Example #1
0
def log_results(results):
	best_n_tree = {'acc':None,
			'train_time':None,
			'pred_time':None,
			'fMeasure_micro':None,
			'fMeasure_macro':None}

	print('\n---------------------')

	for n_tree in results.keys():
		allValues = {'acc':list(),
			'train_time':list(),
			'pred_time':list(),
			'fMeasure_micro':list(),
			'fMeasure_macro':list()}
		average = 0.0
		median = 0.0
		percentile_75 = 0.0
		percentile_90 = 0.0
		percentile_99 = 0.0
		standarDeviation = 0.0

		for fold in results[n_tree]['folds']:
			allValues['acc'].append(results[n_tree]['folds'][fold]['acc'])
			allValues['train_time'].append(results[n_tree]['folds'][fold]['train_time'])
			allValues['pred_time'].append(results[n_tree]['folds'][fold]['pred_time'])
			allValues['fMeasure_micro'].append(results[n_tree]['folds'][fold]['fMeasure_micro'])
			allValues['fMeasure_macro'].append(results[n_tree]['folds'][fold]['fMeasure_macro'])
		for metric in allValues.keys():
			average = Analyzer.calcAverage(allValues[metric])
			standarDeviation = Analyzer.calcStandarDeviation(allValues[metric])
			percentile_75 = Analyzer.calcPercentile(allValues[metric],75)
			percentile_90 = Analyzer.calcPercentile(allValues[metric],90)
			percentile_99 = Analyzer.calcPercentile(allValues[metric],99)
			median = Analyzer.calcMedian(allValues[metric])

			results[n_tree][metric+'_avg'] = average
			results[n_tree][metric+'_sd'] = standarDeviation
			results[n_tree][metric+'_perc75'] = percentile_75
			results[n_tree][metric+'_perc90'] = percentile_90
			results[n_tree][metric+'_perc99'] = percentile_99
			results[n_tree][metric+'_median'] = median

			#print('Average %s for %d trees: %.2f' %(metric, n_tree, average))
			#print('Standart Deviation %s for %d trees: %.2f' %(metric, n_tree, standarDeviation))
			#print('Perc 75 %s for %d trees: %.2f' %(metric, n_tree, percentile_75))
			#print('Perc 90 %s for %d trees: %.2f' %(metric, n_tree, percentile_90))
			#print('Perc 99 %s for %d trees: %.2f' %(metric, n_tree, percentile_99))
			#print('Median %s for %d trees: %.2f' %(metric, n_tree, median))

			if best_n_tree[metric] == None or median >= best_n_tree[metric]['median']:
				best_n_tree[metric]= {'tree':n_tree, 'median': median}

	for metric in allValues.keys():
		print('Best number of trees: %d with %.2f %s' % (best_n_tree[metric]['tree'], best_n_tree[metric]['median'],metric))
	print('---------------------\n')
Example #2
0
def get_test_results_newer(clf, test_data, target_column, train_time):
	analyzer = Analyzer(list(test_data[target_column].unique()))
	test_input = test_data.drop(target_column, axis=1)
	test_target = test_data[target_column]
	prediction_time = 0
	for features, target in zip(test_input.iterrows(), test_target):
		start = time.process_time()
		prediction = clf.predict(features[1])
		end = time.process_time()
		prediction_time += (end - start)
		analyzer.addValueInConfusionMatrix(prediction,target)

	return {
		'acc': analyzer.calcAccuracy(),
		'fMeasure_micro': analyzer.calcFBethaMeasure(1,"micro"),
		'fMeasure_macro': analyzer.calcFBethaMeasure(1,"macro"),
		'train_time': train_time,
		'pred_time': prediction_time/len(test_data)
	}
Example #3
0
from lsq import fit_components
from utils import FourierFilter, Analyzer, find_roots


font = dict(
    size = 14
)
matplotlib.rc('font', **font)

B = 10.06
wl = 3e8 / 10.67e9

datafile = "../data/sun-4_3_2014-22.npz"
logfile = "../data/logs/sun-4_3_2014-22-log"

sun = Analyzer(datafile, logfile, dt=1.0)

# First we will remove that raised section at the end (starts at index 26000)
sun.slice(0, 26000)

# Next we set invalid points (from telescope homing) to the avg_dc
sun.flatten_invalid_points()


plt.subplot(211)
plt.plot(sun["ha"], sun["volts"])
plt.xlabel(r"Hour angle [h]", fontsize=18)
plt.ylabel(r"Power", fontsize=18)
plt.subplot(212)
trans = np.fft.fft(sun["volts"])
freqs = np.fft.fftfreq(len(trans), 2. * np.pi * 1.0 / 86164.)
Example #4
0
import matplotlib.pyplot as plt

from fringe_funcs import fringe_freq, bessel
from lsq import fit_components
from utils import FourierFilter, Analyzer, find_roots


B = 10.06
wl = 3e8 / 10.67e9

datafile = "../data/moon-4_6_2014-24.npz"
logfile = "../data/logs/moon-4_6_2014-24-log"


moon = Analyzer(datafile, logfile, dt=1.0, start_at_timestamp="2014-04-06 20:33:14,728")

import ephem
import datetime
damoon = ephem.Moon()
obs = ephem.Observer()
obs.lat = np.deg2rad(37.8732)
obs.long = np.deg2rad(-122.2573)
obs.date = ephem.date("2014-04-06 20:12:45")
damoon.compute(obs)
for i, lst in enumerate(moon["lst"]):
    moon["ra"][i] = 24. * damoon.ra / (2. * np.pi)
    moon["dec"][i] = np.rad2deg(damoon.dec)
    obs.date += 1. / 86164.
    damoon.compute(obs)
Example #5
0
from objects import OBJECTS
from utils import FourierFilter, Analyzer


font = dict(
    size = 14
)
matplotlib.rc('font', **font)

B = 10.0
wl = 3e8 / 10.67e9

datafile = "../data/3C144-4_3_2014-23.npz"
logfile = "../data/logs/3C144-4_3_2014-23-log"

crab = Analyzer(datafile, logfile, dt=1.0, ra=24. * OBJECTS["3C144"]["ra"] / (2. * np.pi))

plt.subplot(211)
plt.plot(crab["ha"], crab["volts"])
plt.xlabel(r"Hour angle [h]", fontsize=18)
plt.ylabel(r"Power", fontsize=18)
plt.subplot(212)
trans = np.fft.fft(crab["volts"])
freqs = np.fft.fftfreq(len(trans), 2. * np.pi * 1.0 / 86164.)
plt.plot(np.fft.fftshift(freqs), np.fft.fftshift(abs(trans)**2))
plt.xlabel(r"Frequency [rad$^{-1}$]", fontsize=18)
plt.ylabel(r"Power", fontsize=18)

# First we set invalid points (from telescope homing) to the avg_dc
crab.flatten_invalid_points()