def main(): parser = argparse.ArgumentParser("Somatic VCF Feature Extraction") parser.add_argument("input", help="Input VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file name. Output will be in CSV format") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument( "-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help= "Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument( "-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help= "Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument( "--feature-table", dest="features", default="generic", help="Select a feature table to output. Options are: %s" % str(Somatic.FeatureSet.sets.keys())) parser.add_argument( "--feature-label", dest="label", default=None, help= "We will output a lable column, this value will go in there -- default is " "the input filename.") parser.add_argument( "--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file for normalization.") parser.add_argument( "--normalize", dest="normalize", default=False, action="store_true", help="Enable running of bcftools norm on the input file.") parser.add_argument( "--fix-chr", dest="fixchr", default=False, action="store_true", help="Replace numeric chromosome names in the query by chr*-type names" ) args = parser.parse_args() scratch = tempfile.mkdtemp() try: logging.info("Scratch path is %s" % scratch) if not args.label: args.label = os.path.basename(args.input) bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 nqpath = os.path.join(scratch, "normalized_query.vcf.gz") logging.info("Preprocessing input...") preprocessVCF( args.input, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr, # chrprefix args.normalize, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) runBcftools("index", nqpath) logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) featuretable = fset.collect(nqpath, args.label) if not args.output.endswith(".csv"): args.output += ".csv" logging.info("Saving feature table %s..." % args.output) featuretable.to_csv(args.output) finally: logging.info("Deleting scratch folder %s " % scratch) shutil.rmtree(scratch)
def main(): parser = argparse.ArgumentParser("Somatic Comparison") parser.add_argument("truth", help="Truth VCF file") parser.add_argument("query", help="Query VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file prefix for statistics and feature table (when selected)") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument("-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument("-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-f", "--false-positives", dest="FP", help="False-positive region bed file to distinguish UNK from FP") parser.add_argument("-a", "--ambiguous", dest="ambi", action='append', help="Ambiguous region bed file(s) to distinguish from FP (e.g. variant only observed " "in some replicates)") parser.add_argument("--ambi-fp", dest="ambi_fp", action='store_true', default=False, help="Use FP calls from ambiguous region files also.") parser.add_argument("--no-ambi-fp", dest="ambi_fp", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("--count-unk", dest="count_unk", action='store_true', default=False, help="Assume the truth set covers the whole genome and only count FPs in regions " "specified by the truth VCF or ambiguous/false-positive regions.") parser.add_argument("--no-count-unk", dest="count_unk", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("-e", "--explain_ambiguous", dest="explain_ambiguous", required=False, default=False, action="store_true", help="print a table giving the number of ambiguous events per category") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file.") parser.add_argument("--scratch-prefix", dest="scratch_prefix", default=None, help="Filename prefix for scratch report output.") parser.add_argument("--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.") parser.add_argument("--continue", dest="cont", default=False, action="store_true", help="Continue from scratch space (i.e. use VCFs in there if they already exist).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument("--feature-table", dest="features", default=False, choices=Somatic.FeatureSet.sets.keys(), help="Select a feature table to output.") parser.add_argument("--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("--normalize-truth", dest="normalize_truth", default=False, action="store_true", help="Enable running of bcftools norm on the truth file.") parser.add_argument("--normalize-query", dest="normalize_query", default=False, action="store_true", help="Enable running of bcftools norm on the query file.") parser.add_argument("-N", "--normalize-all", dest="normalize_all", default=False, action="store_true", help="Enable running of bcftools norm on both truth and query file.") parser.add_argument("--fixchr-truth", dest="fixchr_truth", action="store_true", default=True, help="Add chr prefix to truth file (default: true).") parser.add_argument("--fixchr-query", dest="fixchr_query", action="store_true", default=True, help="Add chr prefix to query file (default: true).") parser.add_argument("--fix-chr-truth", dest="fixchr_truth", action="store_true", default=None, help="Same as --fixchr-truth.") parser.add_argument("--fix-chr-query", dest="fixchr_query", action="store_true", default=None, help="Same as --fixchr-query.") parser.add_argument("--no-fixchr-truth", dest="fixchr_truth", action="store_false", default=False, help="Disable chr replacement for truth (default: false).") parser.add_argument("--no-fixchr-query", dest="fixchr_query", action="store_false", default=False, help="Add chr prefix to query file (default: false).") parser.add_argument("--no-order-check", dest="disable_order_check", default=False, action="store_true", help="Disable checking the order of TP features (dev feature).") parser.add_argument("--roc", dest="roc", default=None, choices=ROC.list(), help="Create a ROC-style table. This is caller specific " " - this will override the --feature-table switch!") parser.add_argument("--bin-afs", dest="af_strat", default=None, action="store_true", help="Stratify into different AF buckets. This needs to have features available" "for getting the AF both in truth and query variants.") parser.add_argument("--af-binsize", dest="af_strat_binsize", default=0.2, help="Bin size for AF binning (should be < 1). Multiple bin sizes can be specified using a comma, " "e.g. 0.1,0.2,0.5,0.2 will split at 0.1, 0.3, 0.8 and 1.0.") parser.add_argument("--af-truth", dest="af_strat_truth", default="I.T_ALT_RATE", help="Feature name to use for retrieving AF for truth variants (TP and FN)") parser.add_argument("--af-query", dest="af_strat_query", default="T_AF", help="Feature name to use for retrieving AF for query variants (FP/UNK/AMBI)") parser.add_argument("-FN", "--count-filtered-fn", dest="count_filtered_fn", action="store_true", help="Count filtered vs. absent FN numbers. This requires the -P switch (to use all " "variants) and either the --feature-table or --roc switch.") parser.add_argument("--fp-region-size", dest="fpr_size", help="How to obtain the normalisation constant for FP rate. By default, this will use the FP