s" % (
                stitchedGFFFile, mappedOut1Folder, bamFile)
            print(cmd1)

            os.system(cmd1)
            if utils.checkOutput(mappedOut1File, 0.2, 5):
                print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" %
                      (stitchedGFFFile, bamFileName))
            else:
                print("ERROR: FAILED TO MAP %s FROM BAM: %s" %
                      (stitchedGFFFile, bamFileName))
                sys.exit()

    print('BAM MAPPING COMPLETED NOW MAPPING DATA TO REGIONS')
    # CALCULATE DENSITY BY REGION
    # NEED TO FIX THIS FUNCTION TO ACCOUNT FOR DIFFERENT OUTPUTS OF LIQUIDATOR
    mapCollection(stitchedCollection,
                  referenceCollection,
                  bamFileList,
                  mappedFolder,
                  outputFile1,
                  refName=stitchedGFFName)

    print('FINDING AVERAGE SIGNAL AMONGST BAMS')
    metaOutputFile = collapseRegionMap(outputFile1,
                                       inputName + '_MERGED_SIGNAL',
                                       controlBams=options.control)

    #now try the merging

    print('CALLING AND PLOTTING SUPER-ENHANCERS')

    rankbyName = inputName + '_MERGED_SIGNAL'
    controlName = 'NONE'
    cmd = 'Rscript %sROSE2_callSuper.R %s %s %s %s' % (
        pipeline_dir, outFolder, metaOutputFile, inputName, controlName)
    print(cmd)

    os.system(cmd)

    # calling the gene mapper
    print('CALLING GENE MAPPING')

    superTableFile = "%s_SuperEnhancers.table.txt" % (inputName)

    #for now don't use ranking bam to call top genes
    cmd = "python %sROSE2_geneMapper.py -g %s -i %s%s -f" % (
        pipeline_dir, genome, outFolder, superTableFile)
    print(cmd)
    os.system(cmd)

    stretchTableFile = "%s_StretchEnhancers.table.txt" % (inputName)

    cmd = "python %sROSE2_geneMapper.py -g %s -i %s%s -f" % (
        pipeline_dir, genome, outFolder, stretchTableFile)
    print(cmd)
    os.system(cmd)

    superStretchTableFile = "%s_SuperStretchEnhancers.table.txt" % (inputName)

    cmd = "python %sROSE2_geneMapper.py -g %s -i %s%s -f" % (
        pipeline_dir, genome, outFolder, superStretchTableFile)
    os.system(cmd)
Example #7
0
def main():
    '''
    main run call
    '''
    debug = False

    from optparse import OptionParser
    usage = "usage: %prog [options] -g [GENOME] -i [INPUT_REGION_GFF] -r [RANKBY_BAM_FILE] -o [OUTPUT_FOLDER] [OPTIONAL_FLAGS]"
    parser = OptionParser(usage=usage)
    # required flags
    parser.add_option(
        "-i",
        "--i",
        dest="input",
        nargs=1,
        default=None,
        help="Enter a .gff or .bed file of binding sites used to make enhancers"
    )
    parser.add_option("-r",
                      "--rankby",
                      dest="rankby",
                      nargs=1,
                      default=None,
                      help="bamfile to rank enhancer by")
    parser.add_option("-o",
                      "--out",
                      dest="out",
                      nargs=1,
                      default=None,
                      help="Enter an output folder")
    parser.add_option("-g",
                      "--genome",
                      dest="genome",
                      nargs=1,
                      default=None,
                      help="Enter the genome build (MM9,MM8,HG18,HG19)")

    # optional flags
    parser.add_option(
        "-b",
        "--bams",
        dest="bams",
        nargs=1,
        default=None,
        help="Enter a comma separated list of additional bam files to map to")
    parser.add_option("-c",
                      "--control",
                      dest="control",
                      nargs=1,
                      default=None,
                      help="bamfile to rank enhancer by")
    parser.add_option(
        "-s",
        "--stitch",
        dest="stitch",
        nargs=1,
        default='',
        help=
        "Enter a max linking distance for stitching. Default will determine optimal stitching parameter"
    )
    parser.add_option(
        "-t",
        "--tss",
        dest="tss",
        nargs=1,
        default=0,
        help="Enter a distance from TSS to exclude. 0 = no TSS exclusion")

    parser.add_option(
        "--mask",
        dest="mask",
        nargs=1,
        default=None,
        help=
        "Mask a set of regions from analysis.  Provide a .bed or .gff of masking regions"
    )

    # RETRIEVING FLAGS
    (options, args) = parser.parse_args()

    if not options.input or not options.rankby or not options.out or not options.genome:
        print('hi there')
        parser.print_help()
        exit()

    # making the out folder if it doesn't exist
    outFolder = utils.formatFolder(options.out, True)

    # figuring out folder schema
    gffFolder = utils.formatFolder(outFolder + 'gff/', True)
    mappedFolder = utils.formatFolder(outFolder + 'mappedGFF/', True)

    # GETTING INPUT FILE
    if options.input.split('.')[-1] == 'bed':
        # CONVERTING A BED TO GFF
        inputGFFName = options.input.split('/')[-1][0:-4]
        inputGFFFile = '%s%s.gff' % (gffFolder, inputGFFName)
        utils.bedToGFF(options.input, inputGFFFile)
    elif options.input.split('.')[-1] == 'gff':
        # COPY THE INPUT GFF TO THE GFF FOLDER
        inputGFFFile = options.input
        os.system('cp %s %s' % (inputGFFFile, gffFolder))

    else:
        print(
            'WARNING: INPUT FILE DOES NOT END IN .gff or .bed. ASSUMING .gff FILE FORMAT'
        )
        # COPY THE INPUT GFF TO THE GFF FOLDER
        inputGFFFile = options.input
        os.system('cp %s %s' % (inputGFFFile, gffFolder))

    # GETTING THE LIST OF BAMFILES TO PROCESS
    if options.control:
        bamFileList = [options.rankby, options.control]

    else:
        bamFileList = [options.rankby]

    if options.bams:
        bamFileList += options.bams.split(',')
        #bamFileList = utils.uniquify(bamFileList) # makes sad when you have the same control bam over and over again
    # optional args

    # Stitch parameter
    if options.stitch == '':
        stitchWindow = ''
    else:
        stitchWindow = int(options.stitch)

    # tss options
    tssWindow = int(options.tss)
    if tssWindow != 0:
        removeTSS = True
    else:
        removeTSS = False

    # GETTING THE BOUND REGION FILE USED TO DEFINE ENHANCERS
    print('USING %s AS THE INPUT GFF' % (inputGFFFile))
    inputName = inputGFFFile.split('/')[-1].split('.')[0]

    # GETTING THE GENOME
    genome = options.genome
    print('USING %s AS THE GENOME' % genome)

    # GETTING THE CORRECT ANNOT FILE
    cwd = os.getcwd()
    genomeDict = {
        'HG18': '%s/annotation/hg18_refseq.ucsc' % (cwd),
        'MM9': '%s/annotation/mm9_refseq.ucsc' % (cwd),
        'HG19': '%s/annotation/hg19_refseq.ucsc' % (cwd),
        'MM8': '%s/annotation/mm8_refseq.ucsc' % (cwd),
        'MM10': '%s/annotation/mm10_refseq.ucsc' % (cwd),
        'RN4': '%s/annotation/rn4_refseq.ucsc' % (cwd),
        'RN6': '%s/annotation/rn6_refseq.ucsc' % (cwd),
    }

    annotFile = genomeDict[genome.upper()]

    # MAKING THE START DICT
    print('MAKING START DICT')
    startDict = utils.makeStartDict(annotFile)

    #GET CHROMS FOUND IN THE BAMS
    print('GETTING CHROMS IN BAMFILES')
    bamChromList = getBamChromList(bamFileList)
    print("USING THE FOLLOWING CHROMS")
    print(bamChromList)

    #LOADING IN THE GFF AND FILTERING BY CHROM
    print('LOADING AND FILTERING THE GFF')
    inputGFF = filterGFF(inputGFFFile, bamChromList)
    # LOADING IN THE BOUND REGION REFERENCE COLLECTION
    print('LOADING IN GFF REGIONS')
    referenceCollection = utils.gffToLocusCollection(inputGFF)

    print('CHECKING REFERENCE COLLECTION:')
    checkRefCollection(referenceCollection)

    # MASKING REFERENCE COLLECTION
    # see if there's a mask
    if options.mask:
        maskFile = options.mask
        # if it's a bed file
        if maskFile.split('.')[-1].upper() == 'BED':
            maskGFF = utils.bedToGFF(maskFile)
        elif maskFile.split('.')[-1].upper() == 'GFF':
            maskGFF = utils.parseTable(maskFile, '\t')
        else:
            print("MASK MUST BE A .gff or .bed FILE")
            sys.exit()
        maskCollection = utils.gffToLocusCollection(maskGFF)

        # now mask the reference loci
        referenceLoci = referenceCollection.getLoci()
        filteredLoci = [
            locus for locus in referenceLoci
            if len(maskCollection.getOverlap(locus, 'both')) == 0
        ]
        print("FILTERED OUT %s LOCI THAT WERE MASKED IN %s" %
              (len(referenceLoci) - len(filteredLoci), maskFile))
        referenceCollection = utils.LocusCollection(filteredLoci, 50)

    # NOW STITCH REGIONS
    print('STITCHING REGIONS TOGETHER')
    stitchedCollection, debugOutput, stitchWindow = regionStitching(
        referenceCollection, inputName, outFolder, stitchWindow, tssWindow,
        annotFile, removeTSS)

    # NOW MAKE A STITCHED COLLECTION GFF
    print('MAKING GFF FROM STITCHED COLLECTION')
    stitchedGFF = utils.locusCollectionToGFF(stitchedCollection)
    # making sure start/stop ordering are correct
    for i in range(len(stitchedGFF)):

        line = stitchedGFF[i]
        start = int(line[3])
        stop = int(line[4])
        if start > stop:
            line[3] = stop
            line[4] = start

    print(stitchWindow)
    print(type(stitchWindow))
    if not removeTSS:
        stitchedGFFFile = '%s%s_%sKB_STITCHED.gff' % (gffFolder, inputName,
                                                      str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED' % (inputName,
                                                str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED.debug' % (gffFolder, inputName,
                                                     str(stitchWindow / 1000))
    else:
        stitchedGFFFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.gff' % (
            gffFolder, inputName, str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED_TSS_DISTAL' % (
            inputName, str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.debug' % (
            gffFolder, inputName, str(stitchWindow / 1000))

    # WRITING DEBUG OUTPUT TO DISK

    if debug:
        print('WRITING DEBUG OUTPUT TO DISK AS %s' % (debugOutFile))
        utils.unParseTable(debugOutput, debugOutFile, '\t')

    # WRITE THE GFF TO DISK
    print('WRITING STITCHED GFF TO DISK AS %s' % (stitchedGFFFile))
    utils.unParseTable(stitchedGFF, stitchedGFFFile, '\t')

    # SETTING UP THE OVERALL OUTPUT FILE
    outputFile1 = outFolder + stitchedGFFName + '_ENHANCER_REGION_MAP.txt'
    print('OUTPUT WILL BE WRITTEN TO  %s' % (outputFile1))

    # MAPPING TO THE NON STITCHED (ORIGINAL GFF)
    # MAPPING TO THE STITCHED GFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = 'bamliquidator_batch.py'

    bamFileListUnique = list(bamFileList)
    bamFileListUnique = utils.uniquify(bamFileListUnique)
    #prevent redundant mapping
    print("MAPPING TO THE FOLLOWING BAMS:")
    print(bamFileListUnique)
    for bamFile in bamFileListUnique:

        bamFileName = bamFile.split('/')[-1]

        # MAPPING TO THE STITCHED GFF
        mappedOut1Folder = '%s%s_%s_MAPPED' % (mappedFolder, stitchedGFFName,
                                               bamFileName)
        mappedOut1File = '%s%s_%s_MAPPED/matrix.txt' % (
            mappedFolder, stitchedGFFName, bamFileName)
        if utils.checkOutput(mappedOut1File, 0.2, 0.2):
            print("FOUND %s MAPPING DATA FOR BAM: %s" %
                  (stitchedGFFFile, mappedOut1File))
        else:
            cmd1 = bamliquidator_path + " --sense . -e 200 --match_bamToGFF -r %s -o %s %s" % (
                stitchedGFFFile, mappedOut1Folder, bamFile)
            print(cmd1)

            os.system(cmd1)
            if utils.checkOutput(mappedOut1File, 0.2, 5):
                print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" %
                      (stitchedGFFFile, bamFileName))
            else:
                print("ERROR: FAILED TO MAP %s FROM BAM: %s" %
                      (stitchedGFFFile, bamFileName))
                sys.exit()

    print('BAM MAPPING COMPLETED NOW MAPPING DATA TO REGIONS')
    # CALCULATE DENSITY BY REGION
    # NEED TO FIX THIS FUNCTION TO ACCOUNT FOR DIFFERENT OUTPUTS OF LIQUIDATOR
    mapCollection(stitchedCollection,
                  referenceCollection,
                  bamFileList,
                  mappedFolder,
                  outputFile1,
                  refName=stitchedGFFName)

    print('CALLING AND PLOTTING SUPER-ENHANCERS')

    if options.control:

        rankbyName = options.rankby.split('/')[-1]
        controlName = options.control.split('/')[-1]
        cmd = 'R --no-save %s %s %s %s < ROSE2_callSuper.R' % (
            outFolder, outputFile1, inputName, controlName)

    else:
        rankbyName = options.rankby.split('/')[-1]
        controlName = 'NONE'
        cmd = 'R --no-save %s %s %s %s < ROSE2_callSuper.R' % (
            outFolder, outputFile1, inputName, controlName)
    print(cmd)

    os.system(cmd)

