Exemple #1
0
def test_rmsprop():
    a = shared_floatx([3, 4])
    cost = (a ** 2).sum()
    step_rule = RMSProp(learning_rate=0.1, decay_rate=0.5, max_scaling=1e5)
    steps, updates = step_rule.compute_steps(
        OrderedDict([(a, tensor.grad(cost, a))]))
    f = theano.function([], [steps[a]], updates=updates)
    assert_allclose(f()[0], [0.141421356, 0.141421356])
    a.set_value([2, 3])
    assert_allclose(f()[0], [0.09701425, 0.102899151])
    a.set_value([1, 1.5])
    assert_allclose(f()[0], [0.06172134, 0.064699664])
def test_rmsprop():
    a = shared_floatx([3, 4])
    cost = (a**2).sum()
    step_rule = RMSProp(learning_rate=0.1, decay_rate=0.5, max_scaling=1e5)
    steps, updates = step_rule.compute_steps(
        OrderedDict([(a, tensor.grad(cost, a))]))
    f = theano.function([], [steps[a]], updates=updates)
    assert_allclose(f()[0], [0.141421356, 0.141421356])
    a.set_value([2, 3])
    assert_allclose(f()[0], [0.09701425, 0.102899151])
    a.set_value([1, 1.5])
    assert_allclose(f()[0], [0.06172134, 0.064699664])
Exemple #3
0
def learning_algorithm(args):
    name = args.algorithm
    learning_rate = float(args.learning_rate)
    momentum = args.momentum
    clipping_threshold = args.clipping
    clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
    if name == 'adam':
        adam = Adam(learning_rate=learning_rate)
        step_rule = CompositeRule([adam, clipping])
        learning_rate = adam.learning_rate
    elif name == 'rms_prop':
        rms_prop = RMSProp(learning_rate=learning_rate)
        step_rule = CompositeRule([clipping, rms_prop])
        learning_rate = rms_prop.learning_rate
    elif name == 'momentum':
        sgd_momentum = Momentum(learning_rate=learning_rate, momentum=momentum)
        step_rule = CompositeRule([clipping, sgd_momentum])
        learning_rate = sgd_momentum.learning_rate
    elif name == 'sgd':
        sgd = Scale(learning_rate=learning_rate)
        step_rule = CompositeRule([clipping, sgd])
        learning_rate = sgd.learning_rate
    else:
        raise NotImplementedError
    return step_rule, learning_rate
def prepare_opti(cost, test):
    model = Model(cost)

    algorithm = GradientDescent(
        cost=cost,
        parameters=model.parameters,
        step_rule=RMSProp(),
        on_unused_sources='ignore'
    )

    extensions = [
        FinishAfter(after_n_epochs=nb_epoch),
        FinishIfNoImprovementAfter(notification_name='test_cross_entropy', epochs=patience),
        TrainingDataMonitoring(
            [algorithm.cost],
            prefix="train",
            after_epoch=True),
        DataStreamMonitoring(
            [algorithm.cost],
            test_stream,
            prefix="test"),
        Printing(),
        ProgressBar(),
        #Checkpoint(path, after_epoch=True)
    ]

    if resume:
        print "Restoring from previous breakpoint"
        extensions.extend([
            Load(path)
        ])
    return model, algorithm, extensions
def learning_algorithm(args):
    name = args.algorithm
    learning_rate = float(args.learning_rate)
    momentum = args.momentum
    clipping_threshold = args.clipping
    if name == 'adam':
        adam = Adam(learning_rate=learning_rate)
        step_rule = adam
    elif name == 'rms_prop':
        rms_prop = RMSProp(learning_rate=learning_rate, decay_rate=0.9)
        step_rule = CompositeRule([StepClipping(1.), rms_prop])
    else:
        sgd_momentum = Momentum(learning_rate=learning_rate, momentum=momentum)
        step_rule = sgd_momentum
    return step_rule
def learning_algorithm(args):
    name = args.algorithm
    learning_rate = float(args.learning_rate)
    momentum = args.momentum
    clipping_threshold = args.clipping
    if name == 'adam':
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        adam = Adam(learning_rate=learning_rate)
        step_rule = CompositeRule([adam, clipping])
    elif name == 'rms_prop':
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        rms_prop = RMSProp(learning_rate=learning_rate)
        step_rule = CompositeRule([clipping, rms_prop])
    else:
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        sgd_momentum = Momentum(learning_rate=learning_rate, momentum=momentum)
        step_rule = CompositeRule([clipping, sgd_momentum])
    return step_rule
Exemple #7
0
def learning_algorithm(args):
    name = args.algorithm
    learning_rate = float(args.learning_rate)
    momentum = args.momentum
    clipping_threshold = args.clipping
    if name == 'adam':
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        adam = Adam(learning_rate=learning_rate)
        # [adam, clipping] means 'step clipping'
        # [clipping, adam] means 'gradient clipping'
        step_rule = CompositeRule([adam, clipping])
    elif name == 'rms_prop':
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        rms_prop = RMSProp(learning_rate=learning_rate)
        rm_non_finite = RemoveNotFinite()
        step_rule = CompositeRule([clipping, rms_prop, rm_non_finite])
    else:
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        sgd_momentum = Momentum(learning_rate=learning_rate, momentum=momentum)
        rm_non_finite = RemoveNotFinite()
        step_rule = CompositeRule([clipping, sgd_momentum, rm_non_finite])
    return step_rule
Exemple #8
0
def learning_algorithm(learning_rate,
                       momentum=0.0,
                       clipping_threshold=100,
                       algorithm='sgd'):
    if algorithm == 'adam':
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        adam = Adam(learning_rate=learning_rate)
        # [adam, clipping] means 'step clipping'
        # [clipping, adam] means 'gradient clipping'
        step_rule = CompositeRule([adam, clipping])
    elif algorithm == 'rms_prop':
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        rms_prop = RMSProp(learning_rate=learning_rate)
        rm_non_finite = RemoveNotFinite()
        step_rule = CompositeRule([clipping, rms_prop, rm_non_finite])
    elif algorithm == 'sgd':
        clipping = StepClipping(threshold=np.cast[floatX](clipping_threshold))
        sgd_momentum = Momentum(learning_rate=learning_rate, momentum=momentum)
        rm_non_finite = RemoveNotFinite()
        step_rule = CompositeRule([clipping, sgd_momentum, rm_non_finite])
    else:
        raise NotImplementedError
    return step_rule
Exemple #9
0
    def train(self, data_file, output_data_file, n_epochs=0):