region bed file size when using" " --count-unk and the size of all reference contigs that overlap with the location specified in -l otherwise." " This can be overridden with: 1) a number of nucleotides, or 2) \"auto\" to use the lengths of all contigs that have calls." " The resulting value is used as fp.region.size.") parser.add_argument("--ci-level", dest="ci_level", default=0.95, type = float, help="Confidence level for precision/recall confidence intervals (default: 0.95)") parser.add_argument("--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr") verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument("--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.") verbosity_options.add_argument("--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only.") args = parser.parse_args() if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING try: if type(args.af_strat_binsize) is str: args.af_strat_binsize = map(float, args.af_strat_binsize.split(",")) else: args.af_strat_binsize = map(float, [args.af_strat_binsize]) if not args.af_strat_binsize: raise Exception("Bin size list is empty") except: logging.error("Failed to parse stratification bin size: %s" % str(args.af_strat_binsize)) exit(1) # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format='%(asctime)s %(levelname)-8s %(message)s', level=loglevel) if args.normalize_all: args.normalize_truth = True args.normalize_query = True if args.roc: args.roc = ROC.make(args.roc) args.features = args.roc.ftname if not args.inc_nonpass: logging.warn("When creating ROCs without the -P switch, the ROC data points will only " "include filtered variants (i.e. they will normally end at the caller's " "quality threshold).") if not (args.ci_level > 0.0 and args.ci_level < 1.0): raise Exception("Confidence interval level must be > 0.0 and < 1.0.") if args.af_strat and not args.features: raise Exception("To stratify by AFs, a feature table must be selected -- use this switch together " "with --feature-table or --roc") if args.count_filtered_fn and (not args.inc_nonpass or not args.features): raise Exception("Counting filtered / unfiltered FNs only works when a feature table is selected, " "and when using unfiltered variants. Specify -P --feature-table <...> or use " "--roc to select a ROC type.") if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF(args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF(args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) tpfn_r_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4], args.fixchr_truth) if args.FP: fpclasses.addFromBed(args.FP, "FP", args.fixchr_truth) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == '#': continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not args.count_unk: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" metrics_output = makeMetricsObject("som.py.comparison") if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " \ "overlap):\n" + ambie.to_string(index=False) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort(["CHROM", "POS"], inplace=True) tps2.sort(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps2.shape[0] if len1 != len2: raise Exception("Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception("Cannot merge TP features, inputs are out of order at %s / %s" % ( str(tps[x:x + 1]), str(tps2[x:x + 1]))) logging.info("Merging...") cdata = { "CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"] } tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and a not in columns_tps2: tpc[a] = tps[a] elif a not in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(ambipath, "AMBI") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] # noinspection PyTypeChecker all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted([x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format='%.8f') if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format='%.8f') featuretable["FILTER"].fillna("", inplace=True) featuretable.ix[featuretable["REF"].str.len() < 1, "absent"] = True featuretable.ix[featuretable["tag"] == "FN", "REF"] = featuretable.ix[featuretable["tag"] == "FN", "REF.truth"] featuretable.ix[featuretable["tag"] == "FN", "ALT"] = featuretable.ix[featuretable["tag"] == "FN", "ALT.truth"] af_t_feature = args.af_strat_truth af_q_feature = args.af_strat_query for vtype in ["records", "SNVs", "indels"]: if vtype == "SNVs": featuretable_this_type = featuretable[(featuretable["REF"].str.len() > 0) & (featuretable["ALT"].str.len() == featuretable["REF"].str.len())] elif vtype == "indels": featuretable_this_type = featuretable[(featuretable["REF"].str.len() != 1) | (featuretable["ALT"].str.len() != 1)] else: featuretable_this_type = featuretable if args.count_filtered_fn: res.ix[res["type"] == vtype, "fp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "tp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "unk.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "ambi.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type["FILTER"] != "")].shape[0] if args.af_strat: start = 0.0 current_binsize = args.af_strat_binsize[0] next_binsize = 0 while start < 1.0: # include 1 in last interval end = min(1.000000001, start + current_binsize) n_tp = featuretable_this_type[(featuretable_this_type["tag"] == "TP") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fn = featuretable_this_type[(featuretable_this_type["tag"] == "FN") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fp = featuretable_this_type[(featuretable_this_type["tag"] == "FP") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_ambi = featuretable_this_type[(featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_unk = featuretable_this_type[(featuretable_this_type["tag"] == "UNK") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] r = {"type": "%s.%f-%f" % (vtype, start, end), "total.truth": n_tp.shape[0] + n_fn.shape[0], "total.query": n_tp.shape[0] + n_fp.shape[0] + n_ambi.shape[0] + n_unk.shape[0], "tp": n_tp.shape[0], "fp": n_fp.shape[0], "fn": n_fn.shape[0], "unk": n_unk.shape[0], "ambi": n_ambi.shape[0], } if args.count_filtered_fn: r["fp.filtered"] = n_fp[n_fp["FILTER"] != ""].shape[0] r["tp.filtered"] = n_tp[n_tp["FILTER"] != ""].shape[0] r["unk.filtered"] = n_unk[n_unk["FILTER"] != ""].shape[0] r["ambi.filtered"] = n_ambi[n_ambi["FILTER"] != ""].shape[0] res = pandas.concat([res, pandas.DataFrame([r])]) if args.roc is not None and (n_tp.shape[0] + n_fn.shape[0] + n_fp.shape[0]) > 0: roc_table_strat = args.roc.from_table(pandas.concat([n_tp, n_fp, n_fn])) rtname = "%s.%s.