    # calling the gene mapper
    time.sleep(20)
    superTableFile = "%s_SuperEnhancers.table.txt" % (inputName)
    if options.control:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -c %s -i %s%s &" % (
            genome, options.rankby, options.control, outFolder, superTableFile)
    else:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -i %s%s &" % (
            genome, options.rankby, outFolder, superTableFile)
    os.system(cmd)

    stretchTableFile = "%s_StretchEnhancers.table.txt" % (inputName)
    if options.control:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -c %s -i %s%s &" % (
            genome, options.rankby, options.control, outFolder,
            stretchTableFile)
    else:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -i %s%s &" % (
            genome, options.rankby, outFolder, stretchTableFile)
    os.system(cmd)

    superStretchTableFile = "%s_SuperStretchEnhancers.table.txt" % (inputName)
    if options.control:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -c %s -i %s%s &" % (
            genome, options.rankby, options.control, outFolder,
            superStretchTableFile)
    else:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -i %s%s &" % (
            genome, options.rankby, outFolder, superStretchTableFile)
    os.system(cmd)
Example #8
0
def main():
    '''
    main run call
    '''
    debug = False

    from optparse import OptionParser
    usage = "usage: %prog [options] -g [GENOME] -i [INPUT_REGION_GFF] -r [RANKBY_BAM_FILE] -o [OUTPUT_FOLDER] [OPTIONAL_FLAGS]"
    parser = OptionParser(usage=usage)
    # required flags
    parser.add_option("-i", "--i", dest="input", nargs=1, default=None,
                      help="Enter a comma separated list of .gff or .bed file of binding sites used to make enhancers")
    parser.add_option("-r", "--rankby", dest="rankby", nargs=1, default=None,
                      help="Enter a comma separated list of bams to rank by")
    parser.add_option("-o", "--out", dest="out", nargs=1, default=None,
                      help="Enter an output folder")
    parser.add_option("-g", "--genome", dest="genome", nargs=1, default=None,
                      help="Enter the genome build (MM9,MM8,HG18,HG19)")

    # optional flags
    parser.add_option("-n", "--name", dest="name", nargs=1, default=None,
                      help="Provide a name for the analysis otherwise ROSE will guess")
    parser.add_option("-c", "--control", dest="control", nargs=1, default=None,
                      help="Enter a comma separated list of control bams. Can either provide a single control bam for all rankby bams, or provide a control bam for each individual bam")
    parser.add_option("-s", "--stitch", dest="stitch", nargs=1, default='',
                      help="Enter a max linking distance for stitching. Default will determine optimal stitching parameter")
    parser.add_option("-t", "--tss", dest="tss", nargs=1, default=0,
                      help="Enter a distance from TSS to exclude. 0 = no TSS exclusion")

    parser.add_option("--mask", dest="mask", nargs=1, default=None,
                      help="Mask a set of regions from analysis.  Provide a .bed or .gff of masking regions")

    # RETRIEVING FLAGS
    (options, args) = parser.parse_args()

    if not options.input or not options.rankby or not options.out or not options.genome:
        print('hi there')
        parser.print_help()
        exit()

    # making the out folder if it doesn't exist
    outFolder = utils.formatFolder(options.out, True)

    # figuring out folder schema
    gffFolder = utils.formatFolder(outFolder + 'gff/', True)
    mappedFolder = utils.formatFolder(outFolder + 'mappedGFF/', True)

    # GETTING INPUT FILE(s)

    inputList = [inputFile for inputFile in  options.input.split(',') if len(inputFile) > 1]

    #converting all input files into GFFs and moving into the GFF folder
    inputGFFList = []
    for inputFile in inputList:
        if inputFile.split('.')[-1] == 'bed':
            # CONVERTING A BED TO GFF
            inputGFFName = inputFile.split('/')[-1][0:-4] #strips the last 4 characters i.e. '.bed'
            inputGFFFile = '%s%s.gff' % (gffFolder, inputGFFName)
            utils.bedToGFF(inputFile, inputGFFFile)
        elif options.input.split('.')[-1] == 'gff':
            # COPY THE INPUT GFF TO THE GFF FOLDER

            os.system('cp %s %s' % (inputFile, gffFolder))
            inputGFFFile = '%s%s' % (gffFolder,inputFile.split('/')[-1])

        else:
            print('WARNING: INPUT FILE DOES NOT END IN .gff or .bed. ASSUMING .gff FILE FORMAT')
            # COPY THE INPUT GFF TO THE GFF FOLDER
            os.system('cp %s %s' % (inputFile, gffFolder))
            inputGFFFile = '%s%s' % (gffFolder,inputFile.split('/')[-1])
        inputGFFList.append(inputGFFFile)
                                    

    # GETTING THE LIST OF BAMFILES TO PROCESS
    #either same number of bams for rankby and control 
    #or only 1 control #or none!
    #bamlist should be all rankby bams followed by control bams

    
    bamFileList = []
    if options.control:
        controlBamList = [bam for bam in options.control.split(',') if len(bam) >0]
        rankbyBamList = [bam for bam in options.rankby.split(',') if len(bam) >0]

        if len(controlBamList) == len(rankbyBamList):
            #case where an equal number of backgrounds are given
            bamFileList = rankbyBamList + controlBamList
        elif len(controlBamList) == 1:
            #case where a universal background is applied
            bamFileList = rankbyBamList + controlBamList*len(rankbyBamList)
        else:
            print('ERROR: EITHER PROVIDE A SINGLE CONTROL BAM FOR ALL SAMPLES, OR ONE CONTROL BAM FOR EACH SAMPLE')
            sys.exit()
    else:
        bamFileList = [bam for bam in options.rankby.split(',') if len(bam) > 0]




    # Stitch parameter
    if options.stitch == '':
        stitchWindow = ''
    else:
        stitchWindow = int(options.stitch)

    # tss options
    tssWindow = int(options.tss)
    if tssWindow != 0:
        removeTSS = True
    else:
        removeTSS = False


    # GETTING THE GENOME
    genome = string.upper(options.genome)
    print('USING %s AS THE GENOME' % (genome))

    # GETTING THE CORRECT ANNOT FILE

    genomeDict = {
        'HG18': '%s/annotation/hg18_refseq.ucsc' % (pipeline_dir),
        'MM9': '%s/annotation/mm9_refseq.ucsc' % (pipeline_dir),
        'HG19': '%s/annotation/hg19_refseq.ucsc' % (pipeline_dir),
        'MM8': '%s/annotation/mm8_refseq.ucsc' % (pipeline_dir),
        'MM10': '%s/annotation/mm10_refseq.ucsc' % (pipeline_dir),
        'RN4': '%s/annotation/rn4_refseq.ucsc' % (pipeline_dir),
    }

    try:
        annotFile = genomeDict[genome.upper()]
    except KeyError:
        print('ERROR: UNSUPPORTED GENOMES TYPE %s' % (genome))
        sys.exit()


    #FINDING THE ANALYSIS NAME
    if options.name:
        inputName = options.name
    else:
        inputName = inputGFFList[0].split('/')[-1].split('.')[0]
    print('USING %s AS THE ANALYSIS NAME' % (inputName))


    print('FORMATTING INPUT REGIONS')
    # MAKING THE RAW INPUT FILE FROM THE INPUT GFFs
    #use a simpler unique region naming system 
    if len(inputGFFList) == 1:
        inputGFF = utils.parseTable(inputGFFList[0],'\t')
    else:
        inputLoci = []
        for gffFile in inputGFFList:
            print('\tprocessing %s' % (gffFile))
            gff = utils.parseTable(gffFile,'\t')
            gffCollection = utils.gffToLocusCollection(gff,50)
            inputLoci += gffCollection.getLoci()


        inputCollection = utils.LocusCollection(inputLoci,50)
        inputCollection = inputCollection.stitchCollection() # stitches to produce unique regions

        inputGFF = utils.locusCollectionToGFF(inputCollection)

    formattedGFF = []
    #now number things appropriately
    for i,line in enumerate(inputGFF):
        
        #use the coordinates to make a new id inputname_chr_sense_start_stop
        chrom = line[0]
        coords = [int(line[3]) ,int(line[4])]
        sense = line[6]

        lineID = '%s_%s' % (inputName,str(i+1)) #1 indexing
        
        newLine = [chrom,lineID,lineID,min(coords),max(coords),'',sense,'',lineID]
        formattedGFF.append(newLine)
        
    #name of the master input gff file
    masterGFFFile = '%s%s_%s_ALL_-0_+0.gff' % (gffFolder,string.upper(genome),inputName)
    utils.unParseTable(formattedGFF,masterGFFFile,'\t')

    print('USING %s AS THE INPUT GFF' % (masterGFFFile))


    # MAKING THE START DICT
    print('MAKING START DICT')
    startDict = utils.makeStartDict(annotFile)

    #GET CHROMS FOUND IN THE BAMS
    print('GETTING CHROMS IN BAMFILES')
    bamChromList = getBamChromList(bamFileList)
    print("USING THE FOLLOWING CHROMS")
    print(bamChromList)

    #LOADING IN THE GFF AND FILTERING BY CHROM
    print('LOADING AND FILTERING THE GFF')
    inputGFF = filterGFF(masterGFFFile,bamChromList)
    # LOADING IN THE BOUND REGION REFERENCE COLLECTION
    print('LOADING IN GFF REGIONS')
    referenceCollection = utils.gffToLocusCollection(inputGFF)

    print('CHECKING REFERENCE COLLECTION:')
    checkRefCollection(referenceCollection)
        

    # MASKING REFERENCE COLLECTION
    # see if there's a mask
    if options.mask:
        maskFile = options.mask
        # if it's a bed file
        if maskFile.split('.')[-1].upper() == 'BED':
            maskGFF = utils.bedToGFF(maskFile)
        elif maskFile.split('.')[-1].upper() == 'GFF':
            maskGFF = utils.parseTable(maskFile, '\t')
        else:
            print("MASK MUST BE A .gff or .bed FILE")
            sys.exit()
        maskCollection = utils.gffToLocusCollection(maskGFF)

        # now mask the reference loci
        referenceLoci = referenceCollection.getLoci()
        filteredLoci = [locus for locus in referenceLoci if len(maskCollection.getOverlap(locus, 'both')) == 0]
        print("FILTERED OUT %s LOCI THAT WERE MASKED IN %s" % (len(referenceLoci) - len(filteredLoci), maskFile))
        referenceCollection = utils.LocusCollection(filteredLoci, 50)

    # NOW STITCH REGIONS
    print('STITCHING REGIONS TOGETHER')
    stitchedCollection, debugOutput, stitchWindow = regionStitching(referenceCollection, inputName, outFolder, stitchWindow, tssWindow, annotFile, removeTSS)

    # NOW MAKE A STITCHED COLLECTION GFF
    print('MAKING GFF FROM STITCHED COLLECTION')
    stitchedGFF = utils.locusCollectionToGFF(stitchedCollection)

    print(stitchWindow)
    print(type(stitchWindow))
    if not removeTSS:
        stitchedGFFFile = '%s%s_%sKB_STITCHED.gff' % (gffFolder, inputName, str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED' % (inputName, str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED.debug' % (gffFolder, inputName, str(stitchWindow / 1000))
    else:
        stitchedGFFFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.gff' % (gffFolder, inputName, str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED_TSS_DISTAL' % (inputName, str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.debug' % (gffFolder, inputName, str(stitchWindow / 1000))

    # WRITING DEBUG OUTPUT TO DISK

    if debug:
        print('WRITING DEBUG OUTPUT TO DISK AS %s' % (debugOutFile))
        utils.unParseTable(debugOutput, debugOutFile, '\t')

    # WRITE THE GFF TO DISK
    print('WRITING STITCHED GFF TO DISK AS %s' % (stitchedGFFFile))
    utils.unParseTable(stitchedGFF, stitchedGFFFile, '\t')

    # SETTING UP THE OVERALL OUTPUT FILE
    outputFile1 = outFolder + stitchedGFFName + '_ENHANCER_REGION_MAP.txt'
    print('OUTPUT WILL BE WRITTEN TO  %s' % (outputFile1))



    # MAPPING TO THE NON STITCHED (ORIGINAL GFF)
    # MAPPING TO THE STITCHED GFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.



    bamFileListUnique = list(bamFileList)
    bamFileListUnique = utils.uniquify(bamFileListUnique)
    #prevent redundant mapping
    print("MAPPING TO THE FOLLOWING BAMS:")
    print(bamFileListUnique)
    for bamFile in bamFileListUnique:

        bamFileName = bamFile.split('/')[-1]

        # MAPPING TO THE STITCHED GFF
        mappedOut1Folder = '%s%s_%s_MAPPED' % (mappedFolder, stitchedGFFName, bamFileName)
        mappedOut1File = '%s%s_%s_MAPPED/matrix.txt' % (mappedFolder, stitchedGFFName, bamFileName)
        if utils.checkOutput(mappedOut1File, 0.2, 0.2):
            print("FOUND %s MAPPING DATA FOR BAM: %s" % (stitchedGFFFile, mappedOut1File))
        else:
            cmd1 = bamliquidator_path + " --sense . -e 200 --match_bamToGFF -r %s -o %s %s" % (stitchedGFFFile, mappedOut1Folder, bamFile)
            print(cmd1)

            os.system(cmd1)
            if utils.checkOutput(mappedOut1File,0.2,5):
                print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (stitchedGFFFile, bamFileName))
            else:
                print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (stitchedGFFFile, bamFileName))
                sys.exit()

    print('BAM MAPPING COMPLETED NOW MAPPING DATA TO REGIONS')
    # CALCULATE DENSITY BY REGION
    # NEED TO FIX THIS FUNCTION TO ACCOUNT FOR DIFFERENT OUTPUTS OF LIQUIDATOR
    mapCollection(stitchedCollection, referenceCollection, bamFileList, mappedFolder, outputFile1, refName=stitchedGFFName)


    print('FINDING AVERAGE SIGNAL AMONGST BAMS')
    metaOutputFile = collapseRegionMap(outputFile1,inputName + '_MERGED_SIGNAL',controlBams=options.control)

    #now try the merging

    print('CALLING AND PLOTTING SUPER-ENHANCERS')



    rankbyName = inputName + '_MERGED_SIGNAL'
    controlName = 'NONE'
    cmd = 'Rscript %sROSE2_callSuper.R %s %s %s %s' % (pipeline_dir,outFolder, metaOutputFile, inputName, controlName)
    print(cmd)

    os.system(cmd)
    

    # calling the gene mapper
    print('CALLING GENE MAPPING')

    superTableFile = "%s_SuperEnhancers.table.txt" % (inputName)

    #for now don't use ranking bam to call top genes
    cmd = "python %sROSE2_geneMapper.py -g %s -i %s%s -f" % (pipeline_dir,genome, outFolder, superTableFile)
    print(cmd)
    os.system(cmd)


    stretchTableFile = "%s_StretchEnhancers.table.txt" % (inputName)
 
    cmd = "python %sROSE2_geneMapper.py -g %s -i %s%s -f" % (pipeline_dir,genome, outFolder, stretchTableFile)
    print(cmd)
    os.system(cmd)


    superStretchTableFile = "%s_SuperStretchEnhancers.table.txt" % (inputName)

    cmd = "python %sROSE2_geneMapper.py -g %s -i %s%s -f" % (pipeline_dir,genome, outFolder, superStretchTableFile)
    os.system(cmd)
Example #9
0
def mapEnhancerToGene(annotFile,enhancerFile,transcribedFile='',uniqueGenes=True,searchWindow =50000,noFormatTable = False):
    