        training_data = dataset.T_H5PYDataset(data_file, which_sets=('train',))
        test_data = dataset.T_H5PYDataset(data_file, which_sets=('test',))

        session = Session(root_url='http://localhost:5006')

        if self.MainLoop is None:
            step_rules = [RMSProp(learning_rate=0.2, decay_rate=0.95), StepClipping(1)]

            algorithm = GradientDescent(cost=self.Cost,
                                        parameters=self.ComputationGraph.parameters,
                                        step_rule=CompositeRule(step_rules),
                                        on_unused_sources='ignore')

            train_stream = DataStream.default_stream(
                training_data, iteration_scheme=SequentialScheme(
                    training_data.num_examples, batch_size=100))

            test_stream = DataStream.default_stream(
                test_data, iteration_scheme=SequentialScheme(
                    test_data.num_examples, batch_size=100))

            self.MainLoop = MainLoop(
                model=Model(self.Cost),
                data_stream=train_stream,
                algorithm=algorithm,
                extensions=[
                    FinishAfter(after_n_epochs=n_epochs),
                    Printing(),
                    Checkpoint(output_data_file, every_n_epochs=50),
                    TrainingDataMonitoring([self.Cost], after_batch=True, prefix='train'),
                    DataStreamMonitoring([self.Cost], after_batch=True, data_stream=test_stream, prefix='test'),
                    Plot(output_data_file, channels=[['train_cost', 'test_cost']])
                ])

        self.MainLoop.run()
Exemple #10
0
def setup_algorithms(cost, cg, method, type="ff"):
    """Setup training algorithm.

    Parameters
    ----------
    cost : expression
        cost expression
    cg : ComputationGraph
        Computation graph
    method : string
        training method: SGD, momentum SGD, AdaGrad, RMSprop
    learning_rate : float
        learning rate for learning method

    Returns
    -------
    algorithm : GradientDescent
        Gradient Descent algorithm based on different optimization method
    """
    if method == "sgd":
        step_rule = Scale(learning_rate=0.01)
    elif method == "momentum":
        step_rule = Momentum(learning_rate=0.01, momentum=0.95)
    elif method == "adagrad":
        step_rule = AdaGrad()
    elif method == "rmsprop":
        step_rule = RMSProp()

    if type == "RNN":
        step_rule = CompositeRule([StepClipping(1.0), step_rule])

    algorithm = GradientDescent(cost=cost,
                                parameters=cg.parameters,
                                step_rule=step_rule)

    return algorithm
    if args.continue_from:
        from blocks.serialization import load
        main_loop = load(args.continue_from)
        main_loop.run()
        sys.exit(0)

    graphs, extensions, updates = construct_graphs(args, nclasses,
                                                   sequence_length)
    #graph, extension, update = construct_graphs(args, nclasses, sequence_length)

    ### optimization algorithm definition
    step_rule = CompositeRule([
        StepClipping(1.),
        #Momentum(learning_rate=args.learning_rate, momentum=0.9),
        RMSProp(learning_rate=args.learning_rate, decay_rate=0.5),
    ])

    algorithm = GradientDescent(cost=graphs["training"].outputs[0],
                                parameters=graphs["training"].parameters,
                                step_rule=step_rule)
    algorithm.add_updates(updates["training"])
    model = Model(graphs["training"].outputs[0])
    extensions = extensions["training"] + extensions["inference"]

    # step monitor (after epoch to limit the log size)
    step_channels = []
    step_channels.extend([
        algorithm.steps[param].norm(2).copy(name="step_norm:%s" % name)
        for name, param in model.get_parameter_dict().items()
    ])
def main():
    nclasses = 27