%f-%f.roc.csv" % (args.output, vtype, start, end) roc_table_strat.to_csv(rtname, float_format='%.8f') start += current_binsize next_binsize += 1 if next_binsize >= len(args.af_strat_binsize): next_binsize = 0 current_binsize = args.af_strat_binsize[next_binsize] # remove things where we haven't seen any variants in truth and query res = res[(res["total.truth"] > 0) & (res["total.query"] > 0)] # summary metrics with confidence intervals ci_alpha = 1.0 - args.ci_level recall = binomialCI(res["tp"], res["tp"]+res["fn"], ci_alpha) precision = binomialCI(res["tp"], res["tp"]+res["fp"], ci_alpha) res["recall"], res["recall_lower"], res["recall_upper"] = recall res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"], res["precision_lower"], res["precision_upper"] = precision res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] any_fp = fpclasses.countbases(label="FP") fp_region_count = 0 auto_size = True if args.fpr_size: try: fp_region_count = int(args.fpr_size) auto_size = False except: pass if auto_size: if any_fp: if args.location: chrom, _, rest = args.location.partition(":") if rest: start, _, end = rest.partition("_") if start: start = int(start) if end: end = int(end) else: fp_region_count += fpclasses.countbases(chrom, label="FP") else: fp_region_count = any_fp else: cs = fastaContigLengths(args.ref) if args.location: fp_region_count = calculateLength(cs, args.location) else: # use all locations we saw calls on h1 = Tools.vcfextract.extractHeadersJSON(ntpath) h1_chrs = h1["tabix"]["chromosomes"] if not h1_chrs: logging.warn("ntpath is empty") h1_chrs = [] h2 = Tools.vcfextract.extractHeadersJSON(nqpath) h2_chrs = h2["tabix"]["chromosomes"] if not h2_chrs: logging.warn("nqpath is empty") h2_chrs = [] combined_chrs = list(set(h1_chrs + h2_chrs)) if len(combined_chrs) > 0: qlocations = " ".join(combined_chrs) fp_region_count = calculateLength(cs, qlocations) else: fp_region_count = 0 res["fp.region.size"] = fp_region_count res["fp.rate"] = 1e6 * res["fp"] / res["fp.region.size"] if args.count_filtered_fn: res["recall.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] + res["fn"]) res["precision.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] - res["tp.filtered"] + res["fp"] - res["fp.filtered"]) res["fp.rate.filtered"] = 1e6 * (res["fp"] - res["fp.filtered"]) / res["fp.region.size"] res["na.filtered"] = (res["unk"] - res["unk.filtered"]) / (res["total.query"]) res["ambiguous.filtered"] = (res["ambi"] - res["ambi.filtered"]) / res["total.query"] # HAP-162 remove inf values res.replace([np.inf, -np.inf], 0) metrics_output["metrics"].append(dataframeToMetricsTable("result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)
def main(): parser = argparse.ArgumentParser("Somatic Comparison") parser.add_argument("truth", help="Truth VCF file") parser.add_argument("query", help="Query VCF file") parser.add_argument( "-o", "--output", dest="output", required=True, help="Output file prefix for statistics and feature table (when selected)", ) parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument( "-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).", ) parser.add_argument( "-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).", ) parser.add_argument( "-f", "--false-positives", dest="FP", help="False-positive region bed file to distinguish UNK from FP" ) parser.add_argument( "-a", "--ambiguous", dest="ambi", action="append", help="Ambiguous region bed file(s) to distinguish from FP (e.g. variant only observed " "in some replicates)", ) parser.add_argument( "--ambiguous-fp", dest="ambi_fp", action="store_true", default=False, help="Use FP calls from ambiguous region files also.", ) parser.add_argument( "-e", "--explain_ambiguous", dest="explain_ambiguous", required=False, default=False, action="store_true", help="print a table giving the number of ambiguous events per category", ) parser.add_argument( "-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file." ) parser.add_argument( "--scratch-prefix", dest="scratch_prefix", default=None, help="Filename prefix for scratch report output." ) parser.add_argument( "--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.", ) parser.add_argument( "--continue", dest="cont", default=False, action="store_true", help="Continue from scratch space (i.e. use VCFs in there if they already exist).", ) parser.add_argument( "-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.", ) parser.add_argument( "--feature-table", dest="features", default=False, choices=Somatic.FeatureSet.sets.keys(), help="Select a feature table to output.", ) parser.add_argument( "--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction", ) parser.add_argument( "--normalize-truth", dest="normalize_truth", default=False, action="store_true", help="Enable running of bcftools norm on the truth file.", ) parser.add_argument( "--normalize-query", dest="normalize_query", default=False, action="store_true", help="Enable running of bcftools norm on the query file.", ) parser.add_argument( "-N", "--normalize-all", dest="normalize_all", default=False, action="store_true", help="Enable running of bcftools norm on both truth and query file.", ) parser.add_argument( "--fix-chr-query", dest="fixchr_query", default=False, action="store_true", help="Replace numeric chromosome names in the query by chr*-type names", ) parser.add_argument( "--fix-chr-truth", dest="fixchr_truth", default=False, action="store_true", help="Replace numeric chromosome names in the truth by chr*-type names", ) parser.add_argument( "--no-order-check", dest="disable_order_check", default=False, action="store_true", help="Disable checking the order of TP features (dev feature).", ) parser.add_argument( "--roc", dest="roc", default=None, choices=ROC.list(), help="Create a ROC-style table. This is caller specific " " - this will override the --feature-table switch!", ) parser.add_argument( "--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr" ) verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument( "--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.", ) verbosity_options.add_argument( "--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only." ) args = parser.parse_args() if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format="%(asctime)s %(levelname)-8s %(message)s", level=loglevel) if args.normalize_all: args.normalize_truth = True args.normalize_query = True if args.roc: args.roc = ROC.make(args.roc) args.features = args.roc.ftname if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF( args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref, ) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF( args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref, ) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all( [ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")), ] ) tpfn_r_files = all( [ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")), ] ) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4]) if args.FP: fpclasses.addFromBed(args.FP, "FP") has_fp = (fpclasses.count("FP") > 0) or (fpclasses.count("fp") > 0 and args.ambi_fp) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == "#": continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not has_fp: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" res = res[(res["total.truth"] > 0) | (res["total.query"] > 0)] # use this to use plain row counts rather than stratified bcftools counts # truthcounts = countVCFRows(ntpath) # , "total.truth") # querycounts = countVCFRows(nqpath) # , "total.query") # # tpcounts = countVCFRows(os.path.join(scratch, "tpfn", "0002.vcf.gz")) #, "tp") # fncounts = countVCFRows(os.path.join(scratch, "tpfn", "0000.vcf.gz")) #, "fn") # fpcounts = countVCFRows(fppath) #, "fp") # ambicounts = countVCFRows(ambipath) #, "ambi") # unkcounts = countVCFRows(unkpath) #, "unk") # # res = pandas.DataFrame({ # "total.truth" : [ truthcounts ], # "total.query" : [ querycounts ], # "tp" : [ tpcounts ], # "fn" : [ fncounts ], # "fp" : [ fpcounts ], # "ambi" : [ ambicounts ], # "unk" : [ unkcounts ] # }) # # res["type"] = "records" # summary metrics res["recall"] = res["tp"] / (res["tp"] + res["fn"]) res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"] = res["tp"] / (res["tp"] + res["fp"]) res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] metrics_output = makeMetricsObject("som.py.comparison") metrics_output["metrics"].append(dataframeToMetricsTable("result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False) ) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string( index=False ) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={"reason": "{{:<{}s}}".format(ambie["reason"].str.len().max()).format}, index=False ) ) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={"reason": "{{:<{}s}}".format(ambie["reason"].str.len().max()).format}, index=False ) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort(["CHROM", "POS"], inplace=True) tps2.sort(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps.shape[0] if len1 != len2: raise Exception("Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception( "Cannot merge TP features, inputs are out of order at %s / %s" % (str(tps[x : x + 1]), str(tps2[x : x + 1])) ) logging.info("Merging...") cdata = {"CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"]} tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and not a in columns_tps2: tpc[a] = tps[a] elif not a in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(fppath, "AMBI") unks = fset.collect(fppath, "UNK") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs, unks] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted([x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format="%.8f") if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format="%.8f") finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)
def main(): parser = argparse.ArgumentParser("Somatic VCF Feature Extraction") parser.add_argument("input", help="Input VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file name. Output will be in CSV format") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument("-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument("-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument("--feature-table", dest="features", default="generic", help="Select a feature table to output. Options are: %s" % str(Somatic.FeatureSet.sets.keys())) parser.add_argument("--feature-label", dest="label", default=None, help="We will output a lable column, this value will go in there -- default is " "the input filename.") parser.add_argument("--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file for normalization.") parser.add_argument("--normalize", dest="normalize", default=False, action="store_true", help="Enable running of bcftools norm on the input file.") parser.add_argument("--fix-chr", dest="fixchr", default=False, action="store_true", help="Replace numeric chromosome names in the query by chr*-type names") args = parser.parse_args() scratch = tempfile.mkdtemp() try: logging.info("Scratch path is %s" % scratch) if not args.label: args.label = os.path.basename(args.input) bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"])*3.0 nqpath = os.path.join(scratch, "normalized_query.vcf.gz") logging.info("Preprocessing input...") preprocessVCF(args.input, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr, # chrprefix args.normalize, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) runBcftools("index", nqpath) logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) featuretable = fset.collect(nqpath, args.label) if not args.output.endswith(".csv"): args.output += ".csv" logging.info("Saving feature table %s..." % args.output) featuretable.to_csv(args.output) finally: logging.info("Deleting scratch folder %s " % scratch) shutil.rmtree(scratch)
def main(): parser = argparse.ArgumentParser("Somatic Comparison") parser.add_argument("truth", help="Truth VCF file") parser.add_argument("query", help="Query VCF file") parser.add_argument("-o", "--output", dest="output", required=True, help="Output file prefix for statistics and feature table (when selected)") parser.add_argument("-l", "--location", dest="location", default="", help="Location for bcftools view (e.g. chr1)") parser.add_argument("-R", "--restrict-regions", dest="regions_bedfile", default=None, type=str, help="Restrict analysis to given (sparse) regions (using -R in bcftools).") parser.add_argument("-T", "--target-regions", dest="targets_bedfile", default=None, type=str, help="Restrict analysis to given (dense) regions (using -T in bcftools).") parser.add_argument("-f", "--false-positives", dest="FP", help="False-positive region bed file to distinguish UNK from FP") parser.add_argument("-a", "--ambiguous", dest="ambi", action='append', help="Ambiguous region bed file(s) to distinguish from FP (e.g. variant only observed " "in some replicates)") parser.add_argument("--ambi-fp", dest="ambi_fp", action='store_true', default=False, help="Use FP calls from ambiguous region files also.") parser.add_argument("--no-ambi-fp", dest="ambi_fp", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("--count-unk", dest="count_unk", action='store_true', default=False, help="Assume the truth set covers the whole genome and only count FPs in regions " "specified by the truth VCF or ambiguous/false-positive regions.") parser.add_argument("--no-count-unk", dest="count_unk", action='store_false', help="Do not use FP calls from ambiguous region files also.") parser.add_argument("-e", "--explain_ambiguous", dest="explain_ambiguous", required=False, default=False, action="store_true", help="print a table giving the number of ambiguous events per category") parser.add_argument("-r", "--reference", dest="ref", default=Tools.defaultReference(), help="Specify a reference file.") parser.add_argument("--scratch-prefix", dest="scratch_prefix", default=None, help="Filename prefix for scratch report output.") parser.add_argument("--keep-scratch", dest="delete_scratch", default=True, action="store_false", help="Filename prefix for scratch report output.") parser.add_argument("--continue", dest="cont", default=False, action="store_true", help="Continue from scratch space (i.e. use VCFs in there if they already exist).") parser.add_argument("-P", "--include-nonpass", dest="inc_nonpass", action="store_true", default=False, help="Use to include failing variants in comparison.") parser.add_argument("--feature-table", dest="features", default=False, choices=Somatic.FeatureSet.sets.keys(), help="Select a feature table to output.") parser.add_argument("--bam", dest="bams", default=[], action="append", help="pass one or more BAM files for feature table extraction") parser.add_argument("--normalize-truth", dest="normalize_truth", default=False, action="store_true", help="Enable running of bcftools norm on the truth