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerTable = utils.parseTable(enhancerFile,'\t')

    #internal parameter for debugging
    byRefseq = False


    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile,'\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(annotFile,0,0,500,transcribedGenes)


    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))


    #this turns the tssLoci list into a LocusCollection
    #50 is the internal parameter for LocusCollection and doesn't really matter
    tssCollection = utils.LocusCollection(tssLoci,50)

    

    geneDict = {'overlapping':defaultdict(list),'proximal':defaultdict(list)}

    #dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict= defaultdict(list)

    #list of all genes that appear in this analysis
    overallGeneList = []

    if noFormatTable:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE']]

        
    else:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0][0:9]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE'] + enhancerTable[5][-2:]]

        #next by gene
        geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS']]

    #next make the gene to enhancer table
    geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS','ENHANCER_RANKS','IS_SUPER']]

        


    for line in enhancerTable:
        if line[0][0] =='#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1],line[2],line[3])
        
        enhancerLocus = utils.Locus(line[1],line[2],line[3],'.',line[0])

        #overlapping genes are transcribed genes whose transcript is directly in the stitchedLocus         
        overlappingLoci = transcribedCollection.getOverlap(enhancerLocus,'both')           
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:                
            overlappingGenes.append(overlapLocus.ID())

        #proximalGenes are transcribed genes where the tss is within 50kb of the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,searchWindow,searchWindow),'both')           
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())


        distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,1000000,1000000),'both')           
        distalGenes =[]
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

            
            
        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        #these checks make sure each gene list is unique.
        #technically it is possible for a gene to be overlapping, but not proximal since the
        #gene could be longer than the 50kb window, but we'll let that slide here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)


        #Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            #get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3]))/2

            #get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            #get the ID and convert to name
            closestGene = startDict[allEnhancerGenes[distList.index(min(distList))]]['name']

        #NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        #Now grab all overlapping and proximal genes for the gene ordered table

        overallGeneList +=overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))
            
        overallGeneList+=proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))



    #End loop through
    
    #Make table by gene
    overallGeneList = utils.uniquify(overallGeneList)  

    #use enhancer rank to order
    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
        
    usedNames = []
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:

            continue
        else:
            usedNames.append(geneName)
        
        proxEnhancers = geneDict['overlapping'][refID]+geneDict['proximal'][refID]
        
        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]],',')
    
        newLine = [geneName,refID,join(proxEnhancers,','),enhancerRanks,superStatus]
        geneToEnhancerTable.append(newLine)

    #resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable,geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2]) for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i+1)])

        return sortedTable,geneToEnhancerTable
Example #10
0
def mapEnhancerToGeneTop(rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile='', uniqueGenes=True, searchWindow=50000, noFormatTable=False):
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerName = enhancerFile.split('/')[-1].split('.')[0]
    enhancerTable = utils.parseTable(enhancerFile, '\t')

    # internal parameter for debugging
    byRefseq = False

    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile, '\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(
        annotFile, 0, 0, 500, transcribedGenes)

    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID, startDict, 0, 0))

    # this turns the tssLoci list into a LocusCollection
    # 50 is the internal parameter for LocusCollection and doesn't really
    # matter
    tssCollection = utils.LocusCollection(tssLoci, 50)

    geneDict = {'overlapping': defaultdict(
        list), 'proximal': defaultdict(list)}

    # dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict = defaultdict(list)

    # list of all genes that appear in this analysis
    overallGeneList = []

    # find the damn header
    for line in enhancerTable:
        if line[0][0] == '#':
            continue
        else:
            header = line
            break

    if noFormatTable:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE']]

    else:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header[0:9] + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE'] + header[-2:]]

        # next by gene
        geneToEnhancerTable = [
            ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS']]

    # next make the gene to enhancer table
    geneToEnhancerTable = [
        ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS', 'ENHANCER_RANKS', 'IS_SUPER', 'ENHANCER_SIGNAL']]

    for line in enhancerTable:
        if line[0][0] == '#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1], line[2], line[3])

        enhancerLocus = utils.Locus(line[1], line[2], line[3], '.', line[0])

        # overlapping genes are transcribed genes whose transcript is directly
        # in the stitchedLocus
        overlappingLoci = transcribedCollection.getOverlap(
            enhancerLocus, 'both')
        overlappingGenes = []
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # proximalGenes are transcribed genes where the tss is within 50kb of
        # the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, searchWindow, searchWindow), 'both')
        proximalGenes = []
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())

        distalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, 1000000, 1000000), 'both')
        distalGenes = []
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        # these checks make sure each gene list is unique.
        # technically it is possible for a gene to be overlapping, but not proximal since the
        # gene could be longer than the 50kb window, but we'll let that slide
        # here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)

        # Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            # get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3])) / 2

            # get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in allEnhancerGenes]
            # get the ID and convert to name
            closestGene = startDict[
                allEnhancerGenes[distList.index(min(distList))]]['name']

        # NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        # Now grab all overlapping and proximal genes for the gene ordered
        # table

        overallGeneList += overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

        overallGeneList += proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

    # End loop through
    # Make table by gene
    print('MAKING ENHANCER ASSOCIATED GENE TSS COLLECTION')
    overallGeneList = utils.uniquify(overallGeneList)

    #get the chromLists from the various bams here
    cmd = 'samtools idxstats %s' % (rankByBamFile)
    idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
    idxStats= idxStats.communicate()
    bamChromList = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
    
    if len(controlBamFile) > 0:
        cmd = 'samtools idxstats %s' % (controlBamFile)
        idxStats = subprocess.Popen(cmd,stdout=subprocess.PIPE,shell=True)
        idxStats= idxStats.communicate()
        bamChromListControl = [line.split('\t')[0] for line in idxStats[0].split('\n')[0:-2]]
        bamChromList = [chrom for chrom in bamChromList if bamChromListControl.count(chrom) != 0]



    #now make sure no genes have a bad chrom 
    overallGeneList = [gene for gene in overallGeneList if bamChromList.count(startDict[gene]['chr']) != 0]

    
    #now make an enhancer collection of all transcripts    
    enhancerGeneCollection = utils.makeTranscriptCollection(
        annotFile, 5000, 5000, 500, overallGeneList)

    enhancerGeneGFF = utils.locusCollectionToGFF(enhancerGeneCollection)

    # dump the gff to file
    enhancerFolder = utils.getParentFolder(enhancerFile)
    gffRootName = "%s_TSS_ENHANCER_GENES_-5000_+5000" % (genome)
    enhancerGeneGFFFile = "%s%s_%s.gff" % (enhancerFolder, enhancerName,gffRootName)
    utils.unParseTable(enhancerGeneGFF, enhancerGeneGFFFile, '\t')

    # now we need to run bamToGFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = 'bamliquidator_batch'


    print('MAPPING SIGNAL AT ENHANCER ASSOCIATED GENE TSS')
    # map density at genes in the +/- 5kb tss region
    # first on the rankBy bam
    bamName = rankByBamFile.split('/')[-1]
    mappedRankByFolder = "%s%s_%s_%s/" % (enhancerFolder, enhancerName,gffRootName, bamName)
    mappedRankByFile = "%s%s_%s_%s/matrix.txt" % (enhancerFolder,enhancerName, gffRootName, bamName)
    cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedRankByFolder,rankByBamFile)
    print("Mapping rankby bam %s" % (rankByBamFile))
    print(cmd)
    os.system(cmd)

    #check for completion
    if utils.checkOutput(mappedRankByFile,0.2,5):
        print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
    else:
        print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
        sys.exit()

    # next on the control bam if it exists
    if len(controlBamFile) > 0:
        controlName = controlBamFile.split('/')[-1]
        mappedControlFolder = "%s%s_%s_%s/" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        mappedControlFile = "%s%s_%s_%s/matrix.txt" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        cmd = bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedControlFolder,controlBamFile)
        print("Mapping control bam %s" % (controlBamFile))
        print(cmd)
        os.system(cmd)

        #check for completion
        if utils.checkOutput(mappedControlFile,0.2,5):
            print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
        else:
            print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
            sys.exit()

    # now get the appropriate output files
    if len(controlBamFile) > 0:
        print("CHECKING FOR MAPPED OUTPUT AT %s AND %s" %
              (mappedRankByFile, mappedControlFile))
        if utils.checkOutput(mappedRankByFile, 1, 1) and utils.checkOutput(mappedControlFile, 1, 1):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile, mappedControlFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()
    else:
        print("CHECKING FOR MAPPED OUTPUT AT %s" % (mappedRankByFile))
        if utils.checkOutput(mappedRankByFile, 1, 30):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()

    # use enhancer rank to order

    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])

    usedNames = []

    # make a new dict to hold TSS signal by max per geneName
    geneNameSigDict = defaultdict(list)
    print('MAKING GENE TABLE')
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:
            continue
        else:
            usedNames.append(geneName)

        proxEnhancers = geneDict['overlapping'][
            refID] + geneDict['proximal'][refID]

        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]], ',')

        enhancerSignal = signalDict[refID]
        geneNameSigDict[geneName].append(enhancerSignal)

        newLine = [geneName, refID, join(
            proxEnhancers, ','), enhancerRanks, superStatus, enhancerSignal]
        geneToEnhancerTable.append(newLine)
    #utils.unParseTable(geneToEnhancerTable,'/grail/projects/newRose/geneMapper/foo.txt','\t')
    print('MAKING ENHANCER TO TOP GENE TABLE')

    if noFormatTable:
        enhancerToTopGeneTable = [
            enhancerToGeneTable[0] + ['TOP_GENE', 'TSS_SIGNAL']]
    else:
        enhancerToTopGeneTable = [enhancerToGeneTable[0][0:12] + [
            'TOP_GENE', 'TSS_SIGNAL'] + enhancerToGeneTable[0][-2:]]

    for line in enhancerToGeneTable[1:]:

        geneList = []
        if noFormatTable:
            geneList += line[-3].split(',')
            geneList += line[-2].split(',')

        else:
            geneList += line[10].split(',')
            geneList += line[11].split(',')

        geneList = utils.uniquify([x for x in geneList if len(x) > 0])
        if len(geneList) > 0:
            try:
                sigVector = [max(geneNameSigDict[x]) for x in geneList]
                maxIndex = sigVector.index(max(sigVector))
                maxGene = geneList[maxIndex]
                maxSig = sigVector[maxIndex]
                if maxSig == 0.0:
                    maxGene = 'NONE'
                    maxSig = 'NONE'
            except ValueError:
                if len(geneList) == 1:
                    maxGene = geneList[0]
                    maxSig = 'NONE'    
                else:
                    maxGene = 'NONE'
                    maxSig = 'NONE'    
        else:
            maxGene = 'NONE'
            maxSig = 'NONE'
        if noFormatTable:
            newLine = line + [maxGene, maxSig]
        else:
            newLine = line[0:12] + [maxGene, maxSig] + line[-2:]
        enhancerToTopGeneTable.append(newLine)

    # resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2])
                                    for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        sortedTopGeneTable = [enhancerToTopGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i + 1)])
            sortedTopGeneTable.append(enhancerToTopGeneTable[(i + 1)])

        return sortedTable, sortedTopGeneTable, geneToEnhancerTable
Example #11
0
def findCanidateTFs(genome, enhancer_gff, expressedNM, expressionDictNM,
                    bamFile, TFlist, refseqToNameDict, projectFolder, projectName, promoter):
    '''                                                           
    Assign each Super-Enhancer to the closest active TSS to its center
    Return a dictionary keyed by TF that points to a list of loci 
    '''
    
    #loading in the enhancer gff regions
    enhancer_collection = utils.gffToLocusCollection(enhancer_gff)
    enhancer_loci = enhancer_collection.getLoci()


    #loading in the genome and TF info
    annot_file = genome.returnFeature('annot_file')
    startDict = utils.makeStartDict(annot_file)    

    tf_table = utils.parseTable(genome.returnFeature('tf_file'),'\t')
    refID_list = [line[0] for line in tf_table] #creates a list of all NM IDs for TFs

    #make a collection of all TF TSSs
    tssLoci = []
    for refID in refID_list:
        tssLoci.append(utils.makeTSSLocus(refID,startDict,0,0)) #this is a precise 1 coordinate TSS locus
    tssCollection = utils.LocusCollection(tssLoci,50)    



    enhancerTable = [['ENHANCER_ID','CHROM','START','STOP','GENE_LIST']]

    gene_to_enhancer_dict = defaultdict(list)
    # Loop through enhancers
    #all gene nnames stored by refID
    for enhancer in enhancer_loci:
        

        # If the enhancer overlaps a TSS, save it
        overlapping_loci = tssCollection.getOverlap(enhancer, 'both')
        overlapping_refIDs =[locus.ID() for locus in overlapping_loci]

        # Find all gene TSS within 100 kb
        proximal_loci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,100000,100000),'both')
        proximal_refIDs =[locus.ID() for locus in proximal_loci]
        
        # If no genes are within 100 kb, find the closest active gene within 1 million bp
        closest_refID = []
        if len(overlapping_refIDs) == 0 and len(proximal_refIDs) == 0:
        
            distal_loci = tssCollection.getOverlap(utils.makeSearchLocus(enhancer,1000000,1000000),'both')
            distal_refIDs =[locus.ID() for locus in distal_loci]

            enhancerCenter = (int(enhancer.start()) + int(enhancer.end())) / 2
            distance_list = [abs(enhancerCenter - startDict[geneID]['start'][0])
                             for geneID in distal_refIDs]
            if len(distance_list) > 0:
                closest_refID = [distalGenes[distance_list.index(min(distance_list))]]

        #now we have all potential gene cases
        all_refIDs = overlappingGenes + proximalGenes + closest_refID
        
        #now we get all names and refIDs
        all_refIDs = utils.uniquify([refID for refID in all_refIDs if len(refID) > 0 ])
        all_names = utils.uniquify([startDict[refID]['name'] for refID in all_refIDs])
        
        #first do enhancer level assignment
        names_string = ','.join(all_names)
        enhancer_table.append([enhancer.ID(),enhancer.chr(),enhancer.start(),enhancer.end(),names_string])

        #now do gene level assignment
        for refID in all_refIDs:
            gene_to_enhancer_dict[refID].append(enhancer.ID())

        #an enhancer can be assigned to multiple genes
        #a promoter can only be assigned to 1 gene
        #promoters don't have enhancerIDs so don't add them yet
        #this should just be an enhancer level table
        #followed by a gene level table