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--seed", type=int, default=1)
    parser.add_argument("--length", type=int, default=180)
    parser.add_argument("--num-epochs", type=int, default=100)
    parser.add_argument("--batch-size", type=int, default=64)
    parser.add_argument("--learning-rate", type=float, default=1e-3)
    parser.add_argument("--epsilon", type=float, default=1e-5)
    parser.add_argument("--num-hidden", type=int, default=1000)
    parser.add_argument("--baseline", action="store_true")
    parser.add_argument("--initialization",
                        choices="identity glorot orthogonal uniform".split(),
                        default="identity")
    parser.add_argument("--initial-gamma", type=float, default=1e-1)
    parser.add_argument("--initial-beta", type=float, default=0)
    parser.add_argument("--cluster", action="store_true")
    parser.add_argument("--activation",
                        choices=list(activations.keys()),
                        default="tanh")
    parser.add_argument("--optimizer",
                        choices="sgdmomentum adam rmsprop",
                        default="rmsprop")
    parser.add_argument("--continue-from")
    parser.add_argument("--evaluate")
    parser.add_argument("--dump-hiddens")
    args = parser.parse_args()

    np.random.seed(args.seed)
    blocks.config.config.default_seed = args.seed

    if args.continue_from:
        from blocks.serialization import load
        main_loop = load(args.continue_from)
        main_loop.run()
        sys.exit(0)

    graphs, extensions, updates = construct_graphs(args, nclasses)

    ### optimization algorithm definition
    if args.optimizer == "adam":
        optimizer = Adam(learning_rate=args.learning_rate)
    elif args.optimizer == "rmsprop":
        optimizer = RMSProp(learning_rate=args.learning_rate, decay_rate=0.9)
    elif args.optimizer == "sgdmomentum":
        optimizer = Momentum(learning_rate=args.learning_rate, momentum=0.99)
    step_rule = CompositeRule([
        StepClipping(1.),
        optimizer,
    ])
    algorithm = GradientDescent(cost=graphs["training"].outputs[0],
                                parameters=graphs["training"].parameters,
                                step_rule=step_rule)
    algorithm.add_updates(updates["training"])
    model = Model(graphs["training"].outputs[0])
    extensions = extensions["training"] + extensions["inference"]

    # step monitor
    step_channels = []
    step_channels.extend([
        algorithm.steps[param].norm(2).copy(name="step_norm:%s" % name)
        for name, param in model.get_parameter_dict().items()
    ])
    step_channels.append(
        algorithm.total_step_norm.copy(name="total_step_norm"))
    step_channels.append(
        algorithm.total_gradient_norm.copy(name="total_gradient_norm"))
    step_channels.extend(graphs["training"].outputs)
    logger.warning("constructing training data monitor")
    extensions.append(
        TrainingDataMonitoring(step_channels,
                               prefix="iteration",
                               after_batch=True))

    # parameter monitor
    extensions.append(
        DataStreamMonitoring([
            param.norm(2).copy(name="parameter.norm:%s" % name)
            for name, param in model.get_parameter_dict().items()
        ],
                             data_stream=None,
                             after_epoch=True))

    validation_interval = 500
    # performance monitor
    for situation in "training inference".split():
        if situation == "inference" and not args.evaluate:
            # save time when we don't need the inference graph
            continue

        for which_set in "train valid test".split():
            logger.warning("constructing %s %s monitor" %
                           (which_set, situation))
            channels = list(graphs[situation].outputs)
            extensions.append(
                DataStreamMonitoring(channels,
                                     prefix="%s_%s" % (which_set, situation),
                                     every_n_batches=validation_interval,
                                     data_stream=get_stream(
                                         which_set=which_set,
                                         batch_size=args.batch_size,
                                         num_examples=10000,
                                         length=args.length)))

    extensions.extend([
        TrackTheBest("valid_training_error_rate",
                     "best_valid_training_error_rate"),
        DumpBest("best_valid_training_error_rate", "best.zip"),
        FinishAfter(after_n_epochs=args.num_epochs),
        #FinishIfNoImprovementAfter("best_valid_error_rate", epochs=50),
        Checkpoint("checkpoint.zip",
                   on_interrupt=False,
                   every_n_epochs=1,
                   use_cpickle=True),
        DumpLog("log.pkl", after_epoch=True)
    ])

    if not args.cluster:
        extensions.append(ProgressBar())

    extensions.extend([
        Timing(),
        Printing(every_n_batches=validation_interval),
        PrintingTo("log"),
    ])
    main_loop = MainLoop(data_stream=get_stream(which_set="train",
                                                batch_size=args.batch_size,
                                                length=args.length,
                                                augment=True),
                         algorithm=algorithm,
                         extensions=extensions,
                         model=model)

    if args.dump_hiddens:
        dump_hiddens(args, main_loop)
        return

    if args.evaluate:
        evaluate(args, main_loop)
        return

    main_loop.run()
Exemple #13
0
softmax = NDimensionalSoftmax(name='ndim_softmax')

activation_input = lookup_input.apply(x)
hidden = rnn.apply(linear_input.apply(activation_input))
activation_output = linear_output.apply(hidden)
y_est = softmax.apply(activation_output, extra_ndim=1)

cost = softmax.categorical_cross_entropy(y, activation_output,
                                         extra_ndim=1).mean()

from blocks.graph import ComputationGraph
from blocks.algorithms import GradientDescent, Adam

cg = ComputationGraph([cost])

step_rules = [RMSProp(learning_rate=0.002, decay_rate=0.95), StepClipping(1.0)]

algorithm = GradientDescent(cost=cost,
                            parameters=cg.parameters,
                            step_rule=CompositeRule(step_rules),
                            on_unused_sources='ignore')

from blocks.extensions import Timing, FinishAfter, Printing, ProgressBar
from blocks.extensions.monitoring import TrainingDataMonitoring
from fuel.streams import DataStream
from fuel.schemes import SequentialScheme
from blocks.main_loop import MainLoop
from blocks.extensions.saveload import Checkpoint

from blocks.model import Model
Exemple #14
0
    def train(self):

        x = self.sharedBatch['x']
        x.name = 'x_myinput'
        xmini = self.sharedBatch['xmini']
        xmini.name = 'xmini_myinput'
        y = self.sharedBatch['y']
        y.name = 'y_myinput'