file.") parser.add_argument("--normalize-query", dest="normalize_query", default=False, action="store_true", help="Enable running of bcftools norm on the query file.") parser.add_argument("-N", "--normalize-all", dest="normalize_all", default=False, action="store_true", help="Enable running of bcftools norm on both truth and query file.") parser.add_argument("--fixchr-truth", dest="fixchr_truth", action="store_true", default=True, help="Add chr prefix to truth file (default: true).") parser.add_argument("--fixchr-query", dest="fixchr_query", action="store_true", default=True, help="Add chr prefix to query file (default: true).") parser.add_argument("--fix-chr-truth", dest="fixchr_truth", action="store_true", default=None, help="Same as --fixchr-truth.") parser.add_argument("--fix-chr-query", dest="fixchr_query", action="store_true", default=None, help="Same as --fixchr-query.") parser.add_argument("--no-fixchr-truth", dest="fixchr_truth", action="store_false", default=False, help="Disable chr replacement for truth (default: false).") parser.add_argument("--no-fixchr-query", dest="fixchr_query", action="store_false", default=False, help="Add chr prefix to query file (default: false).") parser.add_argument("--no-order-check", dest="disable_order_check", default=False, action="store_true", help="Disable checking the order of TP features (dev feature).") parser.add_argument("--roc", dest="roc", default=None, choices=ROC.list(), help="Create a ROC-style table. This is caller specific " " - this will override the --feature-table switch!") parser.add_argument("--bin-afs", dest="af_strat", default=None, action="store_true", help="Stratify into different AF buckets. This needs to have features available" "for getting the AF both in truth and query variants.") parser.add_argument("--af-binsize", dest="af_strat_binsize", default=0.2, help="Bin size for AF binning (should be < 1). Multiple bin sizes can be specified using a comma, " "e.g. 0.1,0.2,0.5,0.2 will split at 0.1, 0.3, 0.8 and 1.0.") parser.add_argument("--af-truth", dest="af_strat_truth", default="I.T_ALT_RATE", help="Feature name to use for retrieving AF for truth variants (TP and FN)") parser.add_argument("--af-query", dest="af_strat_query", default="T_AF", help="Feature name to use for retrieving AF for query variants (FP/UNK/AMBI)") parser.add_argument("-FN", "--count-filtered-fn", dest="count_filtered_fn", action="store_true", help="Count filtered vs. absent FN numbers. This requires the -P switch (to use all " "variants) and either the --feature-table or --roc switch.") parser.add_argument("--fp-region-size", dest="fpr_size", help="How to obtain the normalisation constant for FP rate. By default, this will use the FP region bed file size when using" " --count-unk and the size of all reference contigs that overlap with the location specified in -l otherwise." " This can be overridden with: 1) a number of nucleotides, or 2) \"auto\" to use the lengths of all contigs that have calls." " The resulting value is used as fp.region.size.") parser.add_argument("--logfile", dest="logfile", default=None, help="Write logging information into file rather than to stderr") verbosity_options = parser.add_mutually_exclusive_group(required=False) verbosity_options.add_argument("--verbose", dest="verbose", default=False, action="store_true", help="Raise logging level from warning to info.") verbosity_options.add_argument("--quiet", dest="quiet", default=False, action="store_true", help="Set logging level to output errors only.") args = parser.parse_args() if args.verbose: loglevel = logging.INFO elif args.quiet: loglevel = logging.ERROR else: loglevel = logging.WARNING try: if type(args.af_strat_binsize) is str: args.af_strat_binsize = map(float, args.af_strat_binsize.split(",")) else: args.af_strat_binsize = map(float, [args.af_strat_binsize]) if not args.af_strat_binsize: raise Exception("Bin size list is empty") except: logging.error("Failed to parse stratification bin size: %s" % str(args.af_strat_binsize)) exit(1) # reinitialize logging for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(filename=args.logfile, format='%(asctime)s %(levelname)-8s %(message)s', level=loglevel) if args.normalize_all: args.normalize_truth = True args.normalize_query = True if args.roc: args.roc = ROC.make(args.roc) args.features = args.roc.ftname if not args.inc_nonpass: logging.warn("When creating ROCs without the -P switch, the ROC data points will only " "include filtered variants (i.e. they will normally end at the caller's " "quality threshold).") if args.af_strat and not args.features: raise Exception("To stratify by AFs, a feature table must be selected -- use this switch together " "with --feature-table or --roc") if args.count_filtered_fn and (not args.inc_nonpass or not args.features): raise Exception("Counting filtered / unfiltered FNs only works when a feature table is selected, " "and when using unfiltered variants. Specify -P --feature-table <...> or use " "--roc to select a ROC type.") if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF(args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF(args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) tpfn_r_files = all([os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz"))]) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4], args.fixchr_truth) if args.FP: fpclasses.addFromBed(args.FP, "FP", args.fixchr_truth) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == '#': continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not args.count_unk: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats(runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" metrics_output = makeMetricsObject("som.py.comparison") if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " \ "overlap):\n" + ambie.to_string(index=False) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info("Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={'reason': '{{:<{}s}}'.format(ambie['reason'].str.len().max()).format}, index=False) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append(dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort(["CHROM", "POS"], inplace=True) tps2.sort(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps2.shape[0] if len1 != len2: raise Exception("Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception("Cannot merge TP features, inputs are out of order at %s / %s" % ( str(tps[x:x + 1]), str(tps2[x:x + 1]))) logging.info("Merging...") cdata = { "CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"] } tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and a not in columns_tps2: tpc[a] = tps[a] elif a not in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(ambipath, "AMBI") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] # noinspection PyTypeChecker all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted([x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format='%.8f') if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format='%.8f') featuretable["FILTER"].fillna("", inplace=True) featuretable.ix[featuretable["REF"].str.len() < 1, "absent"] = True featuretable.ix[featuretable["tag"] == "FN", "REF"] = featuretable.ix[featuretable["tag"] == "FN", "REF.truth"] featuretable.ix[featuretable["tag"] == "FN", "ALT"] = featuretable.ix[featuretable["tag"] == "FN", "ALT.truth"] af_t_feature = args.af_strat_truth af_q_feature = args.af_strat_query for vtype in ["records", "SNVs", "indels"]: if vtype == "SNVs": featuretable_this_type = featuretable[(featuretable["REF"].str.len() > 0) & (featuretable["ALT"].str.len() == featuretable["REF"].str.len())] elif vtype == "indels": featuretable_this_type = featuretable[(featuretable["REF"].str.len() != 1) | (featuretable["ALT"].str.len() != 1)] else: featuretable_this_type = featuretable if args.count_filtered_fn: res.ix[res["type"] == vtype, "fp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "tp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "unk.