        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)
 

        # If a TSS overlaps an enhancer, assign them together
        if overlappingGenes:
            for gene in overlappingGenes:
                if gene in tf_list:
                    TFtoEnhancerDict[gene].append(enhancer)
                    enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
                
        # Otherwise, assign the enhancer to the most active gene in 100 kb
        elif not overlappingGenes and proximalGenes:
            highestGene = ''
            highestActivity = 0
            for gene in proximalGenes:
                if expressionDictNM[gene] > highestActivity:
                    highestActivity = expressionDictNM[gene]
                    highestGene = gene
            if highestGene in TFlist:
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])
            
        elif not overlappingGenes and not proximalGenes and closestGene:
            if closestGene in TFlist:
                gene = closestGene
                TFtoEnhancerDict[gene].append(enhancer)
                enhancerAssignment.append([gene, enhancer.chr(), enhancer.start(), enhancer.end(), enhancer.ID()])

    # Add promoter is it's not contained in the super
    if promoter:
        for gene in TFtoEnhancerDict.keys():
            promoter = utils.Locus(startDict[gene]['chr'], int(startDict[gene]['start'][0]) - 2000, 
                                   int(startDict[gene]['start'][0]) + 2000, startDict[gene]['sense'])
            overlapBool = False
            for enhancer in TFtoEnhancerDict[gene]:
                if promoter.overlaps(enhancer):
                    overlapBool = True
            if not overlapBool:
                TFtoEnhancerDict[gene].append(promoter)

    seAssignmentFile = projectFolder + projectName + '_ENHANCER_ASSIGNMENT.txt'
    utils.unParseTable(enhancerAssignment, seAssignmentFile, '\t')

    return TFtoEnhancerDict
Example #12
0
def binPeakTable(peak_table_path,activity_path,binSize = 1000000,output = ''):

    '''
    calculates the promoter/enahncer AUC signal
    across bins
    sets the output to the same path unless otherwise specified
    '''


    if len(output) == 0:
        output = string.replace(peak_table,'.txt','bin_table.txt')

        
    binSize = int(binSize)
    
    stepSize = binSize/2

    activityTable = utils.parseTable(activity_path,'\t')
    startDict = utils.makeStartDict(annotFile)
    tssLoci = []

    print('making tss collection for active genes')
    for line in activityTable:
        tssLoci.append(utils.makeTSSLocus(line[1],startDict,0,0))

    tssCollection = utils.LocusCollection(tssLoci,50)
    

    promoterDict = {}
    enhancerDict = {}
    tssDict = {}
    #hard wired for hg19
    chrom_path = '/ark/home/cl512/pipeline/annotation/hg19.chrom.sizes'

    chrom_table = utils.parseTable(chrom_path,'\t')

    chromDict = {}
    for line in chrom_table:
        chromDict[line[0]] = int(line[1])

    chromList = ['chr'+str(i) for i in range(1,23)] + ['chrX','chrY'] #set the hg19 chroms
    #need to seed the dict
    for chrom in chromList:
        promoterDict[chrom] = defaultdict(float)
        enhancerDict[chrom] = defaultdict(float)
        tssDict[chrom] =defaultdict(int) # dict to count active promoters
    #now as we iterate through the peak table

    peak_table = utils.parseTable(peak_table_path,'\t')
    print('filling in enhancer dict')
    for line in peak_table[1:]:

        chrom = line[1]
        
        signal = float(line[9])*int(line[4])

        #for approximation use the center coordinate to assign bin
        #every region should be in 2 bins
        center = (int(line[2]) + int(line[3]))/2

        first_bin = center/stepSize

        if center % stepSize < stepSize:
            second_bin = first_bin - 1
        else:
            second_bin = first_bin + 1

        if int(line[5]) == 1:
            promoterDict[chrom][first_bin] +=signal
            promoterDict[chrom][second_bin] +=signal
        else:
            enhancerDict[chrom][first_bin] +=signal
            enhancerDict[chrom][second_bin] +=signal
        

    #now load up the new peak table
    outTable = [['BIN','CHROM','START','STOP','TSS_COUNT','PROMOTER','ENHANCER']]
    print('making out table')
    for chrom in chromList:
        print(chrom)
        chromLength = chromDict[chrom]

        for i in range(chromLength/stepSize):
            bin_start = i*stepSize + 1
            bin_stop =  i*stepSize + binSize
            bin_locus = utils.Locus(chrom,bin_start,bin_stop,'.')
            overlapTSSCount = len(tssCollection.getOverlap(bin_locus,'both'))

            bin_id = '%s_%s' % (chrom,str(i+1))

            promoterSignal = promoterDict[chrom][i]
            enhancerSignal = enhancerDict[chrom][i]
            
            newLine = [bin_id,chrom,bin_start,bin_stop,overlapTSSCount,promoterSignal,enhancerSignal]
            outTable.append(newLine)


    utils.unParseTable(outTable,output,'\t')
    return outTable
Example #13
0
#
#####

import sys
sys.path.append('/ark/home/af661/src/utils/')
import utils

from collections import defaultdict
from string import upper
import numpy as np
from math import log

# Annotation file for hg19

annotationFile = '/ark/home/cl512/pipeline/annotation/hg19_refseq.ucsc'
startDict = utils.makeStartDict(annotationFile)

print 'making TSS loci'
tssLoci = []
counter = 0
for gene in startDict:
    counter += 1
    if counter % 1000 == 0:
        print counter
    tssLoci.append(utils.makeTSSLocus(gene, startDict, 100000,
                                      100000))  # proximal = within 100kb
tssCollection = utils.LocusCollection(tssLoci, 200)

print 'converting gene names'
refseqToNameDict = {}
annotTable = utils.parseTable(annotationFile, '\t')
Example #14
0
def make_shep21_mycn_landscape(nb_all_chip_dataFile):
    '''
    finds mycn peaks in shep21 that are conserved in nb and segregates them into promoter or enhancer
    '''

    #first get the shep21 regions

    print('LOADING SHEP21 MYCN SITES')
    dataDict = pipeline_dfci.loadDataTable(nb_all_chip_dataFile)
    shep21_0hr_mycn_enriched_file = '%s%s' % (
        macsEnrichedFolder,
        dataDict['SHEP21_0HR_MYCN_NOSPIKE']['enrichedMacs'])
    shep21_0hr_mycn_bed = utils.parseTable(shep21_0hr_mycn_enriched_file, '\t')

    #now get the conserved NB MYCN regions
    nb_conserved_mycn_gff_file = '%sHG19_NB_MYCN_CONSERVED_-0_+0.gff' % (
        gffFolder)
    nb_conserved_mycn_collection = utils.gffToLocusCollection(
        nb_conserved_mycn_gff_file)

    print('LOADING SHEP21 ACTIVE ENHANCERS')
    #make a collection of enhancers
    shep21_enhancer_file = '%senhancer_rose/SHEP21_0HR_H3K27AC_NOSPIKE_ROSE/SHEP21_0HR_H3K27AC_NOSPIKE_peaks_AllEnhancers.table.txt' % (
        projectFolder)
    shep21_enhancer_collection = utils.makeSECollection(
        shep21_enhancer_file, 'SHEP21_0HR_H3K27AC_NOSPIKE')

    #now get the active promoters
    print('LOADING SHEP21 ACTIVE PROMOTERS')
    startDict = utils.makeStartDict(annotFile)
    shep21_transcribed_file = '%sHG19_SHEP21_H3K27AC_TRANSCRIBED.txt' % (
        geneListFolder)
    shep21_transcribed_table = utils.parseTable(shep21_transcribed_file, '\t')
    transcribedList = [line[1] for line in shep21_transcribed_table]
    tssLoci = []
    for refID in transcribedList:
        tssLoci.append(utils.makeTSSLocus(refID, startDict, 1000, 1000))

    shep21_tss_collection = utils.LocusCollection(tssLoci, 50)

    #now initialize the 6 gffs we will need
    shep21_mycn_conserved_gff = []
    shep21_mycn_conserved_gff_5kb = []
    shep21_mycn_conserved_gff_1kb = []

    shep21_mycn_conserved_promoter_gff = []
    shep21_mycn_conserved_promoter_gff_1kb = []
    shep21_mycn_conserved_promoter_gff_5kb = []

    shep21_mycn_conserved_enhancer_gff = []
    shep21_mycn_conserved_enhancer_gff_1kb = []
    shep21_mycn_conserved_enhancer_gff_5kb = []

    #and their respective file names
    shep21_mycn_conserved_gff_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_-0_+0.gff' % (
        gffFolder)
    shep21_mycn_conserved_gff_5kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_-5kb_+5kb.gff' % (
        gffFolder)
    shep21_mycn_conserved_gff_1kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_-1kb_+1kb.gff' % (
        gffFolder)

    shep21_mycn_conserved_promoter_gff_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_PROMOTER_-0_+0.gff' % (
        gffFolder)
    shep21_mycn_conserved_promoter_gff_5kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_PROMOTER_-5kb_+5kb.gff' % (
        gffFolder)
    shep21_mycn_conserved_promoter_gff_1kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_PROMOTER_-1kb_+1kb.gff' % (
        gffFolder)

    shep21_mycn_conserved_enhancer_gff_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_ENHANCER_-0_+0.gff' % (
        gffFolder)
    shep21_mycn_conserved_enhancer_gff_5kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_ENHANCER_-5kb_+5kb.gff' % (
        gffFolder)
    shep21_mycn_conserved_enhancer_gff_1kb_file = '%sHG19_SHEP21_0HR_MYCN_NOSPIKE_CONSERVED_ENHANCER_-1kb_+1kb.gff' % (
        gffFolder)

    print('ITERATING THROUGH SHEP21 MYCN PEAKS')

    ticker = 0
    for line in shep21_0hr_mycn_bed:
        if ticker % 1000 == 0:
            print ticker
        ticker += 1
        peakID = '%s_%s' % ('SHEP21_0HR_MYCN_NOSPIKE', str(ticker))

        lineLocus = utils.Locus(line[0], line[1], line[2], '.', peakID)

        if nb_conserved_mycn_collection.getOverlap(lineLocus):

            gffLine = [
                line[0], peakID, peakID, line[1], line[2], '', '.', '', peakID
            ]
            peakCenter = (int(line[1]) + int(line[2])) / 2
            gffLine_5kb = [
                line[0], peakID, peakID, peakCenter - 5000, peakCenter + 5000,
                '', '.', '', peakID
            ]
            #the 1kb is not a center +/- but a flank
            gffLine_1kb = [
                line[0], peakID, peakID,
                int(line[1]) - 1000,
                int(line[2]) + 1000, '', '.', '', peakID
            ]

            shep21_mycn_conserved_gff.append(gffLine)
            shep21_mycn_conserved_gff_5kb.append(gffLine_5kb)
            shep21_mycn_conserved_gff_1kb.append(gffLine_1kb)

            #tss overlap should take precedence over enhancer overlap
            if shep21_tss_collection.getOverlap(lineLocus, 'both'):
                shep21_mycn_conserved_promoter_gff.append(gffLine)
                shep21_mycn_conserved_promoter_gff_5kb.append(gffLine_5kb)
                shep21_mycn_conserved_promoter_gff_1kb.append(gffLine_1kb)
            #now check for enhancer overlap
            elif shep21_enhancer_collection.getOverlap(lineLocus, 'both'):
                shep21_mycn_conserved_enhancer_gff.append(gffLine)
                shep21_mycn_conserved_enhancer_gff_5kb.append(gffLine_5kb)
                shep21_mycn_conserved_enhancer_gff_1kb.append(gffLine_1kb)

    #now write out the gffs
    utils.unParseTable(shep21_mycn_conserved_gff,
                       shep21_mycn_conserved_gff_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_gff_5kb,
                       shep21_mycn_conserved_gff_5kb_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_gff_1kb,
                       shep21_mycn_conserved_gff_1kb_file, '\t')

    utils.unParseTable(shep21_mycn_conserved_promoter_gff,
                       shep21_mycn_conserved_promoter_gff_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_promoter_gff_5kb,
                       shep21_mycn_conserved_promoter_gff_5kb_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_promoter_gff_1kb,
                       shep21_mycn_conserved_promoter_gff_1kb_file, '\t')

    utils.unParseTable(shep21_mycn_conserved_enhancer_gff,
                       shep21_mycn_conserved_enhancer_gff_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_enhancer_gff_5kb,
                       shep21_mycn_conserved_enhancer_gff_5kb_file, '\t')
    utils.unParseTable(shep21_mycn_conserved_enhancer_gff_1kb,
                       shep21_mycn_conserved_enhancer_gff_1kb_file, '\t')
Example #15
0
def mapEnhancerToGeneTop(rankByBamFile, controlBamFile, genome, annotFile, enhancerFile, transcribedFile='', uniqueGenes=True, searchWindow=50000, noFormatTable=False):
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerName = enhancerFile.split('/')[-1].split('.')[0]
    enhancerTable = utils.parseTable(enhancerFile, '\t')

    # internal parameter for debugging
    byRefseq = False

    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile, '\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(
        annotFile, 0, 0, 500, transcribedGenes)

    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID, startDict, 0, 0))

    # this turns the tssLoci list into a LocusCollection
    # 50 is the internal parameter for LocusCollection and doesn't really
    # matter
    tssCollection = utils.LocusCollection(tssLoci, 50)

    geneDict = {'overlapping': defaultdict(
        list), 'proximal': defaultdict(list)}

    # dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict = defaultdict(list)

    # list of all genes that appear in this analysis
    overallGeneList = []

    # find the damn header
    for line in enhancerTable:
        if line[0][0] == '#':
            continue
        else:
            header = line
            break

    if noFormatTable:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE']]

    else:
        # set up the output tables
        # first by enhancer
        enhancerToGeneTable = [
            header[0:9] + ['OVERLAP_GENES', 'PROXIMAL_GENES', 'CLOSEST_GENE'] + header[-2:]]

        # next by gene
        geneToEnhancerTable = [
            ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS']]

    # next make the gene to enhancer table
    geneToEnhancerTable = [
        ['GENE_NAME', 'REFSEQ_ID', 'PROXIMAL_ENHANCERS', 'ENHANCER_RANKS', 'IS_SUPER', 'ENHANCER_SIGNAL']]

    for line in enhancerTable:
        if line[0][0] == '#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1], line[2], line[3])

        enhancerLocus = utils.Locus(line[1], line[2], line[3], '.', line[0])