        # we need to provide data for the LSTM layer of size 4 * ltsm_dim, see
        # LSTM layer documentation for the explanation
        x_to_h = Linear(self.input_dimx,
                        self.dim,
                        name='x_to_h',
                        weights_init=IsotropicGaussian(),
                        biases_init=Constant(0.0))
        xmini_to_h = Linear(self.input_dimxmini,
                            self.mini_dim,
                            name='xmini_to_h',
                            weights_init=IsotropicGaussian(),
                            biases_init=Constant(0.0))

        rnnwmini = RNNwMini(dim=self.dim,
                            mini_dim=self.mini_dim,
                            summary_dim=self.summary_dim)

        h_to_o = Linear(self.summary_dim,
                        1,
                        name='h_to_o',
                        weights_init=IsotropicGaussian(),
                        biases_init=Constant(0.0))

        x_transform = x_to_h.apply(x)
        xmini_transform = xmini_to_h.apply(xmini)

        h = rnnwmini.apply(x=x_transform, xmini=xmini_transform)

        # only values of hidden units of the last timeframe are used for
        # the classification
        y_hat = h_to_o.apply(h[-1])
        #y_hat = Logistic().apply(y_hat)

        cost = SquaredError().apply(y, y_hat)
        cost.name = 'cost'

        rnnwmini.initialize()
        x_to_h.initialize()
        xmini_to_h.initialize()
        h_to_o.initialize()

        self.f = theano.function(inputs=[], outputs=y_hat)

        #print("self.f === ")
        #print(self.f())
        #print(self.f().shape)
        #print("====")

        self.cg = ComputationGraph(cost)
        m = Model(cost)

        algorithm = GradientDescent(cost=cost,
                                    parameters=self.cg.parameters,
                                    step_rule=RMSProp(learning_rate=0.01),
                                    on_unused_sources='ignore')
        valid_monitor = DataStreamMonitoringShared(
            variables=[cost],
            data_stream=self.stream_valid_int,
            prefix="valid",
            sharedBatch=self.sharedBatch,
            sharedData=self.sharedData)
        train_monitor = TrainingDataMonitoring(variables=[cost],
                                               prefix="train",
                                               after_epoch=True)

        sharedVarMonitor = SwitchSharedReferences(self.sharedBatch,
                                                  self.sharedData)
        tBest = self.track_best('valid_cost', self.cg)
        self.tracker = tBest[0]
        extensions = [sharedVarMonitor, valid_monitor] + tBest

        if self.debug:
            extensions.append(Printing())

        self.algorithm = algorithm
        self.extensions = extensions
        self.model = m
        self.mainloop = MainLoop(self.algorithm,
                                 self.stream_train_int,
                                 extensions=self.extensions,
                                 model=self.model)
        self.main_loop(True)
Exemple #15
0
    if args.continue_from:
        from blocks.serialization import load
        main_loop = load(args.continue_from)
        main_loop.run()
        sys.exit(0)

    graphs, extensions, updates = construct_graphs(args, nclasses)

    ### optimization algorithm definition
    if args.optimizer == "adam":
        optimizer = Adam(learning_rate=args.learning_rate)
        # zzzz
        optimizer.learning_rate = theano.shared(np.asarray(optimizer.learning_rate, dtype=theano.config.floatX))
    elif args.optimizer == "rmsprop":
        optimizer = RMSProp(learning_rate=args.learning_rate, decay_rate=0.9)
    elif args.optimizer == "sgdmomentum":
        optimizer = Momentum(learning_rate=args.learning_rate, momentum=0.99)
    step_rule = CompositeRule([
        StepClipping(1.),
        optimizer,
    ])
    algorithm = GradientDescent(cost=graphs["training"].outputs[0],
                                parameters=graphs["training"].parameters,
                                step_rule=step_rule)
    algorithm.add_updates(updates["training"])
    model = Model(graphs["training"].outputs[0])
    extensions = extensions["training"] + extensions["inference"]

    extensions.append(SharedVariableModifier(
        optimizer.learning_rate,
n_entities = 550
embed_size = 200

ctx_lstm_size = [256]
ctx_skip_connections = True

question_lstm_size = [256]
question_skip_connections = True

attention_mlp_hidden = [100]
attention_mlp_activations = [Tanh()]

out_mlp_hidden = []
out_mlp_activations = []

step_rule = CompositeRule([
    RMSProp(decay_rate=0.95, learning_rate=5e-5),
    BasicMomentum(momentum=0.9)
])

dropout = 0.2
w_noise = 0.

valid_freq = 1000
save_freq = 1000
print_freq = 100

weights_init = IsotropicGaussian(0.01)
biases_init = Constant(0.)
Exemple #17
0
train_batch = int(config.get('hyperparams', 'train_batch', 256))
valid_batch = int(config.get('hyperparams', 'valid_batch', 256))
test_batch = int(config.get('hyperparams', 'valid_batch', 256))

