def process(self): self.imfs = self.findIMFs(self.imfsNo) self.hilbertAlgorithm = Hilbert(self.ecgSignal, self.tWindowSize, self.samplingFrequency) self.imfsSum = np.sum(self.imfs, axis=0) self.rPeaks = self.hilbertAlgorithm.processImfs(self.imfsSum) return self.rPeaks
class HilbertTest(unittest.TestCase): def setUp(self): refDir = os.path.dirname(os.getcwd()) refNumStr = '103' refInFileDir = os.path.join(refDir, refNumStr, 'Input.csv') refOutFileDir = os.path.join(refDir, refNumStr, 'HilbertOutput.csv') resOutFileDir = os.path.join(refDir, refNumStr, 'HilbertResultsPython.csv') self.samplingFreq = 360.0 self.refInFile = open(refInFileDir, 'r') self.refOutFile = open(refOutFileDir, 'r') self.resultFile = open(resOutFileDir, 'w') self.refInVector = [] self.refOutVector = [] self.resultVector = [] self.refIntSignalVector = [] self.refMarksVector = [] def tearDown(self): self.refInFile.close() self.refOutFile.close() self.resultFile.close() def loadReferenceData(self): refInVectorStr = self.refInFile.readline().split(',') del refInVectorStr[-1] for item in refInVectorStr: val = float(item) self.refInVector.append(val) refOutVectorStr = self.refOutFile.readline().split(',') del refOutVectorStr[-1] for item in refOutVectorStr: val = int(float(item)) self.refOutVector.append(val) def runAlgorithm(self): self.alg = Hilbert(self.refInVector, samplingFrequency=self.samplingFreq) self.resultVector = self.alg.process() for val in self.resultVector or []: self.resultFile.write('%d\n' % val) def isResultIdentical(self): result = True for ref, res in zip(self.refOutVector, self.resultVector): print '{} {}'.format(ref, res) if ref != res: print 'reference ({}) and result ({}) are not equal'.format(ref, res) result = False return result def testAlgorithm(self): self.loadReferenceData() self.runAlgorithm() self.assertTrue(self.isResultIdentical(), 'Reference vector and result vector are not identical')
def run_Hilbert(self, param): logging.debug('building Hilbert-R...') tree = Hilbert(self.data, param) start = time.clock() tree.buildIndex() tree.adjustConsistency() end = time.clock() logging.info('[T] Hilbert building time: %.2f' % (end - start)) return self.query(tree)
import os from Hilbert import Hilbert refDir = os.path.dirname(os.getcwd()) refNumStr = '102' refInFileDir = os.path.join(refDir, refNumStr, 'Input.csv') resOutFileDir = os.path.join(refDir, refNumStr, 'HilbertResultsPython.csv') refInFile = open(refInFileDir, 'r') resultFile = open(resOutFileDir, 'w') refInVector = [] refInVectorStr = refInFile.readline().split(',') del refInVectorStr[-1] for item in refInVectorStr: val = float(item) refInVector.append(val) alg = Hilbert(refInVector, tWindowSize=120.0, samplingFrequency=360) resultVector = alg.process() for val in resultVector or []: resultFile.write('%d\n' % val) refInFile.close() resultFile.close()
class EMD(object): SD_LIMIT_VAL = 0.3 def __init__(self, ecgSignal, samplingFrequency=360.0, tWindowSize=120.0, imfsNo=1): self.ecgSignal = np.array(ecgSignal) self.ecgSignalSize = len(ecgSignal) self.samplingFrequency = samplingFrequency self.tWindowSize = tWindowSize self.nWindowSize = int(tWindowSize * samplingFrequency) self.rPeaks = [] self.imfsNo = imfsNo def process(self): self.imfs = self.findIMFs(self.imfsNo) self.hilbertAlgorithm = Hilbert(self.ecgSignal, self.tWindowSize, self.samplingFrequency) self.imfsSum = np.sum(self.imfs, axis=0) self.rPeaks = self.hilbertAlgorithm.processImfs(self.imfsSum) return self.rPeaks def findIMFs(self, n=3): imfs = np.empty([n, self.ecgSignalSize]) residue = False N = self.ecgSignalSize x_part = np.copy(self.ecgSignal[:N]) c = np.copy(x_part) for i in range(0, n): h = np.copy(c) sd = np.inf prev_h = np.copy(h) while sd > EMD.SD_LIMIT_VAL: maxima, minima = self.findExtrema(h) # is it already a residue? if len(maxima) + len(minima) < 