        # overlapping genes are transcribed genes whose transcript is directly
        # in the stitchedLocus
        overlappingLoci = transcribedCollection.getOverlap(
            enhancerLocus, 'both')
        overlappingGenes = []
        for overlapLocus in overlappingLoci:
            overlappingGenes.append(overlapLocus.ID())

        # proximalGenes are transcribed genes where the tss is within 50kb of
        # the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, searchWindow, searchWindow), 'both')
        proximalGenes = []
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())

        distalLoci = tssCollection.getOverlap(
            utils.makeSearchLocus(enhancerLocus, 1000000, 1000000), 'both')
        distalGenes = []
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        # these checks make sure each gene list is unique.
        # technically it is possible for a gene to be overlapping, but not proximal since the
        # gene could be longer than the 50kb window, but we'll let that slide
        # here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)

        # Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            # get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3])) / 2

            # get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0])
                        for geneID in allEnhancerGenes]
            # get the ID and convert to name
            closestGene = startDict[
                allEnhancerGenes[distList.index(min(distList))]]['name']

        # NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]), ','))
            newEnhancerLine.append(
                join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]), ','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        # Now grab all overlapping and proximal genes for the gene ordered
        # table

        overallGeneList += overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

        overallGeneList += proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))

    # End loop through
    # Make table by gene
    print('MAKING ENHANCER ASSOCIATED GENE TSS COLLECTION')
    overallGeneList = utils.uniquify(overallGeneList)

    enhancerGeneCollection = utils.makeTranscriptCollection(
        annotFile, 5000, 5000, 500, overallGeneList)

    enhancerGeneGFF = utils.locusCollectionToGFF(enhancerGeneCollection)

    # dump the gff to file
    enhancerFolder = utils.getParentFolder(enhancerFile)
    gffRootName = "%s_TSS_ENHANCER_GENES_-5000_+5000" % (genome)
    enhancerGeneGFFFile = "%s%s_%s.gff" % (enhancerFolder, enhancerName,gffRootName)
    utils.unParseTable(enhancerGeneGFF, enhancerGeneGFFFile, '\t')

    # now we need to run bamToGFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = '/ark/home/jdm/pipeline/bamliquidator_batch.py'
    if not os.path.isfile(bamliquidator_path):
        bamliquidator_path = 'bamliquidator_batch.py'
        if not os.path.isfile(bamliquidator_path):
            raise ValueError('bamliquidator_batch.py not found in path')

    print('MAPPING SIGNAL AT ENHANCER ASSOCIATED GENE TSS')
    # map density at genes in the +/- 5kb tss region
    # first on the rankBy bam
    bamName = rankByBamFile.split('/')[-1]
    mappedRankByFolder = "%s%s_%s_%s/" % (enhancerFolder, enhancerName,gffRootName, bamName)
    mappedRankByFile = "%s%s_%s_%s/matrix.gff" % (enhancerFolder,enhancerName, gffRootName, bamName)
    cmd = 'python ' + bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedRankByFolder,rankByBamFile)
    print("Mapping rankby bam %s" % (rankByBamFile))
    print(cmd)

    outputRank = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
    outputRank = outputRank.communicate()
    if len(outputRank[0]) > 0:  # test if mapping worked correctly
        print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
    else:
        print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, rankByBamFile))
        sys.exit()

    # next on the control bam if it exists
    if len(controlBamFile) > 0:
        controlName = controlBamFile.split('/')[-1]
        mappedControlFolder = "%s%s_%s_%s/" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        mappedControlFile = "%s%s_%s_%s/matrix.gff" % (
            enhancerFolder, enhancerName,gffRootName, controlName)
        cmd = 'python ' + bamliquidator_path + ' --sense . -e 200 --match_bamToGFF -r %s -o %s %s' % (enhancerGeneGFFFile, mappedControlFolder,controlBamFile)
        print("Mapping control bam %s" % (controlBamFile))
        print(cmd)
        outputControl = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True)
        outputControl = outputControl.communicate()
        if len(outputControl[0]) > 0:  # test if mapping worked correctly
            print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
        else:
            print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (enhancerGeneGFFFile, controlBamFile))
            sys.exit()

    # now get the appropriate output files
    if len(controlBamFile) > 0:
        print("CHECKING FOR MAPPED OUTPUT AT %s AND %s" %
              (mappedRankByFile, mappedControlFile))
        if utils.checkOutput(mappedRankByFile, 1, 1) and utils.checkOutput(mappedControlFile, 1, 1):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile, mappedControlFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()
    else:
        print("CHECKING FOR MAPPED OUTPUT AT %s" % (mappedRankByFile))
        if utils.checkOutput(mappedRankByFile, 1, 30):
            print('MAKING ENHANCER ASSOCIATED GENE TSS SIGNAL DICTIONARIES')
            signalDict = makeSignalDict(mappedRankByFile)
        else:
            print("NO MAPPING OUTPUT DETECTED")
            sys.exit()

    # use enhancer rank to order

    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])

    usedNames = []

    # make a new dict to hold TSS signal by max per geneName
    geneNameSigDict = defaultdict(list)
    print('MAKING GENE TABLE')
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:
            continue
        else:
            usedNames.append(geneName)

        proxEnhancers = geneDict['overlapping'][
            refID] + geneDict['proximal'][refID]

        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]], ',')

        enhancerSignal = signalDict[refID]
        geneNameSigDict[geneName].append(enhancerSignal)

        newLine = [geneName, refID, join(
            proxEnhancers, ','), enhancerRanks, superStatus, enhancerSignal]
        geneToEnhancerTable.append(newLine)
    #utils.unParseTable(geneToEnhancerTable,'/grail/projects/newRose/geneMapper/foo.txt','\t')
    print('MAKING ENHANCER TO TOP GENE TABLE')

    if noFormatTable:
        enhancerToTopGeneTable = [
            enhancerToGeneTable[0] + ['TOP_GENE', 'TSS_SIGNAL']]
    else:
        enhancerToTopGeneTable = [enhancerToGeneTable[0][0:12] + [
            'TOP_GENE', 'TSS_SIGNAL'] + enhancerToGeneTable[0][-2:]]

    for line in enhancerToGeneTable[1:]:

        geneList = []
        if noFormatTable:
            geneList += line[-3].split(',')
            geneList += line[-2].split(',')

        else:
            geneList += line[10].split(',')
            geneList += line[11].split(',')

        geneList = utils.uniquify([x for x in geneList if len(x) > 0])
        if len(geneList) > 0:
            try:
                sigVector = [max(geneNameSigDict[x]) for x in geneList]
                maxIndex = sigVector.index(max(sigVector))
                maxGene = geneList[maxIndex]
                maxSig = sigVector[maxIndex]
                if maxSig == 0.0:
                    maxGene = 'NONE'
                    maxSig = 'NONE'
            except ValueError:
                if len(geneList) == 1:
                    maxGene = geneList[0]
                    maxSig = 'NONE'    
                else:
                    maxGene = 'NONE'
                    maxSig = 'NONE'    
        else:
            maxGene = 'NONE'
            maxSig = 'NONE'
        if noFormatTable:
            newLine = line + [maxGene, maxSig]
        else:
            newLine = line[0:12] + [maxGene, maxSig] + line[-2:]
        enhancerToTopGeneTable.append(newLine)

    # resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable, enhancerToTopGeneTable, geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2])
                                    for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        sortedTopGeneTable = [enhancerToTopGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i + 1)])
            sortedTopGeneTable.append(enhancerToTopGeneTable[(i + 1)])

        return sortedTable, sortedTopGeneTable, geneToEnhancerTable
Example #16
0
def findCanidateTFs(annotationFile, superLoci, expressedNM, TFlist, refseqToNameDict, projectFolder, projectName):
    '''
    find all TFs within 1Mb of the super-enhancer center that are considered expressed 
    return a dictionary keyed by TF that points to a list of super-enhancer loci
    '''

    print 'FINDING CANIDATE TFs'

    startDict = utils.makeStartDict(annotationFile)

    # Find the location of the TSS of all transcripts (NMid) considered expressed
    tssLoci = []
    for geneID in expressedNM:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))
    tssCollection = utils.LocusCollection(tssLoci,50)

    # Assign all transcripts (NMid) that are TFs to a super-enhancer if it is the closest gene
    seAssignment = []
    seAssignmentGene = []
    TFandSuperDict = {}

    for superEnh in superLoci:

        seCenter = (superEnh.start() + superEnh.end()) / 2 

        # Find all transcripts whose TSS occur within 1Mb of the SE center
        searchLocus = utils.Locus(superEnh.chr(), superEnh.start()-1000000, superEnh.end()+1000000, '.')
        allEnhancerLoci = tssCollection.getOverlap(searchLocus)
        allEnhancerGenes = [locus.ID() for locus in allEnhancerLoci]

        # Find the transcript that is closest to the center
        if allEnhancerGenes:
            distList = [abs(seCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            closestGene = allEnhancerGenes[distList.index(min(distList))]
        else:
            closestGene = ''

        seAssignment.append([superEnh.chr(), superEnh.start(), superEnh.end(), closestGene])

        # Select the transcript if it is a TF, and allow for a TF to have multiple SEs
        if closestGene in TFlist and closestGene not in TFandSuperDict.keys():
            TFandSuperDict[closestGene] = [superEnh]
        elif closestGene in TFlist and closestGene in TFandSuperDict.keys():
            TFandSuperDict[closestGene].append(superEnh)

        # Convert the selected TF NMids to gene names
        if closestGene != '':
            geneName = refseqToNameDict[closestGene]
            seAssignmentGene.append([superEnh.chr(), superEnh.start(), superEnh.end(), geneName])

    # Output the list of SE-assigned transcripts (NMids)
    seAssignmentFile = projectFolder + projectName + '_SE_ASSIGNMENT_TRANSCRIPT.txt'
    utils.unParseTable(seAssignment, seAssignmentFile, '\t')

    # Output the list of SE-assigned genes
    seAssignmentGeneFile = projectFolder + projectName + '_SE_ASSIGNMENT_GENE.txt'
    utils.unParseTable(seAssignmentGene, seAssignmentGeneFile, '\t')

    print 'Number of canidate TFs:', len(TFandSuperDict)

    return TFandSuperDict
Example #17
0
def mapEnhancerToGene(annotFile,enhancerFile,transcribedFile='',uniqueGenes=True,searchWindow =50000,noFormatTable = False):
    
    '''
    maps genes to enhancers. if uniqueGenes, reduces to gene name only. Otherwise, gives for each refseq
    '''
    startDict = utils.makeStartDict(annotFile)
    enhancerTable = utils.parseTable(enhancerFile,'\t')

    #internal parameter for debugging
    byRefseq = False


    if len(transcribedFile) > 0:
        transcribedTable = utils.parseTable(transcribedFile,'\t')
        transcribedGenes = [line[1] for line in transcribedTable]
    else:
        transcribedGenes = startDict.keys()

    print('MAKING TRANSCRIPT COLLECTION')
    transcribedCollection = utils.makeTranscriptCollection(annotFile,0,0,500,transcribedGenes)


    print('MAKING TSS COLLECTION')
    tssLoci = []
    for geneID in transcribedGenes:
        tssLoci.append(utils.makeTSSLocus(geneID,startDict,0,0))


    #this turns the tssLoci list into a LocusCollection
    #50 is the internal parameter for LocusCollection and doesn't really matter
    tssCollection = utils.LocusCollection(tssLoci,50)

    

    geneDict = {'overlapping':defaultdict(list),'proximal':defaultdict(list)}

    #dictionaries to hold ranks and superstatus of gene nearby enhancers
    rankDict = defaultdict(list)
    superDict= defaultdict(list)

    #list of all genes that appear in this analysis
    overallGeneList = []

    if noFormatTable:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE']]

        
    else:
        #set up the output tables
        #first by enhancer
        enhancerToGeneTable = [enhancerTable[0][0:9]+['OVERLAP_GENES','PROXIMAL_GENES','CLOSEST_GENE'] + enhancerTable[5][-2:]]

        #next by gene
        geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS']]

    #next make the gene to enhancer table
    geneToEnhancerTable = [['GENE_NAME','REFSEQ_ID','PROXIMAL_ENHANCERS','ENHANCER_RANKS','IS_SUPER']]

        


    for line in enhancerTable:
        if line[0][0] =='#' or line[0][0] == 'R':
            continue

        enhancerString = '%s:%s-%s' % (line[1],line[2],line[3])
        
        enhancerLocus = utils.Locus(line[1],line[2],line[3],'.',line[0])

        #overlapping genes are transcribed genes whose transcript is directly in the stitchedLocus         
        overlappingLoci = transcribedCollection.getOverlap(enhancerLocus,'both')           
        overlappingGenes =[]
        for overlapLocus in overlappingLoci:                
            overlappingGenes.append(overlapLocus.ID())

        #proximalGenes are transcribed genes where the tss is within 50kb of the boundary of the stitched loci
        proximalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,searchWindow,searchWindow),'both')           
        proximalGenes =[]
        for proxLocus in proximalLoci:
            proximalGenes.append(proxLocus.ID())


        distalLoci = tssCollection.getOverlap(utils.makeSearchLocus(enhancerLocus,1000000,1000000),'both')           
        distalGenes =[]
        for proxLocus in distalLoci:
            distalGenes.append(proxLocus.ID())

            
            
        overlappingGenes = utils.uniquify(overlappingGenes)
        proximalGenes = utils.uniquify(proximalGenes)
        distalGenes = utils.uniquify(distalGenes)
        allEnhancerGenes = overlappingGenes + proximalGenes + distalGenes
        #these checks make sure each gene list is unique.
        #technically it is possible for a gene to be overlapping, but not proximal since the
        #gene could be longer than the 50kb window, but we'll let that slide here
        for refID in overlappingGenes:
            if proximalGenes.count(refID) == 1:
                proximalGenes.remove(refID)

        for refID in proximalGenes:
            if distalGenes.count(refID) == 1:
                distalGenes.remove(refID)


        #Now find the closest gene
        if len(allEnhancerGenes) == 0:
            closestGene = ''
        else:
            #get enhancerCenter
            enhancerCenter = (int(line[2]) + int(line[3]))/2

            #get absolute distance to enhancer center
            distList = [abs(enhancerCenter - startDict[geneID]['start'][0]) for geneID in allEnhancerGenes]
            #get the ID and convert to name
            closestGene = startDict[allEnhancerGenes[distList.index(min(distList))]]['name']