W_sd = float(config.get('hyperparams', 'W_sd', 0.01))
W_mu = float(config.get('hyperparams', 'W_mu', 0.0))
W_b = float(config.get('hyperparams', 'W_b', 0.01))
dropout_ratio = float(config.get('hyperparams', 'dropout_ratio', 0.2))
weight_decay = float(config.get('hyperparams', 'weight_decay', 0.001))
solver = config.get('hyperparams', 'solver_type', 'rmsprop')
data_file = config.get('hyperparams', 'data_file')

if 'adagrad' in solver:
    solver_type = AdaGrad()
else:
    solver_type = RMSProp(learning_rate=base_lr)

pre_trained_folder = '../models/'
input_dim = {'l': 11427, 'r': 10519, 'b': 10519 + 11427}

train = H5PYDataset(data_file, which_set='train', sources=['l_features', 'r_features'])
valid = H5PYDataset(data_file, which_set='valid', sources=['l_features', 'r_features'])
test = H5PYDataset(data_file, which_set='test', sources=['l_features', 'r_features'])
x_l = tensor.matrix('l_features')
x_r = tensor.matrix('r_features')
x = tensor.concatenate([x_l, x_r], axis=1)

# Define a feed-forward net with an input, two hidden layers, and a softmax output:
autoencoder = MLP(activations=[
    #Rectifier(name='h1'),
    Rectifier(name='h1'),
Exemple #18
0
    gen_params = gen_filter(cg.variables)
    dis_params = dis_filter(cg.variables)

    gan.dis_params = dis_params
    gan.gen_params = gen_params

    # print y_hat1.eval(test_data)
    # print y_hat0.eval(test_data)
    # raise

    algo = AdverserialTraning(gen_obj=gen_obj,
                              dis_obj=dis_obj,
                              model=gan,
                              dis_iter=1,
                              step_rule=RMSProp(learning_rate=1e-4),
                              gen_consider_constant=z)

    neg_sample = gan.sampling(size=25)

    from blocks.monitoring.aggregation import minimum
    monitor = TrainingDataMonitoring(
        variables=[minimum(gen_obj), minimum(dis_obj)],
        prefix="train",
        after_batch=True)

    subdir = './exp/' + 'mnist' + "-" + time.strftime("%Y%m%d-%H%M%S")

    check_point = Checkpoint("{}/{}".format(subdir, 'mnist'),
                             every_n_epochs=50,
                             save_separately=['log', 'model'])
Exemple #19
0
# MODEL
x = tensor.matrix('features', dtype='uint8')
y = tensor.matrix('targets', dtype='uint8')
y_hat, cost, cells = nn_fprop(x, y, vocab_size, hidden_size, num_layers, model)

# COST
cg = ComputationGraph(cost)

if dropout > 0:
    # Apply dropout only to the non-recurrent inputs (Zaremba et al. 2015)
    inputs = VariableFilter(theano_name_regex=r'.*apply_input.*')(cg.variables)
    cg = apply_dropout(cg, inputs, dropout)
    cost = cg.outputs[0]

# Learning algorithm
step_rules = [RMSProp(learning_rate=learning_rate, decay_rate=decay_rate),
              StepClipping(step_clipping)]
algorithm = GradientDescent(cost=cost, parameters=cg.parameters,
                            step_rule=CompositeRule(step_rules))

# Extensions
gradient_norm = aggregation.mean(algorithm.total_gradient_norm)
step_norm = aggregation.mean(algorithm.total_step_norm)
monitored_vars = [cost, gradient_norm, step_norm]

dev_monitor = DataStreamMonitoring(variables=[cost], after_epoch=True,
                                   before_first_epoch=True, data_stream=dev_stream, prefix="dev")
train_monitor = TrainingDataMonitoring(variables=monitored_vars, after_batch=True,
                                       before_first_epoch=True, prefix='tra')

extensions = [dev_monitor, train_monitor, Timing(), Printing(after_batch=True),
Exemple #20
0
y_hat, cost, cells = nn_fprop(x, y, in_size, out_size, hidden_size,
                              num_recurrent_layers, train_flag)

# COST
cg = ComputationGraph(cost)
extra_updates = []

# Learning optimizer
if training_optimizer == 'Adam':
    step_rules = [
        Adam(learning_rate=learning_rate),
        StepClipping(step_clipping)
    ]  # , VariableClipping(threshold=max_norm_threshold)
elif training_optimizer == 'RMSProp':
    step_rules = [
        RMSProp(learning_rate=learning_rate, decay_rate=decay_rate),
        StepClipping(step_clipping)
    ]
elif training_optimizer == 'Adagrad':
    step_rules = [
        AdaGrad(learning_rate=learning_rate),
        StepClipping(step_clipping)
    ]
elif training_optimizer == 'Adadelta':
    step_rules = [AdaDelta(decay_rate=decay_rate), StepClipping(step_clipping)]

parameters_to_update = cg.parameters
algorithm = GradientDescent(cost=cg.outputs[0],
                            parameters=parameters_to_update,
                            step_rule=CompositeRule(step_rules))
algorithm.add_updates(extra_updates)
input_dim = 1
out_dim = 1
hidden_dim = 64
activation_function = Tanh()
activation_function_name = 'Tanh'
batch_size = 100 
w_noise_std = 0.01
i_dropout = 0.5
proportion_train = 0.9
algo = 'RMS'
learning_rate_value = 1e-5
momentum_value = 0.9
decay_rate_value = 0
StepClipping_value = 2

step_rule = CompositeRule([RMSProp(learning_rate=learning_rate_value), #decay_rate=decay_rate_value,
                          BasicMomentum(momentum=momentum_value),
                          StepClipping(StepClipping_value)])
print_freq = 1000
valid_freq = 10000
save_freq = 10000