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type["FILTER"] != "")].shape[0] res.ix[res["type"] == vtype, "ambi.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type["FILTER"] != "")].shape[0] if args.af_strat: start = 0.0 current_binsize = args.af_strat_binsize[0] next_binsize = 0 while start < 1.0: # include 1 in last interval end = min(1.000000001, start + current_binsize) n_tp = featuretable_this_type[(featuretable_this_type["tag"] == "TP") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fn = featuretable_this_type[(featuretable_this_type["tag"] == "FN") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fp = featuretable_this_type[(featuretable_this_type["tag"] == "FP") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_ambi = featuretable_this_type[(featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_unk = featuretable_this_type[(featuretable_this_type["tag"] == "UNK") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] r = {"type": "%s.%f-%f" % (vtype, start, end), "total.truth": n_tp.shape[0] + n_fn.shape[0], "total.query": n_tp.shape[0] + n_fp.shape[0] + n_ambi.shape[0] + n_unk.shape[0], "tp": n_tp.shape[0], "fp": n_fp.shape[0], "fn": n_fn.shape[0], "unk": n_unk.shape[0], "ambi": n_ambi.shape[0], } if args.count_filtered_fn: r["fp.filtered"] = n_fp[n_fp["FILTER"] != ""].shape[0] r["tp.filtered"] = n_tp[n_tp["FILTER"] != ""].shape[0] r["unk.filtered"] = n_unk[n_unk["FILTER"] != ""].shape[0] r["ambi.filtered"] = n_ambi[n_ambi["FILTER"] != ""].shape[0] res = pandas.concat([res, pandas.DataFrame([r])]) if args.roc is not None and (n_tp.shape[0] + n_fn.shape[0] + n_fp.shape[0]) > 0: roc_table_strat = args.roc.from_table(pandas.concat([n_tp, n_fp, n_fn])) rtname = "%s.%s.%f-%f.roc.csv" % (args.output, vtype, start, end) roc_table_strat.to_csv(rtname, float_format='%.8f') start += current_binsize next_binsize += 1 if next_binsize >= len(args.af_strat_binsize): next_binsize = 0 current_binsize = args.af_strat_binsize[next_binsize] # remove things where we haven't seen any variants in truth and query res = res[(res["total.truth"] > 0) & (res["total.query"] > 0)] # summary metrics res["recall"] = res["tp"] / (res["tp"] + res["fn"]) res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"] = res["tp"] / (res["tp"] + res["fp"]) res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] any_fp = fpclasses.countbases(label="FP") fp_region_count = 0 auto_size = True if args.fpr_size: try: fp_region_count = int(args.fpr_size) auto_size = False except: pass if auto_size: if any_fp: if args.location: chrom, _, rest = args.location.partition(":") if rest: start, _, end = rest.partition("_") if start: start = int(start) if end: end = int(end) else: fp_region_count += fpclasses.countbases(chrom, label="FP") else: fp_region_count = any_fp else: cs = fastaContigLengths(args.ref) if args.location: fp_region_count = calculateLength(cs, args.location) else: # use all locations we saw calls on h1 = Tools.vcfextract.extractHeadersJSON(ntpath) h1_chrs = h1["tabix"]["chromosomes"] if not h1_chrs: logging.warn("ntpath is empty") h1_chrs = [] h2 = Tools.vcfextract.extractHeadersJSON(nqpath) h2_chrs = h2["tabix"]["chromosomes"] if not h2_chrs: logging.warn("nqpath is empty") h2_chrs = [] combined_chrs = list(set(h1_chrs + h2_chrs)) if len(combined_chrs) > 0: qlocations = " ".join(combined_chrs) fp_region_count = calculateLength(cs, qlocations) else: fp_region_count = 0 res["fp.region.size"] = fp_region_count res["fp.rate"] = 1e6 * res["fp"] / res["fp.region.size"] if args.count_filtered_fn: res["recall.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] + res["fn"]) res["precision.filtered"] = (res["tp"] - res["tp.filtered"]) / (res["tp"] - res["tp.filtered"] + res["fp"] - res["fp.filtered"]) res["fp.rate.filtered"] = 1e6 * (res["fp"] - res["fp.filtered"]) / res["fp.region.size"] res["na.filtered"] = (res["unk"] - res["unk.filtered"]) / (res["total.query"]) res["ambiguous.filtered"] = (res["ambi"] - res["ambi.filtered"]) / res["total.query"] # HAP-162 remove inf values res.replace([np.inf, -np.inf], 0) metrics_output["metrics"].append(dataframeToMetricsTable("result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)
def main(): args = parse_args() if args.scratch_prefix: scratch = os.path.abspath(args.scratch_prefix) args.delete_scratch = False Tools.mkdir_p(scratch) else: scratch = tempfile.mkdtemp() logging.info("Scratch path is %s" % scratch) try: bams = [] md = None for x in args.bams: bams.append(bamStats(x)) if bams: bres = pandas.concat(bams).groupby("CHROM").mean() md = {} for x in bres.index: logging.info("Mean coverage on %s is %f" % (x, bres.loc[x]["COVERAGE"])) md[x] = float(bres.loc[x]["COVERAGE"]) * 3.0 logging.info("Normalizing/reading inputs") ntpath = os.path.join(scratch, "normalized_truth.vcf.gz") if not (args.cont and os.path.exists(ntpath)): preprocessVCF( args.truth, ntpath, args.location, True, # pass_only args.fixchr_truth, # chrprefix args.normalize_truth, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % ntpath) if not (args.cont and os.path.exists(ntpath + ".csi")): runBcftools("index", ntpath) nqpath = os.path.join(scratch, "normalized_query.vcf.gz") if not (args.cont and os.path.exists(nqpath)): preprocessVCF( args.query, nqpath, args.location, not args.inc_nonpass, # pass_only args.fixchr_query, # chrprefix args.normalize_query, # norm, args.regions_bedfile, args.targets_bedfile, args.ref) else: logging.info("Continuing from %s" % nqpath) if not (args.cont and os.path.exists(nqpath + ".csi")): runBcftools("index", nqpath) logging.info("Intersecting") tpfn_files = all([ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")) ]) tpfn_r_files = all([ os.path.exists(os.path.join(scratch, "tpfn", "0000.