        #NOW WRITE THE ROW FOR THE ENHANCER TABLE
        if noFormatTable:

            newEnhancerLine = list(line)
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)

        else:
            newEnhancerLine = line[0:9]
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in overlappingGenes]),','))
            newEnhancerLine.append(join(utils.uniquify([startDict[x]['name'] for x in proximalGenes]),','))
            newEnhancerLine.append(closestGene)
            newEnhancerLine += line[-2:]

        enhancerToGeneTable.append(newEnhancerLine)
        #Now grab all overlapping and proximal genes for the gene ordered table

        overallGeneList +=overlappingGenes
        for refID in overlappingGenes:
            geneDict['overlapping'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))
            
        overallGeneList+=proximalGenes
        for refID in proximalGenes:
            geneDict['proximal'][refID].append(enhancerString)
            rankDict[refID].append(int(line[-2]))
            superDict[refID].append(int(line[-1]))



    #End loop through
    
    #Make table by gene
    overallGeneList = utils.uniquify(overallGeneList)  

    #use enhancer rank to order
    rankOrder = utils.order([min(rankDict[x]) for x in overallGeneList])
        
    usedNames = []
    for i in rankOrder:
        refID = overallGeneList[i]
        geneName = startDict[refID]['name']
        if usedNames.count(geneName) > 0 and uniqueGenes == True:

            continue
        else:
            usedNames.append(geneName)
        
        proxEnhancers = geneDict['overlapping'][refID]+geneDict['proximal'][refID]
        
        superStatus = max(superDict[refID])
        enhancerRanks = join([str(x) for x in rankDict[refID]],',')
    
        newLine = [geneName,refID,join(proxEnhancers,','),enhancerRanks,superStatus]
        geneToEnhancerTable.append(newLine)

    #resort enhancerToGeneTable
    if noFormatTable:
        return enhancerToGeneTable,geneToEnhancerTable
    else:
        enhancerOrder = utils.order([int(line[-2]) for line in enhancerToGeneTable[1:]])
        sortedTable = [enhancerToGeneTable[0]]
        for i in enhancerOrder:
            sortedTable.append(enhancerToGeneTable[(i+1)])

        return sortedTable,geneToEnhancerTable
Example #18
0
def regionStitching(referenceCollection, name, outFolder, stitchWindow, tssWindow, annotFile, removeTSS=True):
    print('PERFORMING REGION STITCHING')
    # first have to turn bound region file into a locus collection

    # need to make sure this names correctly... each region should have a unique name
    #referenceCollection 

    debugOutput = []
    # filter out all bound regions that overlap the TSS of an ACTIVE GENE
    if removeTSS:

        print('REMOVING TSS FROM REGIONS USING AN EXCLUSION WINDOW OF %sBP' % (tssWindow))
        # first make a locus collection of TSS

        startDict = utils.makeStartDict(annotFile)

        # now makeTSS loci for active genes
        removeTicker = 0
        # this loop makes a locus centered around +/- tssWindow of transcribed genes
        # then adds it to the list tssLoci
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(utils.makeTSSLocus(geneID, startDict, tssWindow, tssWindow))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)

        # gives all the loci in referenceCollection
        boundLoci = referenceCollection.getLoci()

        # this loop will check if each bound region is contained by the TSS exclusion zone
        # this will drop out a lot of the promoter only regions that are tiny
        # typical exclusion window is around 2kb
        for locus in boundLoci:
            if len(tssCollection.getContainers(locus, 'both')) > 0:

                # if true, the bound locus overlaps an active gene
                referenceCollection.remove(locus)
                debugOutput.append([locus.__str__(), locus.ID(), 'CONTAINED'])
                removeTicker += 1
        print('REMOVED %s LOCI BECAUSE THEY WERE CONTAINED BY A TSS' % (removeTicker))

    # referenceCollection is now all enriched region loci that don't overlap an active TSS

    if stitchWindow == '':
        print('DETERMINING OPTIMUM STITCHING PARAMTER')
        optCollection = copy.deepcopy(referenceCollection)
        stitchWindow = optimizeStitching(optCollection, name, outFolder, stepSize=500)
    print('USING A STITCHING PARAMETER OF %s' % stitchWindow)
    stitchedCollection = referenceCollection.stitchCollection(stitchWindow, 'both')

    if removeTSS:
        # now replace any stitched region that overlap 2 distinct genes
        # with the original loci that were there
        fixedLoci = []
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(utils.makeTSSLocus(geneID, startDict, 50, 50))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)
        removeTicker = 0
        originalTicker = 0
        for stitchedLocus in stitchedCollection.getLoci():
            overlappingTSSLoci = tssCollection.getOverlap(stitchedLocus, 'both')
            tssNames = [startDict[tssLocus.ID()]['name'] for tssLocus in overlappingTSSLoci]
            tssNames = utils.uniquify(tssNames)
            if len(tssNames) > 2:

                # stitchedCollection.remove(stitchedLocus)
                originalLoci = referenceCollection.getOverlap(stitchedLocus, 'both')
                originalTicker += len(originalLoci)
                fixedLoci += originalLoci
                debugOutput.append([stitchedLocus.__str__(), stitchedLocus.ID(), 'MULTIPLE_TSS'])
                removeTicker += 1
            else:
                fixedLoci.append(stitchedLocus)

        print('REMOVED %s STITCHED LOCI BECAUSE THEY OVERLAPPED MULTIPLE TSSs' % (removeTicker))
        print('ADDED BACK %s ORIGINAL LOCI' % (originalTicker))
        fixedCollection = utils.LocusCollection(fixedLoci, 50)
        return fixedCollection, debugOutput, stitchWindow
    else:
        return stitchedCollection, debugOutput, stitchWindow
Example #19
0
def make_mycn_stats_table(nb_all_chip_dataFile,outFile):

    '''
    making a table of conserved mycn peaks w/ some additional stats
    mycn and h3k27ac signal is avg. background normalized across 4 samples
    active tss defined as the union of all H3K27ac occupied promoters in NB
    active enhancers defined as the union of all H3K27ac sites outside of promoters
    '''
    dataDict = pipeline_dfci.loadDataTable(nb_all_chip_dataFile)

    print('SETTING UP OUTPUT TABLE')
    outTable = [['PEAK_ID','CHROM','START','STOP','LENGTH','ACTIVE_TSS_OVERLAP','ENHANCER_OVERLAP','CPG_ISLAND_OVERLAP','CPG_ISLAND_FRACTION','GC_FREQ','MYCN_RANK','AVG_MYCN_SIGNAL','AVG_H3K27AC_SIGNAL','CANON_EBOX_COUNT','NONCANON_EBOX_COUNT','TOTAL_EBOX_COUNT','CANON_EXP','NON_CANON_EXP','GABPA_COUNT','GABPA_EXP','GATA_COUNT','GATA_EXP']]

    dinuc = nmers(2,['A','T','G','C'])

    #input files
    mycnSignalFile = '%sHG19_NB_MYCN_CONSERVED_-0_+0_NB_ALL_SIGNAL.txt' % (signalFolder)
    h3k27acSignalFile = '%sHG19_NB_MYCN_CONSERVED_-500_+500_NB_ALL_SIGNAL.txt' % (signalFolder)
    mycnRankFile = '%smeta_rose/NB_MYCN/NB_MYCN_0KB_STITCHED_ENHANCER_REGION_RANK_CONSERVED.txt' % (projectFolder)
    activeGeneFile = '%sHG19_NB_H3K27AC_ACTIVE_UNION.txt' % (geneListFolder)
    #note, this is the ucsc hg19 cpg islands extended file
    #to download and format run ./beds/download_cpg.sh
    cpgFile = '%sbeds/hg19_cpg_islands.bed' % (projectFolder)
    enhancerFile = '%smeta_rose/NB_H3K27AC/NB_H3K27AC_AllEnhancers.table.txt' % (projectFolder)

    print('LOADING MYCN BINDING DATA')
    mycnSignalTable = utils.parseTable(mycnSignalFile,'\t')

    #making a signal dictionary for MYCN binding
    names_list = ['BE2C_MYCN','KELLY_MYCN','NGP_MYCN','SHEP21_0HR_MYCN_NOSPIKE']
    background_list = [dataDict[name]['background'] for name in names_list]
    header = mycnSignalTable[0]
    chip_columns = [header.index(name) for name in names_list]
    background_columns = [header.index(background_name) for background_name in background_list]
    
    mycn_sig_dict = {}
    #this only works if the first column are unique identifiers
    if len(mycnSignalTable) != len(utils.uniquify([line[0] for line in mycnSignalTable])):
        print('Error: Column 1 of must contain unique identifiers.' % (mycnSignalFile))
        sys.exit()
    for line in mycnSignalTable[1:]:
        line_sig = []
        for i in range(len(names_list)):
            line_sig.append(float(line[chip_columns[i]]) - float(line[background_columns[i]]))
        mycn_sig_dict[line[0]] = numpy.mean(line_sig)


    
    print('LOADING MYCN RANK DATA')
    mycnRankTable = utils.parseTable(mycnRankFile,'\t')

    print('LOADING H3K27AC BINDING DATA')
    h3k27acSignalTable = utils.parseTable(h3k27acSignalFile,'\t')
    #making a signal dictionary for background subtracted H3K27ac binding
    names_list = ['BE2C_H3K27AC','KELLY_H3K27AC','NGP_H3K27AC','SHEP21_0HR_H3K27AC_NOSPIKE']
    background_list = [dataDict[name]['background'] for name in names_list]
    header = h3k27acSignalTable[0]
    chip_columns = [header.index(name) for name in names_list]
    background_columns = [header.index(background_name) for background_name in background_list]
    
    h3k27ac_sig_dict = {}
    #this only works if the first column are unique identifiers
    if len(h3k27acSignalTable) != len(utils.uniquify([line[0] for line in h3k27acSignalTable])):
        print('Error: Column 1 of must contain unique identifiers.' % (h3k27acSignalFile))
        sys.exit()
    for line in h3k27acSignalTable[1:]:
        line_sig = []
        for i in range(len(names_list)):
            line_sig.append(float(line[chip_columns[i]]) - float(line[background_columns[i]]))
        h3k27ac_sig_dict[line[0]] = numpy.mean(line_sig)



    #making the cpg collection
    print('LOADING CPGS ISLANDS')
    cpgBed = utils.parseTable(cpgFile,'\t')
    cpgLoci = []
    for line in cpgBed:
        cpgLoci.append(utils.Locus(line[0],line[1],line[2],'.',line[-1]))
    cpgCollection = utils.LocusCollection(cpgLoci,50)
        
    #next make the tss collection of active promoters
    print('LOADING ACTIVE PROMOTERS')
    startDict = utils.makeStartDict(annotFile)
    activeTable = utils.parseTable(activeGeneFile,'\t')
    tss_1kb_loci = []
    for line in activeTable:
        tss_1kb_loci.append(utils.makeTSSLocus(line[1],startDict,1000,1000))
    tss_1kb_collection = utils.LocusCollection(tss_1kb_loci,50)


    #enhancer file
    print("LOADING ACTIVE ENHANCERS")
    enhancerTable = utils.parseTable(enhancerFile,'\t')
    print('STARTING WITH THE FOLLOWING NUMBER OF ENHANCERS IN NB')
    print(len(enhancerTable) - 6)
    enhancerLoci = []
    for line in enhancerTable:
        if line[0][0] != '#' and line[0][0] != 'R':
            try:
                lineLocus = utils.Locus(line[1],int(line[2]),int(line[3]),'.',line[0])
                enhancerLoci.append(lineLocus)
            except IndexError:
                print(line)
                sys.exit()
    enhancerCollection = utils.LocusCollection(enhancerLoci,50)

    print('CLASSIFYING MYCN PEAKS')
    ticker = 0
    for i in range(1,len(mycnSignalTable)):
        if ticker%100 == 0:
            print(ticker)
        ticker +=1

        line = mycnSignalTable[i]        

        mycn_signal = round(mycn_sig_dict[line[0]],4)
        h3k27ac_signal = round(h3k27ac_sig_dict[line[0]],4)
        
        peakID = line[0]
        locusString = line[1]
        chrom = locusString.split('(')[0]
        [start,stop] = [int(x) for x in line[1].split(':')[-1].split('-')]
        lineLocus = utils.Locus(chrom,start,stop,'.',peakID)
        
        tssOverlap = 0
        if tss_1kb_collection.getOverlap(lineLocus,'both'):
            tssOverlap = 1

        enhancerOverlap = 0
        if enhancerCollection.getOverlap(lineLocus,'both') and tssOverlap == 0:
            enhancerOverlap = 1

        cpgIslandOverlap = 0
        if cpgCollection.getOverlap(lineLocus,'both'):
            cpgIslandOverlap = 1

        #now do fractional cpgOverlap
        overlappingCpGLoci = cpgCollection.getOverlap(lineLocus,'both')
        overlappingBases = 0
        for locus in overlappingCpGLoci:
            cpgStart = max(locus.start(),lineLocus.start())
            cpgEnd = min(locus.end(),lineLocus.end())
            overlappingBases += (cpgEnd-cpgStart)
        overlapFraction = round(float(overlappingBases)/lineLocus.len(),2)
        
        #now get the seq
        lineSeq = string.upper(utils.fetchSeq(genomeDirectory,chrom,start,stop,True))
        gcFreq = round(float(lineSeq.count('GC') + lineSeq.count('CG'))/len(lineSeq),2)
            
        dinuc_dict = {}
        for nmer in dinuc:
            dinuc_dict[nmer] = float(lineSeq.count('GC'))/len(lineSeq)

        
        mycnRankLine = mycnRankTable[i]
        mycnRank = numpy.mean([float(x) for x in mycnRankLine[6:]])

        canonMatchList = re.findall('CACGTG',lineSeq)
        canon_count = len(canonMatchList)

        eboxMatchList = re.findall('CA..TG',lineSeq)
        ebox_count = len(eboxMatchList)

        non_canon_count = ebox_count-canon_count

        #get the expected values
        canon_exp = dinuc_dict['CA']*dinuc_dict['CG']*dinuc_dict['TG']*(len(lineSeq) - 5)
        canon_exp = round(canon_exp,2)
        notCG = 1- dinuc_dict['CG']
        non_exp = dinuc_dict['CA']*notCG*dinuc_dict['TG']*(len(lineSeq) - 5)
        non_exp = round(non_exp,2)