class Model():
    def __init__(self):
        inp = tensor.tensor3('input')
        inp = inp.dimshuffle(1,0,2)
        target = tensor.matrix('target')
        target = target.reshape((target.shape[0],))
        product = tensor.lvector('product')
        missing = tensor.eq(inp, 0)
        train_input_mean = 1470614.1
Exemple #22
0
if not os.path.exists(save_path):
    os.makedirs(save_path)
log_path = save_path + '/log.txt'
fh = logging.FileHandler(filename=log_path)
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)

print 'Bulding training process...'
model = Model(cost)
params = ComputationGraph(cost).parameters
print_num_params(params)
clipping = StepClipping(threshold=np.cast[floatX](1.0))
# Momentum(learning_rate=args.learning_rate, momentum=0.9)
rm_non_finite = RemoveNotFinite()
rms_prop = RMSProp(learning_rate=1e-3, decay_rate=0.5)
step_rule = CompositeRule([clipping, rms_prop, rm_non_finite])
algorithm = GradientDescent(
    cost=cost,
    parameters=params,
    step_rule=step_rule)

# train_stream, valid_stream = get_seq_mnist_streams(
#    h_dim, batch_size, update_prob)
train_stream = get_stream('train', batch_size, h_dim, False)
train_stream_evaluation = get_stream('train', batch_size, h_dim, True)
valid_stream = get_stream('valid', batch_size, h_dim, True)

if load_path:
    with open(load_path + '/trained_params_best.npz') as f:
        loaded = np.load(f)
Exemple #23
0
shuffle_entities = True

concat_ctx_and_question = False
concat_question_before = False

embed_size = 200

ctx_lstm_size = [256, 256]
ctx_skip_connections = False

question_lstm_size = [256]
question_skip_connections = True

attention_mlp_hidden = [200]
attention_mlp_activations = [Tanh()]

step_rule = CompositeRule([RMSProp(decay_rate=0.95, learning_rate=5e-5),
                           BasicMomentum(momentum=0.9)])

dropout = 0.2
w_noise = 0.

valid_freq = 10000
save_freq = 10000
print_freq = 1000

weights_init = IsotropicGaussian(0.01)
biases_init = Constant(0.)

transition_weights_init = Orthogonal()
Exemple #24
0
batch_size = 32
sort_batch_count = 20

shuffle_questions = True

concat_ctx_and_question = True
concat_question_before = True

embed_size = 200

lstm_size = [256, 256]
skip_connections = True

out_mlp_hidden = []
out_mlp_activations = []

step_rule = CompositeRule([
    RMSProp(decay_rate=0.95, learning_rate=1e-4),
    BasicMomentum(momentum=0.9)
])

dropout = 0.1

valid_freq = 1000
save_freq = 1000
print_freq = 100

weights_init = IsotropicGaussian(0.01)
biases_init = Constant(0.)
Exemple #25
0
def train(algorithm, learning_rate, clipping, momentum, layer_size, epochs,
          test_cost, experiment_path, initialization, init_width, weight_noise,
          z_prob, z_prob_states, z_prob_cells, drop_prob_igates,
          ogates_zoneout, batch_size, stoch_depth, share_mask, gaussian_drop,
          rnn_type, num_layers, norm_cost_coeff, penalty, testing, seq_len,
          decrease_lr_after_epoch, lr_decay, **kwargs):

    print '.. PTB experiment'
    print '.. arguments:', ' '.join(sys.argv)
    t0 = time.time()

    ###########################################
    #
    # LOAD DATA
    #
    ###########################################

    def onehot(x, numclasses=None):
        """ Convert integer encoding for class-labels (starting with 0 !)
            to one-hot encoding.
            The output is an array whose shape is the shape of the input array
            plus an extra dimension, containing the 'one-hot'-encoded labels.
        """
        if x.shape == ():
            x = x[None]
        if numclasses is None:
            numclasses = x.max() + 1
        result = numpy.zeros(list(x.shape) + [numclasses], dtype="int")
        z = numpy.zeros(x.shape, dtype="int")
        for c in range(numclasses):
            z *= 0
            z[numpy.where(x == c)] = 1
            result[..., c] += z
        return result.astype(theano.config.floatX)

    alphabetsize = 10000
    data = np.load('penntree_char_and_word.npz')
    trainset = data['train_words']
    validset = data['valid_words']
    testset = data['test_words']

    if testing:
        trainset = trainset[:3000]
        validset = validset[:3000]

    if share_mask:
        if not z_prob:
            raise ValueError('z_prob must be provided when using share_mask')
        if z_prob_cells or z_prob_states:
            raise ValueError(
                'z_prob_states and z_prob_cells must not be provided when using share_mask (use z_prob instead)'
            )
        z_prob_cells = z_prob
        # we don't want to actually use these masks, so this is to debug
        z_prob_states = None
    else:
        if z_prob:
            raise ValueError('z_prob is only used with share_mask')
        z_prob_cells = z_prob_cells or '1'
        z_prob_states = z_prob_states or '1'