2: residue = True break maxima = np.insert(maxima, 0, 0) minima = np.insert(minima, 0, 0) maxima = np.append(maxima, len(h) - 1) minima = np.append(minima, len(h) - 1) maxima_val = [h[j] for j in maxima] minima_val = [h[j] for j in minima] upper_bound_func = spi.InterpolatedUnivariateSpline(maxima, maxima_val, k=3) lower_bound_func = spi.InterpolatedUnivariateSpline(minima, minima_val, k=3) x_new = np.arange(0, N, 1) upper_bound = upper_bound_func(x_new) lower_bound = lower_bound_func(x_new) m = np.add(lower_bound, upper_bound) * 0.5 h = np.subtract(prev_h, m) sd = self.calculateSD(prev_h, h, eps=0.0000001) prev_h = np.copy(h) imfs[i] = h if residue: break c = np.subtract(c, h) return imfs def calculateSD(self, previous, current, eps=0.0): eps_array = np.empty(len(current)) eps_array.fill(eps) numerator = np.sum(np.square(np.subtract(previous, current))) denominator = np.sum(np.add(np.square(previous), eps_array)) return np.divide(numerator, denominator) def findExtrema(self, signal): maxima = sps.argrelextrema(signal, np.greater) minima = sps.argrelextrema(signal, np.less) return maxima, minima
def __init__(self): super(App, self).__init__() # load background self.background = Background(filename="background.png") # get array copy of background image self.background.arr = pygame.surfarray.array3d(self.background.img) # create bw from image _, self.background.arr_bw = cv2.threshold(self.background.arr[:, :, 0], 128, 1, cv2.THRESH_BINARY) # print self.background.arr_bw.shape, self.background.arr_bw.dtype # self.background.arr_dist = cv2.distanceTransform(self.background.arr_bw, cv.CV_DIST_L1, 3) # get nearest (zero) pixel labels with corresponding distances self.background.arr_dist, self.labels = cv2.distanceTransformWithLabels( self.background.arr_bw, cv.CV_DIST_L1, 3, labelType=cv2.DIST_LABEL_PIXEL) self.distances = self.background.arr_dist ### get x,y coordinates for each label # get positions of zero points zero_points = Utils.zero_points(self.background.arr_bw) # get labels for zero points zero_labels = self.labels[zero_points[:, 0], zero_points[:, 1]] # create dictionary mapping labels to zero point positions self.label_positions = dict( zip(zero_labels, zip(zero_points[:, 0], zero_points[:, 1]))) # create hilbert curve lookup table self.hilbert = Hilbert.hilbert_lookup(*self.background.arr.shape[:2]) # provide a rgb variant of dist for display self.background.arr_dist_rgb = self.background.arr.copy() self.background.arr_dist_rgb[:, :, 0] = self.background.arr_dist self.background.arr_dist_rgb[:, :, 1] = self.background.arr_dist self.background.arr_dist_rgb[:, :, 2] = self.background.arr_dist # print a.shape self.setup_pygame() self.events = Events() self.plt = Plot() self.lane = Lane(self.events) self.lane.load("parkour.sv") # self.lane.add_support_point(100,100) # self.lane.add_support_point(200,100) # self.lane.add_support_point(200,200) # self.lane.add_support_point(100,200) self.optimize = Optimize(self.lane) self.cars = [] self.cars.append(Car(x=100, y=100, theta=-45, speed=0)) # representation for actual car self.cars.append(Car(x=100, y=100, theta=-45 + 15, speed=0)) # representation for ins estimate self.cars.append( Car(x=100, y=100, theta=-45, speed=0) ) # representation for ins estimate xy optimization single pass self.cars.append( Car(x=100, y=100, theta=-45, speed=0) ) # representation for ins estimate xy optimization multi pass self.cars.append( Car(x=100, y=100, theta=-45, speed=0)) # representation for ins estimate theta optimization for car in self.cars: car.color = Draw.WHITE self.cars[2].color = Draw.YELLOW self.cars[3].color = Draw.RED self.cars[4].color = Draw.GREEN self.action = None self.dragdrop = DragAndDropController(self.events) self.controller = self.dragdrop # self.cars[0].camview = CamView(self.cars[0],self.background.arr) # self.cars[0].camview.register_events(self.events) self.cars[0].name = "actual" self.cars[1].name = "estimate" self.cars[2].name = "opt" self.cars[3].name = "opt*" self.cars[4].name = "theta" self.cars[0].controller = self.controller self.cars[1].controller = self.controller self.cars[0].camview = CamView(self.cars[0], self.background.arr) self.cars[2].controller = OptimizeNearestEdgeXYSinglePass( optimize=self.optimize, labels=self.labels, label_positions=self.label_positions, camview=self.cars[0].camview, estimate_car=self.cars[1]) self.cars[3].controller = OptimizeNearestEdgeXYMultiPass( optimize=self.optimize, labels=self.labels, label_positions=self.label_positions, camview=self.cars[0].camview, estimate_car=self.cars[1]) self.cars[4].controller = OptimizeThetaParable( optimize=self.optimize, distances=self.distances, camview=self.cars[0].camview, estimate_car=self.cars[3]) # self.cars[4].controller = OptimizeNearestEdgeTheta( # optimize = self.optimize, # labels = self.labels, # label_positions = self.label_positions, # hilbert = self.hilbert, # camview = self.cars[0].camview, # estimate_car = self.cars[1]) # self.window = Window(self.screen, self.events, 300, 200, "caption") self.done = False self.cursor = (0, 0) self.register_events() self.spin()
def __init__(self): super(App, self).__init__() # load background self.background = Background(filename="background.png") # get array copy of background image self.background.arr = pygame.surfarray.array3d(self.background.img) # create bw from image _, self.background.arr_bw = cv2.threshold(self.background.arr[:, :, 0], 128, 1, cv2.THRESH_BINARY) # print self.background.arr_bw.shape, self.background.arr_bw.dtype # self.background.arr_dist = cv2.distanceTransform(self.background.arr_bw, cv.CV_DIST_L1, 3) # get nearest (zero) pixel labels with corresponding distances self.background.arr_dist, self.labels = cv2.distanceTransformWithLabels( self.background.arr_bw, cv.CV_DIST_L1, 3, labelType=cv2.DIST_LABEL_PIXEL) self.distances = self.background.arr_dist ### get x,y coordinates for each label # get positions of zero points zero_points = Utils.zero_points(self.background.arr_bw) # get labels for zero points zero_labels = self.labels[zero_points[:, 0], zero_points[:, 1]] # create dictionary mapping labels to zero point positions self.label_positions = dict( zip(zero_labels, zip(zero_points[:, 0], zero_points[:, 1]))) # create hilbert curve lookup table self.hilbert = Hilbert.hilbert_lookup(*self.background.arr.shape[:2]) # provide a rgb variant of dist for display self.background.arr_dist_rgb = self.background.arr.copy() self.background.arr_dist_rgb[:, :, 0] = self.background.arr_dist self.background.arr_dist_rgb[:, :, 1] = self.background.arr_dist self.background.arr_dist_rgb[:, :, 2] = self.background.arr_dist # print a.shape self.setup_pygame() self.events = Events() self.lane = Lane(self.events) self.lane.load("parkour.sv") # self.lane.add_support_point(100,100) # self.lane.add_support_point(200,100) # self.lane.add_support_point(200,200) # self.lane.add_support_point(100,200) self.optimize = Optimize(self.lane) self.cars = [] # for k in range(1): # self.cars.append(Car(x=150+k*5,y=100,theta=np.random.randint(0,360),speed=np.random.randint(45,180))) self.cars.append(Car(x=50, y=250, theta=90, speed=1 * 1.5 * 90)) self.cars.append(Car(x=50, y=250, theta=90, speed=1 * 90)) # [1] human self.cars.append(Car(x=50, y=250, theta=90, speed=1 * 90)) # [2] ghost of ins estimating [0] self.action = None self.human = HumanController() self.heuristic = Heuristic(self.lane) Node.heuristic = self.heuristic self.onestep = OneStepLookaheadController(self.cars, self.lane, self.heuristic) self.nstep = NStepLookaheadController(self.cars, self.lane, self.heuristic, 2) self.bestfirst = BestFirstController(self.cars, self.lane, self.heuristic) self.controller = self.bestfirst self.cars[0].camview = CamView(self.cars[0], self.background.arr) self.cars[0].camview.register_events(self.events) self.cars[0].controller = self.controller self.cars[0].collision = False self.cars[0].imu = IMU(self.cars[0]) self.cars[0].ins = INS(self.cars[0].imu.calibration_noise) self.cars[0].ins.update_pose(self.cars[0].x, self.cars[0].y, self.cars[0].theta / Utils.d2r, gain=1) self.insghost = INSGhostController(self.cars[0].ins) self.cars[1].controller = self.human self.cars[2].controller = self.insghost self.cars[2].collision = False self.cars[2].size *= 1.25 self.cars[2].camview = CamView(self.cars[2], self.background.arr_dist_rgb, width=275, height=275, offset=(0, 75), angle_offset=-25) self.cars[2].camview.register_events(self.events) self.cars[0].name = "actual" self.cars[1].name = "human" self.cars[2].name = "estimate" # this causes the controller of cars[0] to use the information from cars[0].ghost but act on cars[0] # self.cars[0].ghost = self.cars[2] # self.window = Window(self.screen, self.events, 300, 200, "caption") self.grid = Grid(50, 50, *self.size) self.last_distance_grid_update = time() - 10 self.update_distance_grid() self.done = False for car in self.cars: # save original speed if not hasattr(car, "speed_on"): car.speed_on = car.speed # toggle speed car.speed = car.speed_on - car.speed # car.pause = not car.pause self.plot_window_size = 100 self.xyt_corr_ring_buffer = RingBuffer(self.plot_window_size, channels=3) self.xyt_corr_plot = RingBufferPlot(self.xyt_corr_ring_buffer) # self.normal_test_p_value_plot = RingBufferPlot(RingBuffer(self.plot_window_size,channels=self.xyt_corr_ring_buffer.channels)) self.std_plot = RingBufferPlot( RingBuffer(self.plot_window_size, channels=self.xyt_corr_ring_buffer.channels)) self.velocity_carthesian_history_plot = RingBufferPlot( self.cars[0].ins.velocity_carthesian_history) # self.hist_plot = HistogramPlot(10) self.register_events() self.spin()
class HilbertTest(unittest.TestCase): def setUp(self): refDir = os.path.dirname(os.getcwd()) refNumStr = '103' refInFileDir = os.path.join(refDir, refNumStr, 'Input.csv') refOutFileDir = os.path.join(refDir, refNumStr, 'HilbertOutput.csv') resOutFileDir = os.path.join(refDir, refNumStr, 'HilbertResultsPython.csv') self.samplingFreq = 360.0 self.refInFile = open(refInFileDir, 'r') self.refOutFile = open(refOutFileDir, 'r') self.resultFile = open(resOutFileDir, 'w') self.refInVector = [] self.refOutVector = [] self.resultVector = [] self.refIntSignalVector = [] self.refMarksVector = [] def tearDown(self): self.refInFile.close() self.refOutFile.close() self.resultFile.close() def loadReferenceData(self): refInVectorStr = self.refInFile.readline().split(',') del refInVectorStr[-1] for item in refInVectorStr: val = float(item) self.refInVector.append(val) refOutVectorStr = self.refOutFile.readline().split(',') del refOutVectorStr[-1] for item in refOutVectorStr: val = int(float(item)) self.refOutVector.append(val) def runAlgorithm(self): self.alg = Hilbert(self.refInVector, samplingFrequency=self.samplingFreq) self.resultVector = self.alg.process() for val in self.resultVector or []: self.resultFile.write('%d\n' % val) def isResultIdentical(self): result = True for ref, res in zip(self.refOutVector, self.resultVector): print '{} {}'.format(ref, res) if ref != res: print 'reference ({}) and result ({}) are not equal'.format( ref, res) result = False return result def testAlgorithm(self): self.loadReferenceData() self.runAlgorithm() self.assertTrue( self.isResultIdentical(), 'Reference vector and result vector are not identical')
def runAlgorithm(self): self.alg = Hilbert(self.refInVector, samplingFrequency=self.samplingFreq) self.resultVector = self.alg.process() for val in self.resultVector or []: self.resultFile.write('%d\n' % val)