        #for gata and GABPA
        gabpaMatchList = re.findall('CGGAAG',lineSeq) + re.findall('CTTCCG',lineSeq)
        gabpa_count = len(gabpaMatchList)

        gabpa_exp_f = dinuc_dict['CG'] * dinuc_dict['GA'] * dinuc_dict['AG']*(len(lineSeq) - 5)
        gabpa_exp_r = dinuc_dict['CT'] * dinuc_dict['TC'] * dinuc_dict['CG']*(len(lineSeq) - 5)
        
        gabpa_exp = round(gabpa_exp_f,2) + round(gabpa_exp_r,2)

        gataMatchList = re.findall('GATAA',lineSeq) + re.findall('TTATC',lineSeq)
        gata_count = len(gataMatchList)

        an_freq = 1 - dinuc_dict['AA'] - dinuc_dict['AT'] - dinuc_dict['AG'] -dinuc_dict['AC']
        cn_freq = 1 - dinuc_dict['CA'] - dinuc_dict['CT'] - dinuc_dict['CG'] -dinuc_dict['CC']
        gata_exp_f = dinuc_dict['GA'] * dinuc_dict['TA'] * an_freq*(len(lineSeq) - 5)
        gata_exp_r = dinuc_dict['TT'] * dinuc_dict['AT'] * cn_freq*(len(lineSeq) - 5)
        gata_exp = round(gata_exp_f,2) + round(gata_exp_r,2)

        
        

        newLine = [peakID,chrom,start,stop,lineLocus.len(),tssOverlap,enhancerOverlap,cpgIslandOverlap,overlapFraction,gcFreq,mycnRank,mycn_signal,h3k27ac_signal,canon_count,non_canon_count,ebox_count,canon_exp,non_exp,gabpa_count,gabpa_exp,gata_count,gata_exp]
        outTable.append(newLine)

    utils.unParseTable(outTable,outFile,'\t')
    
    return outFile
Example #20
0
def loadAnnotFile(genome,window,geneList=[],skip_cache=False):
    """
    load in the annotation and create a startDict and tss collection for a set of refseq IDs a given genome
    20170213, add by Quanhu Sheng
    return validGenes
    """
    genomeDict = {
        'HG18': 'annotation/hg18_refseq.ucsc',
        'MM9': 'annotation/mm9_refseq.ucsc',
        'MM10': 'annotation/mm10_refseq.ucsc',
        'HG19': 'annotation/hg19_refseq.ucsc',
        'HG19_RIBO': 'annotation/hg19_refseq.ucsc',
        'RN4': 'annotation/rn4_refseq.ucsc',
        'RN6': 'annotation/rn6_refseq.ucsc',
        }

    annotFile = whereAmI + '/' + genomeDict[string.upper(genome)]

    if not skip_cache:
        # Try loading from a cache, if the crc32 matches
        annotPathHash = zlib.crc32(annotFile) & 0xFFFFFFFF  # hash the entire location of this script
        annotFileHash = zlib.crc32(open(annotFile, "rb").read()) & 0xFFFFFFFF

        cache_file_name = "%s.%s.%s.cache" % (genome, annotPathHash, annotFileHash)

        cache_file_path = '%s/%s' % (tempfile.gettempdir(), cache_file_name)

        if os.path.isfile(cache_file_path):
            # Cache exists! Load it!
            try:
                print('\tLoading genome data from cache.')
                with open(cache_file_path, 'rb') as cache_fh:
                    cached_data = cPickle.load(cache_fh)
                    print('\tCache loaded.')
                return cached_data
            except (IOError, cPickle.UnpicklingError):
                # Pickle corrupt? Let's get rid of it.
                print('\tWARNING: Cache corrupt or unreadable. Ignoring.')
        else:
            print('\tNo cache exists: Loading annotation (slow).')


    # We're still here, so either caching was disabled, or the cache doesn't exist

    startDict = utils.makeStartDict(annotFile, geneList)
    tssLoci =[]
    validGenes = []
    for gene in geneList:
        if gene in startDict:
            tssLoci.append(utils.makeTSSLocus(gene,startDict,window,window))
            validGenes.append(gene)
        else:
            print('\tWARNING: gene %s not in annotation database. Ignoring.' % gene)

    tssCollection = utils.LocusCollection(tssLoci,50)

    if not skip_cache:
        print('Writing cache for the first time.')
        with open(cache_file_path, 'wb') as cache_fh:
            cPickle.dump((startDict, tssCollection), cache_fh, cPickle.HIGHEST_PROTOCOL)

    return startDict, tssCollection, validGenes
Example #21
0
def main():
    '''
    main run call
    '''
    debug = False

    from optparse import OptionParser
    usage = "usage: %prog [options] -g [GENOME] -i [INPUT_REGION_GFF] -r [RANKBY_BAM_FILE] -o [OUTPUT_FOLDER] [OPTIONAL_FLAGS]"
    parser = OptionParser(usage=usage)
    # required flags
    parser.add_option("-i", "--i", dest="input", nargs=1, default=None,
                      help="Enter a .gff or .bed file of binding sites used to make enhancers")
    parser.add_option("-r", "--rankby", dest="rankby", nargs=1, default=None,
                      help="bamfile to rank enhancer by")
    parser.add_option("-o", "--out", dest="out", nargs=1, default=None,
                      help="Enter an output folder")
    parser.add_option("-g", "--genome", dest="genome", nargs=1, default=None,
                      help="Enter the genome build (MM9,MM8,HG18,HG19)")

    # optional flags
    parser.add_option("-b", "--bams", dest="bams", nargs=1, default=None,
                      help="Enter a comma separated list of additional bam files to map to")
    parser.add_option("-c", "--control", dest="control", nargs=1, default=None,
                      help="bamfile to rank enhancer by")
    parser.add_option("-s", "--stitch", dest="stitch", nargs=1, default='',
                      help="Enter a max linking distance for stitching. Default will determine optimal stitching parameter")
    parser.add_option("-t", "--tss", dest="tss", nargs=1, default=0,
                      help="Enter a distance from TSS to exclude. 0 = no TSS exclusion")

    parser.add_option("--mask", dest="mask", nargs=1, default=None,
                      help="Mask a set of regions from analysis.  Provide a .bed or .gff of masking regions")

    # RETRIEVING FLAGS
    (options, args) = parser.parse_args()

    if not options.input or not options.rankby or not options.out or not options.genome:
        print('hi there')
        parser.print_help()
        exit()

    # making the out folder if it doesn't exist
    outFolder = utils.formatFolder(options.out, True)

    # figuring out folder schema
    gffFolder = utils.formatFolder(outFolder + 'gff/', True)
    mappedFolder = utils.formatFolder(outFolder + 'mappedGFF/', True)

    # GETTING INPUT FILE
    if options.input.split('.')[-1] == 'bed':
        # CONVERTING A BED TO GFF
        inputGFFName = options.input.split('/')[-1][0:-4]
        inputGFFFile = '%s%s.gff' % (gffFolder, inputGFFName)
        utils.bedToGFF(options.input, inputGFFFile)
    elif options.input.split('.')[-1] == 'gff':
        # COPY THE INPUT GFF TO THE GFF FOLDER
        inputGFFFile = options.input
        os.system('cp %s %s' % (inputGFFFile, gffFolder))

    else:
        print('WARNING: INPUT FILE DOES NOT END IN .gff or .bed. ASSUMING .gff FILE FORMAT')
        # COPY THE INPUT GFF TO THE GFF FOLDER
        inputGFFFile = options.input
        os.system('cp %s %s' % (inputGFFFile, gffFolder))

    # GETTING THE LIST OF BAMFILES TO PROCESS
    if options.control:
        bamFileList = [options.rankby, options.control]

    else:
        bamFileList = [options.rankby]

    if options.bams:
        bamFileList += options.bams.split(',')
        bamFileList = utils.uniquify(bamFileList)
    # optional args

    # Stitch parameter
    if options.stitch == '':
        stitchWindow = ''
    else:
        stitchWindow = int(options.stitch)

    # tss options
    tssWindow = int(options.tss)
    if tssWindow != 0:
        removeTSS = True
    else:
        removeTSS = False

    # GETTING THE BOUND REGION FILE USED TO DEFINE ENHANCERS
    print('USING %s AS THE INPUT GFF' % (inputGFFFile))
    inputName = inputGFFFile.split('/')[-1].split('.')[0]

    # GETTING THE GENOME
    genome = options.genome
    print('USING %s AS THE GENOME' % genome)

    # GETTING THE CORRECT ANNOT FILE
    cwd = os.getcwd()
    genomeDict = {
        'HG18': '%s/annotation/hg18_refseq.ucsc' % (cwd),
        'MM9': '%s/annotation/mm9_refseq.ucsc' % (cwd),
        'HG19': '%s/annotation/hg19_refseq.ucsc' % (cwd),
        'MM8': '%s/annotation/mm8_refseq.ucsc' % (cwd),
        'MM10': '%s/annotation/mm10_refseq.ucsc' % (cwd),
    }

    annotFile = genomeDict[genome.upper()]

    # MAKING THE START DICT
    print('MAKING START DICT')
    startDict = utils.makeStartDict(annotFile)

    # LOADING IN THE BOUND REGION REFERENCE COLLECTION
    print('LOADING IN GFF REGIONS')
    referenceCollection = utils.gffToLocusCollection(inputGFFFile)

    # MASKING REFERENCE COLLECTION
    # see if there's a mask
    if options.mask:
        maskFile = options.mask
        # if it's a bed file
        if maskFile.split('.')[-1].upper() == 'BED':
            maskGFF = utils.bedToGFF(maskFile)
        elif maskFile.split('.')[-1].upper() == 'GFF':
            maskGFF = utils.parseTable(maskFile, '\t')
        else:
            print("MASK MUST BE A .gff or .bed FILE")
            sys.exit()
        maskCollection = utils.gffToLocusCollection(maskGFF)

        # now mask the reference loci
        referenceLoci = referenceCollection.getLoci()
        filteredLoci = [locus for locus in referenceLoci if len(maskCollection.getOverlap(locus, 'both')) == 0]
        print("FILTERED OUT %s LOCI THAT WERE MASKED IN %s" % (len(referenceLoci) - len(filteredLoci), maskFile))
        referenceCollection = utils.LocusCollection(filteredLoci, 50)

    # NOW STITCH REGIONS
    print('STITCHING REGIONS TOGETHER')
    stitchedCollection, debugOutput, stitchWindow = regionStitching(inputGFFFile, inputName, outFolder, stitchWindow, tssWindow, annotFile, removeTSS)

    # NOW MAKE A STITCHED COLLECTION GFF
    print('MAKING GFF FROM STITCHED COLLECTION')
    stitchedGFF = utils.locusCollectionToGFF(stitchedCollection)
    # making sure start/stop ordering are correct
    for i in range(len(stitchedGFF)):

        line = stitchedGFF[i]
        start = int(line[3])
        stop = int(line[4])
        if start > stop:
            line[3] = stop
            line[4] = start

    print(stitchWindow)
    print(type(stitchWindow))
    if not removeTSS:
        stitchedGFFFile = '%s%s_%sKB_STITCHED.gff' % (gffFolder, inputName, str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED' % (inputName, str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED.debug' % (gffFolder, inputName, str(stitchWindow / 1000))
    else:
        stitchedGFFFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.gff' % (gffFolder, inputName, str(stitchWindow / 1000))
        stitchedGFFName = '%s_%sKB_STITCHED_TSS_DISTAL' % (inputName, str(stitchWindow / 1000))
        debugOutFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.debug' % (gffFolder, inputName, str(stitchWindow / 1000))

    # WRITING DEBUG OUTPUT TO DISK

    if debug:
        print('WRITING DEBUG OUTPUT TO DISK AS %s' % (debugOutFile))
        utils.unParseTable(debugOutput, debugOutFile, '\t')

    # WRITE THE GFF TO DISK
    print('WRITING STITCHED GFF TO DISK AS %s' % (stitchedGFFFile))
    utils.unParseTable(stitchedGFF, stitchedGFFFile, '\t')

    # SETTING UP THE OVERALL OUTPUT FILE
    outputFile1 = outFolder + stitchedGFFName + '_ENHANCER_REGION_MAP.txt'
    print('OUTPUT WILL BE WRITTEN TO  %s' % (outputFile1))

    # MAPPING TO THE NON STITCHED (ORIGINAL GFF)
    # MAPPING TO THE STITCHED GFF

    # Try to use the bamliquidatior_path.py script on cluster, otherwise, failover to local (in path), otherwise fail.
    bamliquidator_path = '/ark/home/jdm/pipeline/bamliquidator_batch.py'
    if not os.path.isfile(bamliquidator_path):
        bamliquidator_path = 'bamliquidator_batch.py'
        if not os.path.isfile(bamliquidator_path):
            raise ValueError('bamliquidator_batch.py not found in path')

    for bamFile in bamFileList:

        bamFileName = bamFile.split('/')[-1]

        # MAPPING TO THE STITCHED GFF
        mappedOut1Folder = '%s%s_%s_MAPPED' % (mappedFolder, stitchedGFFName, bamFileName)
        mappedOut1File = '%s%s_%s_MAPPED/matrix.gff' % (mappedFolder, stitchedGFFName, bamFileName)
        if utils.checkOutput(mappedOut1File, 0.2, 0.2):
            print("FOUND %s MAPPING DATA FOR BAM: %s" % (stitchedGFFFile, mappedOut1File))
        else:
            cmd1 = "python " + bamliquidator_path + " --sense . -e 200 --match_bamToGFF -r %s -o %s %s" % (stitchedGFFFile, mappedOut1Folder, bamFile)
            print(cmd1)

            output1 = subprocess.Popen(cmd1, stdout=subprocess.PIPE, shell=True)
            output1 = output1.communicate()
            if len(output1[0]) > 0:  # test if mapping worked correctly
                print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (stitchedGFFFile, bamFileName))
            else:
                print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (stitchedGFFFile, bamFileName))
                sys.exit()