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0001.vcf.gz")), os.path.exists(os.path.join(scratch, "tpfn", "0002.vcf.gz")) ]) if not (args.cont and tpfn_files): runBcftools("isec", ntpath, nqpath, "-p", os.path.join(scratch, "tpfn"), "-O", "z") else: logging.info("Continuing from %s" % os.path.join(scratch, "tpfn")) if args.features and not (args.cont and tpfn_r_files): # only need to do this for getting the feature table runBcftools("isec", nqpath, ntpath, "-p", os.path.join(scratch, "tpfn_r"), "-O", "z") logging.info("Getting FPs / Ambi / Unk") fppath = os.path.join(scratch, "fp.vcf.gz") unkpath = os.path.join(scratch, "unk.vcf.gz") ambipath = os.path.join(scratch, "ambi.vcf.gz") # get header to print to unk and ambi VCFs rununiquepath = os.path.join(scratch, "tpfn", "0001.vcf.gz") header = runBcftools("view", rununiquepath, "--header-only") fp = Tools.BGZipFile(fppath, True) fp.write(header) unk = Tools.BGZipFile(unkpath, True) unk.write(header) ambi = Tools.BGZipFile(ambipath, True) ambi.write(header) ambiClasses = Counter() ambiReasons = Counter() fpclasses = BedIntervalTree() if args.ambi: # can have multiple ambiguous BED files for aBED in args.ambi: # auto-label from first value after chr start end # new ambi files have the label in position 4 # old ones will look weird here. fpclasses.addFromBed(aBED, lambda xe: xe[4], args.fixchr_truth) if args.FP: fpclasses.addFromBed(args.FP, "FP", args.fixchr_truth) # split VCF into FP, UNK and AMBI toProcess = gzip.open(rununiquepath, "rb") for entry in toProcess: if entry[0] == '#': continue fields = entry.strip().split("\t") chrom = fields[0] start = int(fields[1]) stop = int(fields[1]) + len(fields[3]) overlap = fpclasses.intersect(chrom, start, stop) is_fp = False is_ambi = False classes_this_pos = set() for o in overlap: reason = o.value[0] if reason == "fp" and args.ambi_fp: reason = "FP" elif reason == "fp": reason = "ambi-fp" elif reason == "unk": reason = "ambi-unk" classes_this_pos.add(reason) try: ambiReasons["%s: rep. count %s" % (reason, o.value[1])] += 1 except IndexError: ambiReasons["%s: rep. count *" % reason] += 1 for x in o.value[3:]: ambiReasons["%s: %s" % (reason, x)] += 1 if reason == "FP": is_fp = True else: is_ambi = True for reason in classes_this_pos: ambiClasses[reason] += 1 if is_fp: fp.write(entry) elif is_ambi: ambi.write(entry) elif not args.count_unk: # when we don't have FP regions, unk stuff becomes FP fp.write(entry) else: unk.write(entry) toProcess.close() # since 0001.vcf.gz should already be sorted, we can just convert to bgzipped vcf # and create index fp.close() ambi.close() unk.close() runBcftools("index", "--tbi", fppath) runBcftools("index", "--tbi", unkpath) runBcftools("index", "--tbi", ambipath) logging.info("Counting variants...") truthcounts = parseStats(runBcftools("stats", ntpath), "total.truth") querycounts = parseStats(runBcftools("stats", nqpath), "total.query") tpcounts = parseStats( runBcftools("stats", os.path.join(scratch, "tpfn", "0002.vcf.gz")), "tp") fncounts = parseStats( runBcftools("stats", os.path.join(scratch, "tpfn", "0000.vcf.gz")), "fn") fpcounts = parseStats(runBcftools("stats", fppath), "fp") ambicounts = parseStats(runBcftools("stats", ambipath), "ambi") unkcounts = parseStats(runBcftools("stats", unkpath), "unk") res = pandas.merge(truthcounts, querycounts, on="type") res = pandas.merge(res, tpcounts, on="type") res = pandas.merge(res, fpcounts, on="type") res = pandas.merge(res, fncounts, on="type") res = pandas.merge(res, unkcounts, on="type") res = pandas.merge(res, ambicounts, on="type") # no explicit guarantee that total.query is equal to unk + ambi + fp + tp # testSum = res["fp"] + res["tp"] + res["unk"] + res["ambi"] # filter and relabel res = res[res["type"] != "samples"] res = res[res["type"] != "multiallelic SNP sites"] res = res[res["type"] != "multiallelic sites"] res.loc[res["type"] == "SNPs", "type"] = "SNVs" metrics_output = makeMetricsObject("som.py.comparison") if args.ambi and args.explain_ambiguous: ac = list(ambiClasses.iteritems()) if ac: ambie = pandas.DataFrame(ac, columns=["class", "count"]) ambie.sort_values(["class"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "FP/ambiguity classes with info (multiple classes can " "overlap):\n" + ambie.to_string(index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "FP/ambiguity classes with info (multiple classes can " \ "overlap):\n" + ambie.to_string(index=False) ambie.to_csv(args.output + ".ambiclasses.csv") metrics_output["metrics"].append( dataframeToMetricsTable("ambiclasses", ambie)) else: logging.info("No ambiguous variants.") ar = list(ambiReasons.iteritems()) if ar: ambie = pandas.DataFrame(ar, columns=["reason", "count"]) ambie.sort_values(["reason"], inplace=True) pandas.set_option("display.max_rows", 1000) pandas.set_option("display.max_columns", 1000) pandas.set_option("display.width", 1000) pandas.set_option("display.height", 1100) logging.info( "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string(formatters={ 'reason': '{{:<{}s}}'.format( ambie['reason'].str.len().max()).format }, index=False)) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "Reasons for defining as ambiguous (multiple reasons can overlap):\n" + ambie.to_string( formatters={ 'reason': '{{:<{}s}}'.format( ambie['reason'].str.len().max()).format }, index=False) ambie.to_csv(args.output + ".ambireasons.csv") metrics_output["metrics"].append( dataframeToMetricsTable("ambireasons", ambie)) else: logging.info("No ambiguous variants.") if args.features: logging.info("Extracting features...") fset = Somatic.FeatureSet.make(args.features) fset.setChrDepths(md) logging.info("Collecting TP info (1)...") tps = fset.collect(os.path.join(scratch, "tpfn", "0002.vcf.gz"), "TP") # TP_r is a hint for fset, they are both TPs logging.info("Collecting TP info (2)...") tps2 = fset.collect(os.path.join(scratch, "tpfn_r", "0002.vcf.gz"), "TP_r") # this is slow because it tries to sort # ... which we don't need to do since tps1 and tps2 have the same ordering logging.info("Sorting...") tps.sort_values(["CHROM", "POS"], inplace=True) tps2.sort_values(["CHROM", "POS"], inplace=True) tps = tps.reset_index(drop=True) tps2 = tps2.reset_index(drop=True) logging.info("Merging TP info...") columns_tps = list(tps) columns_tps2 = list(tps2) len1 = tps.shape[0] len2 = tps2.shape[0] if len1 != len2: raise Exception( "Cannot read TP features, lists have different lengths : %i != %i" % (len1, len2)) if not args.disable_order_check: logging.info("Checking order %i / %i" % (len1, len2)) for x in xrange(0, len1): for a in ["CHROM", "POS"]: if tps.loc[x][a] != tps2.loc[x][a]: raise Exception( "Cannot merge TP features, inputs are out of order at %s / %s" % (str(tps[x:x + 1]), str(tps2[x:x + 1]))) logging.info("Merging...") cdata = { "CHROM": tps["CHROM"], "POS": tps["POS"], "tag": tps["tag"] } tpc = pandas.DataFrame(cdata, columns=["CHROM", "POS", "tag"]) all_columns = list(set(columns_tps + columns_tps2)) for a in all_columns: if a in columns_tps and a not in columns_tps2: tpc[a] = tps[a] elif a not in columns_tps and a in columns_tps2: tpc[a] = tps2[a] elif a not in ["CHROM", "POS", "tag"]: tpc[a] = tps2[a] tpc[a + ".truth"] = tps[a] logging.info("Collecting FP info...") fps = fset.collect(fppath, "FP") ambs = fset.collect(ambipath, "AMBI") logging.info("Collecting FN info...") fns = fset.collect(os.path.join(scratch, "tpfn", "0000.vcf.gz"), "FN") renamed = {} tp_cols = list(tpc) for col in list(fns): if col + ".truth" in tp_cols: renamed[col] = col + ".truth" fns.rename(columns=renamed, inplace=True) featurelist = [tpc, fps, fns, ambs] if unkpath is not None: logging.info("Collecting UNK info...") unk = fset.collect(unkpath, "UNK") featurelist.append(unk) logging.info("Making feature table...") featuretable = pandas.concat(featurelist) # reorder to make more legible first_columns = ["CHROM", "POS", "tag"] # noinspection PyTypeChecker all_columns = list(featuretable) if "REF" in all_columns: first_columns.append("REF") if "REF.truth" in all_columns: first_columns.append("REF.truth") if "ALT" in all_columns: first_columns.append("ALT") if "ALT.truth" in all_columns: first_columns.append("ALT.truth") ordered_columns = first_columns + sorted( [x for x in all_columns if x not in first_columns]) featuretable = featuretable[ordered_columns] # make sure positions are integers featuretable["POS"] = featuretable["POS"].astype(int) logging.info("Saving feature table...") featuretable.to_csv(args.output + ".features.csv", float_format='%.8f') if args.roc is not None: roc_table = args.roc.from_table(featuretable) roc_table.to_csv(args.output + ".roc.csv", float_format='%.8f') featuretable["FILTER"].fillna("", inplace=True) featuretable.ix[featuretable["REF"].str.len() < 1, "absent"] = True featuretable.ix[featuretable["tag"] == "FN", "REF"] = featuretable.ix[featuretable["tag"] == "FN", "REF.truth"] featuretable.ix[featuretable["tag"] == "FN", "ALT"] = featuretable.ix[featuretable["tag"] == "FN", "ALT.truth"] af_t_feature = args.af_strat_truth af_q_feature = args.af_strat_query for vtype in ["records", "SNVs", "indels"]: featuretable["vtype"] = resolve_vtype(args) featuretable_this_type = featuretable if args.count_filtered_fn: res.ix[res["type"] == vtype, "fp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type["FILTER"] != "" )].shape[0] res.ix[res["type"] == vtype, "tp.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type["FILTER"] != "" )].shape[0] res.ix[res["type"] == vtype, "unk.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type["FILTER"] != "" )].shape[0] res.ix[res["type"] == vtype, "ambi.filtered"] = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type["FILTER"] != "" )].shape[0] if args.af_strat: start = 0.0 end = 1.0 current_binsize = args.af_strat_binsize[0] next_binsize = 0 while start < 1.0: # include 1 in last interval end = start + current_binsize if end >= 1: end = 1.00000001 if start >= end: break n_tp = featuretable_this_type[ (featuretable_this_type["tag"] == "TP") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fn = featuretable_this_type[ (featuretable_this_type["tag"] == "FN") & (featuretable_this_type[af_t_feature] >= start) & (featuretable_this_type[af_t_feature] < end)] n_fp = featuretable_this_type[ (featuretable_this_type["tag"] == "FP") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_ambi = featuretable_this_type[ (featuretable_this_type["tag"] == "AMBI") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] n_unk = featuretable_this_type[ (featuretable_this_type["tag"] == "UNK") & (featuretable_this_type[af_q_feature] >= start) & (featuretable_this_type[af_q_feature] < end)] r = { "type": "%s.%f-%f" % (vtype, start, end), "total.truth": n_tp.shape[0] + n_fn.shape[0], "total.query": n_tp.shape[0] + n_fp.shape[0] + n_ambi.shape[0] + n_unk.shape[0], "tp": n_tp.shape[0], "fp": n_fp.shape[0], "fn": n_fn.shape[0], "unk": n_unk.shape[0], "ambi": n_ambi.shape[0] } if args.count_filtered_fn: r["fp.filtered"] = n_fp[ n_fp["FILTER"] != ""].shape[0] r["tp.filtered"] = n_tp[ n_tp["FILTER"] != ""].shape[0] r["unk.filtered"] = n_unk[ n_unk["FILTER"] != ""].shape[0] r["ambi.filtered"] = n_ambi[ n_ambi["FILTER"] != ""].shape[0] res = pandas.concat([res, pandas.DataFrame([r])]) if args.roc is not None and (n_tp.shape[0] + n_fn.shape[0] + n_fp.shape[0]) > 0: roc_table_strat = args.roc.from_table( pandas.concat([n_tp, n_fp, n_fn])) rtname = "%s.%s.%f-%f.roc.csv" % ( args.output, vtype, start, end) roc_table_strat.to_csv(rtname, float_format='%.8f') start = end next_binsize += 1 if next_binsize >= len(args.af_strat_binsize): next_binsize = 0 current_binsize = args.af_strat_binsize[next_binsize] if not args.af_strat: res = res[(res["total.truth"] > 0)] # summary metrics with confidence intervals ci_alpha = 1.0 - args.ci_level recall = binomialCI(res["tp"], res["tp"] + res["fn"], ci_alpha) precision = binomialCI(res["tp"], res["tp"] + res["fp"], ci_alpha) res["recall"], res["recall_lower"], res["recall_upper"] = recall res["recall2"] = res["tp"] / (res["total.truth"]) res["precision"], res["precision_lower"], res[ "precision_upper"] = precision res["na"] = res["unk"] / (res["total.query"]) res["ambiguous"] = res["ambi"] / res["total.query"] any_fp = fpclasses.countbases(label="FP") fp_region_count = 0 auto_size = True if args.fpr_size: try: fp_region_count = int(args.fpr_size) auto_size = False except: pass if auto_size: if any_fp: if args.location: chrom, _, rest = args.location.partition(":") if rest: start, _, end = rest.partition("_") if start: start = int(start) if end: end = int(end) else: fp_region_count += fpclasses.countbases(chrom, label="FP") else: fp_region_count = any_fp else: cs = fastaContigLengths(args.ref) if args.location: fp_region_count = calculateLength(cs, args.location) else: # use all locations we saw calls on h1 = Tools.vcfextract.extractHeadersJSON(ntpath) h1_chrs = h1["tabix"]["chromosomes"] if not h1_chrs: logging.warn("No contigs in truth file") h1_chrs = [] if len(h1_chrs) > 0: qlocations = " ".join(h1_chrs) fp_region_count = calculateLength(cs, qlocations) else: fp_region_count = 0 res["fp.region.size"] = fp_region_count res["fp.rate"] = 1e6 * res["fp"] / res["fp.region.size"] if args.count_filtered_fn: res["recall.filtered"] = (res["tp"] - res["tp.filtered"]) / ( res["tp"] + res["fn"]) res["precision.filtered"] = (res["tp"] - res["tp.filtered"]) / ( res["tp"] - res["tp.filtered"] + res["fp"] - res["fp.filtered"]) res["fp.rate.filtered"] = 1e6 * ( res["fp"] - res["fp.filtered"]) / res["fp.region.size"] res["na.filtered"] = (res["unk"] - res["unk.filtered"]) / (res["total.query"]) res["ambiguous.filtered"] = ( res["ambi"] - res["ambi.filtered"]) / res["total.query"] # HAP-162 remove inf values res.replace([np.inf, -np.inf], 0) metrics_output["metrics"].append(dataframeToMetricsTable( "result", res)) vstring = "som.py-%s" % Tools.version logging.info("\n" + res.to_string()) # in default mode, print result summary to stdout if not args.quiet and not args.verbose: print "\n" + res.to_string() res["sompyversion"] = vstring vstring = " ".join(sys.argv) res["sompycmd"] = vstring # save results res.to_csv(args.output + ".stats.csv") with open(args.output + ".metrics.json", "w") as fp: json.dump(metrics_output, fp) if args.happy_stats: # parse saved feature table as the one in memory has been updated featuretable = pandas.read_csv(args.output + ".features.csv", low_memory=False, dtype={"FILTER": str}) # hap.py summary.csv summary = summary_from_featuretable(featuretable, args) summary.to_csv(args.output + ".summary.csv") # hap.py extended.csv if args.af_strat: extended = extended_from_featuretable(featuretable, args) extended.to_csv(args.output + ".extended.csv", index=False, na_rep="NA") finally: if args.delete_scratch: shutil.rmtree(scratch) else: logging.info("Scratch kept at %s" % scratch)