#    rng = np.random.RandomState(seed)

###########################################
#
# MAKE STREAMS
#
###########################################

    def prep_dataset(dataset):
        dataset = dataset[:(len(dataset) - (len(dataset) %
                                            (seq_len * batch_size)))]
        dataset = dataset.reshape(batch_size, -1, seq_len).transpose((1, 0, 2))

        stream = DataStream(
            IndexableDataset(indexables=OrderedDict([('data', dataset)])),
            iteration_scheme=SequentialExampleScheme(dataset.shape[0]))
        stream = Transpose(stream, [(1, 0)])
        stream = SampleDropsNPWord(stream, z_prob_states, z_prob_cells,
                                   drop_prob_igates, layer_size, num_layers,
                                   False, stoch_depth, share_mask,
                                   gaussian_drop, alphabetsize)
        stream.sources = ('data', ) * 3 + stream.sources + (
            'zoneouts_states', 'zoneouts_cells', 'zoneouts_igates')
        return (stream, )

    train_stream, = prep_dataset(trainset)
    valid_stream, = prep_dataset(validset)
    test_stream, = prep_dataset(testset)

    ####################

    data = train_stream.get_epoch_iterator(as_dict=True).next()

    ####################

    ###########################################
    #
    # BUILD MODEL
    #
    ###########################################
    print '.. building model'

    x = T.tensor3('data')
    y = x
    zoneouts_states = T.tensor3('zoneouts_states')
    zoneouts_cells = T.tensor3('zoneouts_cells')
    zoneouts_igates = T.tensor3('zoneouts_igates')

    x.tag.test_value = data['data']
    zoneouts_states.tag.test_value = data['zoneouts_states']
    zoneouts_cells.tag.test_value = data['zoneouts_cells']
    zoneouts_igates.tag.test_value = data['zoneouts_igates']

    if init_width and not initialization == 'uniform':
        raise ValueError('Width is only for uniform init, whassup?')

    if initialization == 'glorot':
        weights_init = NormalizedInitialization()
    elif initialization == 'uniform':
        weights_init = Uniform(width=init_width)
    elif initialization == 'ortho':
        weights_init = OrthogonalInitialization()
    else:
        raise ValueError('No such initialization')

    if rnn_type.lower() == 'lstm':
        in_to_hids = [
            Linear(layer_size if l > 0 else alphabetsize,
                   layer_size * 4,
                   name='in_to_hid%d' % l,
                   weights_init=weights_init,
                   biases_init=Constant(0.0)) for l in range(num_layers)
        ]
        recurrent_layers = [
            DropLSTM(dim=layer_size,
                     weights_init=weights_init,
                     activation=Tanh(),
                     model_type=6,
                     name='rnn%d' % l,
                     ogates_zoneout=ogates_zoneout) for l in range(num_layers)
        ]
    elif rnn_type.lower() == 'gru':
        in_to_hids = [
            Linear(layer_size if l > 0 else alphabetsize,
                   layer_size * 3,
                   name='in_to_hid%d' % l,
                   weights_init=weights_init,
                   biases_init=Constant(0.0)) for l in range(num_layers)
        ]
        recurrent_layers = [
            DropGRU(dim=layer_size,
                    weights_init=weights_init,
                    activation=Tanh(),
                    name='rnn%d' % l) for l in range(num_layers)
        ]
    elif rnn_type.lower() == 'srnn':  # FIXME!!! make ReLU
        in_to_hids = [
            Linear(layer_size if l > 0 else alphabetsize,
                   layer_size,
                   name='in_to_hid%d' % l,
                   weights_init=weights_init,
                   biases_init=Constant(0.0)) for l in range(num_layers)
        ]
        recurrent_layers = [
            DropSimpleRecurrent(dim=layer_size,
                                weights_init=weights_init,
                                activation=Rectifier(),
                                name='rnn%d' % l) for l in range(num_layers)
        ]
    else:
        raise NotImplementedError

    hid_to_out = Linear(layer_size,
                        alphabetsize,
                        name='hid_to_out',
                        weights_init=weights_init,
                        biases_init=Constant(0.0))

    for layer in in_to_hids:
        layer.initialize()
    for layer in recurrent_layers:
        layer.initialize()
    hid_to_out.initialize()

    layer_input = x  #in_to_hid.apply(x)

    init_updates = OrderedDict()
    for l, (in_to_hid, layer) in enumerate(zip(in_to_hids, recurrent_layers)):
        rnn_embedding = in_to_hid.apply(layer_input)
        if rnn_type.lower() == 'lstm':
            states_init = theano.shared(
                np.zeros((batch_size, layer_size), dtype=floatX))
            cells_init = theano.shared(
                np.zeros((batch_size, layer_size), dtype=floatX))
            states_init.name, cells_init.name = "states_init", "cells_init"
            states, cells = layer.apply(
                rnn_embedding,
                zoneouts_states[:, :, l * layer_size:(l + 1) * layer_size],
                zoneouts_cells[:, :, l * layer_size:(l + 1) * layer_size],
                zoneouts_igates[:, :, l * layer_size:(l + 1) * layer_size],
                states_init, cells_init)
            init_updates.update([(states_init, states[-1]),
                                 (cells_init, cells[-1])])
        elif rnn_type.lower() in ['gru', 'srnn']:
            # untested!
            states_init = theano.shared(
                np.zeros((batch_size, layer_size), dtype=floatX))
            states_init.name = "states_init"
            states = layer.apply(rnn_embedding, zoneouts_states,
                                 zoneouts_igates, states_init)
            init_updates.update([(states_init, states[-1])])
        else:
            raise NotImplementedError
        layer_input = states

    y_hat_pre_softmax = hid_to_out.apply(T.join(0, [states_init], states[:-1]))
    shape_ = y_hat_pre_softmax.shape
    y_hat = Softmax().apply(y_hat_pre_softmax.reshape((-1, alphabetsize)))