        # MAPPING TO THE ORIGINAL GFF
        mappedOut2Folder = '%s%s_%s_MAPPED' % (mappedFolder, inputName, bamFileName)
        mappedOut2File = '%s%s_%s_MAPPED/matrix.gff' % (mappedFolder, inputName, bamFileName)
        if utils.checkOutput(mappedOut2File, 0.2, 0.2):
            print("FOUND %s MAPPING DATA FOR BAM: %s" % (stitchedGFFFile, mappedOut2File))
        else:
            cmd2 = "python " + bamliquidator_path + " --sense . -e 200 --match_bamToGFF -r %s -o %s %s" % (inputGFFFile, mappedOut2Folder, bamFile)
            print(cmd2)

            output2 = subprocess.Popen(cmd2, stdout=subprocess.PIPE, shell=True)
            output2 = output2.communicate()
            if len(output2[0]) > 0:  # test if mapping worked correctly
                print("SUCCESSFULLY MAPPED TO %s FROM BAM: %s" % (inputGFFFile, bamFileName))
            else:
                print("ERROR: FAILED TO MAP %s FROM BAM: %s" % (inputGFFFile, bamFileName))
                sys.exit()

    print('BAM MAPPING COMPLETED NOW MAPPING DATA TO REGIONS')
    # CALCULATE DENSITY BY REGION
    # NEED TO FIX THIS FUNCTION TO ACCOUNT FOR DIFFERENT OUTPUTS OF LIQUIDATOR
    mapCollection(stitchedCollection, referenceCollection, bamFileList, mappedFolder, outputFile1, refName=stitchedGFFName)

    print('CALLING AND PLOTTING SUPER-ENHANCERS')

    if options.control:

        rankbyName = options.rankby.split('/')[-1]
        controlName = options.control.split('/')[-1]
        cmd = 'R --no-save %s %s %s %s < ROSE2_callSuper.R' % (outFolder, outputFile1, inputName, controlName)

    else:
        rankbyName = options.rankby.split('/')[-1]
        controlName = 'NONE'
        cmd = 'R --no-save %s %s %s %s < ROSE2_callSuper.R' % (outFolder, outputFile1, inputName, controlName)
    print(cmd)

    os.system(cmd)

    # calling the gene mapper
    time.sleep(20)
    superTableFile = "%s_SuperEnhancers.table.txt" % (inputName)
    if options.control:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -c %s -i %s%s" % (genome, options.rankby, options.control, outFolder, superTableFile)
    else:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -i %s%s" % (genome, options.rankby, outFolder, superTableFile)
    os.system(cmd)


    stretchTableFile = "%s_StretchEnhancers.table.txt" % (inputName)
    if options.control:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -c %s -i %s%s" % (genome, options.rankby, options.control, outFolder, stretchTableFile)
    else:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -i %s%s" % (genome, options.rankby, outFolder, stretchTableFile)
    os.system(cmd)


    superStretchTableFile = "%s_SuperStretchEnhancers.table.txt" % (inputName)
    if options.control:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -c %s -i %s%s" % (genome, options.rankby, options.control, outFolder, superStretchTableFile)
    else:
        cmd = "python ROSE2_geneMapper.py -g %s -r %s -i %s%s" % (genome, options.rankby, outFolder, superStretchTableFile)
    os.system(cmd)
Example #22
0
def regionStitching(referenceCollection,
                    name,
                    outFolder,
                    stitchWindow,
                    tssWindow,
                    annotFile,
                    removeTSS=True):
    print('PERFORMING REGION STITCHING')
    # first have to turn bound region file into a locus collection

    # need to make sure this names correctly... each region should have a unique name
    #referenceCollection

    debugOutput = []
    # filter out all bound regions that overlap the TSS of an ACTIVE GENE
    if removeTSS:

        print('REMOVING TSS FROM REGIONS USING AN EXCLUSION WINDOW OF %sBP' %
              (tssWindow))
        # first make a locus collection of TSS

        startDict = utils.makeStartDict(annotFile)

        # now makeTSS loci for active genes
        removeTicker = 0
        # this loop makes a locus centered around +/- tssWindow of transcribed genes
        # then adds it to the list tssLoci
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(
                utils.makeTSSLocus(geneID, startDict, tssWindow, tssWindow))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)

        # gives all the loci in referenceCollection
        boundLoci = referenceCollection.getLoci()

        # this loop will check if each bound region is contained by the TSS exclusion zone
        # this will drop out a lot of the promoter only regions that are tiny
        # typical exclusion window is around 2kb
        for locus in boundLoci:
            if len(tssCollection.getContainers(locus, 'both')) > 0:

                # if true, the bound locus overlaps an active gene
                referenceCollection.remove(locus)
                debugOutput.append([locus.__str__(), locus.ID(), 'CONTAINED'])
                removeTicker += 1
        print('REMOVED %s LOCI BECAUSE THEY WERE CONTAINED BY A TSS' %
              (removeTicker))

    # referenceCollection is now all enriched region loci that don't overlap an active TSS

    if stitchWindow == '':
        print('DETERMINING OPTIMUM STITCHING PARAMTER')
        optCollection = copy.deepcopy(referenceCollection)
        stitchWindow = optimizeStitching(optCollection,
                                         name,
                                         outFolder,
                                         stepSize=500)
    print('USING A STITCHING PARAMETER OF %s' % stitchWindow)
    stitchedCollection = referenceCollection.stitchCollection(
        stitchWindow, 'both')

    if removeTSS:
        # now replace any stitched region that overlap 2 distinct genes
        # with the original loci that were there
        fixedLoci = []
        tssLoci = []
        for geneID in startDict.keys():
            tssLoci.append(utils.makeTSSLocus(geneID, startDict, 50, 50))

        # this turns the tssLoci list into a LocusCollection
        # 50 is the internal parameter for LocusCollection and doesn't really matter
        tssCollection = utils.LocusCollection(tssLoci, 50)
        removeTicker = 0
        originalTicker = 0
        for stitchedLocus in stitchedCollection.getLoci():
            overlappingTSSLoci = tssCollection.getOverlap(
                stitchedLocus, 'both')
            tssNames = [
                startDict[tssLocus.ID()]['name']
                for tssLocus in overlappingTSSLoci
            ]
            tssNames = utils.uniquify(tssNames)
            if len(tssNames) > 2:

                # stitchedCollection.remove(stitchedLocus)
                originalLoci = referenceCollection.getOverlap(
                    stitchedLocus, 'both')
                originalTicker += len(originalLoci)
                fixedLoci += originalLoci
                debugOutput.append([
                    stitchedLocus.__str__(),
                    stitchedLocus.ID(), 'MULTIPLE_TSS'
                ])
                removeTicker += 1
            else:
                fixedLoci.append(stitchedLocus)

        print(
            'REMOVED %s STITCHED LOCI BECAUSE THEY OVERLAPPED MULTIPLE TSSs' %
            (removeTicker))
        print('ADDED BACK %s ORIGINAL LOCI' % (originalTicker))
        fixedCollection = utils.LocusCollection(fixedLoci, 50)
        return fixedCollection, debugOutput, stitchWindow
    else:
        return stitchedCollection, debugOutput, stitchWindow
#================================================================================
#===================================CLASSES======================================
#================================================================================

#user defined classes here

#================================================================================
#=================================FUNCTIONS======================================
#================================================================================

#write your specific functions here
annotFile = '/storage/goodell/home/jmreyes/pipeline/annotation/%s_refseq.ucsc' % (
    genome)

startDict = utils.makeStartDict(annotFile)
startLoci = []
#for TR, -30, +300 and genebody +0

for gene in startDict.keys():
    geneChrom = startDict[gene]['chr']
    geneStart = startDict[gene]['start']
    geneEnd = startDict[gene]['end']
    geneSense = startDict[gene]['sense']

    #    newLocus  = [geneChrom, gene, '', geneStart]

    newLocus = utils.makeTSSLocus(gene, startDict, 0, 0)

    startLoci.append([
        newLocus.chr(),
Example #24
0
def loadAnnotFile(genome, window, geneList=[], skip_cache=False):
    """
    load in the annotation and create a startDict and tss collection for a set of refseq IDs a given genome
    """
    genomeDict = {
        'HG18': 'annotation/hg18_refseq.ucsc',
        'MM9': 'annotation/mm9_refseq.ucsc',
        'MM10': 'annotation/mm10_refseq.ucsc',
        'HG19': 'annotation/hg19_refseq.ucsc',
        'HG19_RIBO': 'annotation/hg19_refseq.ucsc',
        'RN4': 'annotation/rn4_refseq.ucsc',
        'RN6': 'annotation/rn6_refseq.ucsc',
        'HG38': 'annotation/hg38_refseq.ucsc',
    }

    genomeDirectoryDict = {
        'HG19':
        '/storage/cylin/grail/genomes/Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/',
        'RN6':
        '/storage/cylin/grail/genomes/Rattus_norvegicus/UCSC/rn6/Sequence/Chromosomes/',
        'MM9':
        '/storage/cylin/grail/genomes/Mus_musculus/UCSC/mm9/Sequence/Chromosomes/',
        'MM10':
        '/storage/cylin/grail/genomes/Mus_musculus/UCSC/mm10/Sequence/Chromosomes/',
        'HG38':
        '/storage/cylin/grail/genomes/Homo_sapiens/UCSC/hg38/Sequence/Chromosomes/',
    }

    mouse_convert_file = '%s/annotation/HMD_HumanPhenotype.rpt' % (whereAmI)

    #making a dictionary for mouse to human conversion
    mouse_convert_dict = defaultdict(str)

    mouse_convert_table = utils.parseTable(mouse_convert_file, '\t')
    for line in mouse_convert_table:
        mouse_convert_dict[line[4]] = line[0]

    genomeDirectory = genomeDirectoryDict[string.upper(genome)]

    #making a chrom_dict that is a list of all chroms with sequence
    chrom_list = utils.uniquify([
        name.split('.')[0] for name in os.listdir(genomeDirectory)
        if len(name) > 0
    ])

    annotFile = whereAmI + '/' + genomeDict[string.upper(genome)]

    if not skip_cache:
        # Try loading from a cache, if the crc32 matches
        annotPathHash = zlib.crc32(
            annotFile) & 0xFFFFFFFF  # hash the entire location of this script
        annotFileHash = zlib.crc32(open(annotFile, "rb").read()) & 0xFFFFFFFF

        cache_file_name = "%s.%s.%s.cache" % (genome, annotPathHash,
                                              annotFileHash)

        cache_file_path = '%s/%s' % (tempfile.gettempdir(), cache_file_name)

        if os.path.isfile(cache_file_path):
            # Cache exists! Load it!
            try:
                print('\tLoading genome data from cache.')
                with open(cache_file_path, 'rb') as cache_fh:
                    cached_data = cPickle.load(cache_fh)
                    print('\tCache loaded.')
                return cached_data
            except (IOError, cPickle.UnpicklingError):
                # Pickle corrupt? Let's get rid of it.
                print('\tWARNING: Cache corrupt or unreadable. Ignoring.')
        else:
            print('\tNo cache exists: Loading annotation (slow).')

    # We're still here, so either caching was disabled, or the cache doesn't exist

    startDict = utils.makeStartDict(annotFile, geneList)
    tssLoci = []
    if geneList == []:
        geneList = startDict.keys()
    for gene in geneList:
        tssLoci.append(utils.makeTSSLocus(gene, startDict, window, window))

    tssCollection = utils.LocusCollection(tssLoci, 50)

    if not skip_cache:
        print('Writing cache for the first time.')
        with open(cache_file_path, 'wb') as cache_fh:
            cPickle.dump((startDict, tssCollection), cache_fh,
                         cPickle.HIGHEST_PROTOCOL)

    return startDict, tssCollection, genomeDirectory, chrom_list, mouse_convert_dict
def main():

    #get WGBS files
    projectFolder = '/storage/goodell/projects/jmreyes/amish_ayala/'
    wgbsList = [
        'dc5_mutant_BS.txt', 'dc3_mutant_BS.txt', 'dc15_WT_BS.txt',
        'dc16_WT_BS.txt'
    ]

    #import out genes of interest
    sigGenesFile = utils.parseTable(
        projectFolder + 'tables/Amish_significant.txt', '\r')
    sigTable = [x.split('\t') for x in sigGenesFile[0]]
    sigGenes = [x[0] for x in sigTable]

    #make start dict containing all TSS start sites
    startDict = utils.makeStartDict(annotFile)

    #converter form refseq to gene name
    revDict = {}
    for name in startDict.keys():
        revDict[startDict[name]['name']] = name

    #get out subset of genes
    sigLoci = []
    window = 500
    for gene in sigGenes:
        if gene in revDict.keys():
            refSeq = revDict[gene]
            geneChr = startDict[refSeq]['chr']
            geneStart = startDict[refSeq]['start']
            geneEnd = startDict[refSeq]['end']
            geneSense = startDict[refSeq]['sense']
            newLocus = [
                geneChr, geneStart[0] - window, geneStart[0] + window,
                geneSense, gene + ':' + refSeq
            ]
            sigLoci.append(newLocus)

        else:
            refSeq = 'NA'


#    print len(sigLoci)
#    print sigLoci[1:5]
# utils.unParseTable(sigLoci, projectFolder+'bed/Amish_sigTSS_-500_+500.bed', '\t')
    sortedBed = projectFolder + 'bed/Amish_sigTSS_-500_+500.sorted.bed'

    binNumber = 200
    ts = time.time()
    timestamp = datetime.datetime.fromtimestamp(ts).strftime(
        '%Y%m%d_%Hh%Mm%Ss')

    dateFolder = projectFolder + 'scripts/' + datetime.datetime.fromtimestamp(
        ts).strftime('%Y%m%d') + '/'
    utils.formatFolder(dateFolder, True)
    bedList = [sortedBed]

    for wgbsCalls in wgbsList:
        methylPlotBash = [['#!/usr/bin/bash']]
        catBash = []
        wgbsName = wgbsCalls.split('.')[0]
        outDir = projectFolder + 'temp/' + wgbsName + '/'
        outBed = projectFolder + 'temp/' + wgbsName + '/bed/'

        utils.formatFolder(outDir, True)
        utils.formatFolder(outBed, True)

        ticker = 0
        for bed in bedList:
            bedName = bed.split('.bed')[0].split('/')[-1]
            splitCmd = 'split -l 1000 %s %s' % (bed, outBed + bedName)
            os.system(splitCmd)

            bedSplitList = [x for x in os.listdir(outBed) if bedName in x]
            catBedList = []

            for bed in bedSplitList:
                ticker += 1
                outName = wgbsName + '_' + bed
                if ticker % 10 == 0:
                    sepMark = '&'
                else:
                    sepMark = '&'
                methylCall = 'python /storage/goodell/home/jmreyes/xwing/methylPlot.py -i %s -b %s -o %s -n %s %s' % (
                    projectFolder + 'wgbs/' + wgbsCalls, outBed + bed,
                    outDir + outName, binNumber, sepMark)
                methylPlotBash.append([methylCall])

                catBedList.append(outDir + outName)

            catBedListSort = sorted(catBedList)
            catOut = projectFolder + 'mapped/' + wgbsName + '_' + bedName + '_' + timestamp + '_avgMethyl.txt'
            catCmd = '#cat %s > %s' % (' '.join(catBedListSort), catOut)
            catBash.append([catCmd])
            rmCmd = ['#rm -rf %s' % (outDir)]

        outputBash = methylPlotBash + catBash

        utils.unParseTable(
            outputBash,
            dateFolder + wgbsName + '_TSS_mapping_' + timestamp + '.sh', '\t')