    ####################

    ###########################################
    #
    # SET UP COSTS AND MONITORS
    #
    ###########################################

    cost = CategoricalCrossEntropy().apply(y.reshape((-1, alphabetsize)),
                                           y_hat).copy('cost')

    bpc = (cost / np.log(2.0)).copy(name='bpr')
    perp = T.exp(cost).copy(name='perp')

    cost_train = cost.copy(name='train_cost')
    cg_train = ComputationGraph([cost_train])

    ###########################################
    #
    # NORM STABILIZER
    #
    ###########################################
    norm_cost = 0.

    def _magnitude(x, axis=-1):
        return T.sqrt(
            T.maximum(T.sqr(x).sum(axis=axis),
                      numpy.finfo(x.dtype).tiny))

    if penalty == 'cells':
        assert VariableFilter(roles=[MEMORY_CELL])(cg_train.variables)
        for cell in VariableFilter(roles=[MEMORY_CELL])(cg_train.variables):
            norms = _magnitude(cell)
            norm_cost += T.mean(
                T.sum((norms[1:] - norms[:-1])**2, axis=0) / (seq_len - 1))
    elif penalty == 'hids':
        for l in range(num_layers):
            assert 'rnn%d_apply_states' % l in [
                o.name
                for o in VariableFilter(roles=[OUTPUT])(cg_train.variables)
            ]
        for output in VariableFilter(roles=[OUTPUT])(cg_train.variables):
            for l in range(num_layers):
                if output.name == 'rnn%d_apply_states' % l:
                    norms = _magnitude(output)
                    norm_cost += T.mean(
                        T.sum((norms[1:] - norms[:-1])**2, axis=0) /
                        (seq_len - 1))

    norm_cost.name = 'norm_cost'
    #cost_valid = cost_train
    cost_train += norm_cost_coeff * norm_cost
    cost_train = cost_train.copy(
        'cost_train')  #should this be cost_train.outputs[0]? no.

    cg_train = ComputationGraph([cost_train])

    ###########################################
    #
    # WEIGHT NOISE
    #
    ###########################################

    if weight_noise > 0:
        weights = VariableFilter(roles=[WEIGHT])(cg_train.variables)
        cg_train = apply_noise(cg_train, weights, weight_noise)
        cost_train = cg_train.outputs[0].copy(name='cost_train')

    model = Model(cost_train)

    learning_rate = float(learning_rate)
    clipping = StepClipping(threshold=np.cast[floatX](clipping))
    if algorithm == 'adam':
        adam = Adam(learning_rate=learning_rate)
        learning_rate = adam.learning_rate
        step_rule = CompositeRule([adam, clipping])
    elif algorithm == 'rms_prop':
        rms_prop = RMSProp(learning_rate=learning_rate)
        learning_rate = rms_prop.learning_rate
        step_rule = CompositeRule([clipping, rms_prop])
    elif algorithm == 'momentum':
        sgd_momentum = Momentum(learning_rate=learning_rate, momentum=momentum)
        learning_rate = sgd_momentum.learning_rate
        step_rule = CompositeRule([clipping, sgd_momentum])
    elif algorithm == 'sgd':
        sgd = Scale(learning_rate=learning_rate)
        learning_rate = sgd.learning_rate
        step_rule = CompositeRule([clipping, sgd])
    else:
        raise NotImplementedError
    algorithm = GradientDescent(step_rule=step_rule,
                                cost=cost_train,
                                parameters=cg_train.parameters)
    # theano_func_kwargs={"mode": theano.compile.MonitorMode(post_func=detect_nan)})

    algorithm.add_updates(init_updates)

    def cond_number(x):
        _, _, sing_vals = T.nlinalg.svd(x, True, True)
        sing_mags = abs(sing_vals)
        return T.max(sing_mags) / T.min(sing_mags)

    def rms(x):
        return (x * x).mean().sqrt()

    whysplode_cond = []
    whysplode_rms = []
    for i, p in enumerate(init_updates):
        v = p.get_value()
        if p.get_value().shape == 2:
            whysplode_cond.append(
                cond_number(p).copy(
                    'ini%d:%s_cond(%s)' %
                    (i, p.name, "x".join(map(str,
                                             p.get_value().shape)))))
        whysplode_rms.append(
            rms(p).copy('ini%d:%s_rms(%s)' %
                        (i, p.name, "x".join(map(str,
                                                 p.get_value().shape)))))
    for i, p in enumerate(cg_train.parameters):
        v = p.get_value()
        if p.get_value().shape == 2:
            whysplode_cond.append(
                cond_number(p).copy(
                    'ini%d:%s_cond(%s)' %
                    (i, p.name, "x".join(map(str,
                                             p.get_value().shape)))))
        whysplode_rms.append(
            rms(p).copy('ini%d:%s_rms(%s)' %
                        (i, p.name, "x".join(map(str,
                                                 p.get_value().shape)))))

    observed_vars = [
        cost_train, cost, bpc, perp, learning_rate,
        aggregation.mean(
            algorithm.total_gradient_norm).copy("gradient_norm_mean")
    ]  # + whysplode_rms

    parameters = model.get_parameter_dict()
    for name, param in parameters.iteritems():
        observed_vars.append(param.norm(2).copy(name=name + "_norm"))
        observed_vars.append(
            algorithm.gradients[param].norm(2).copy(name=name + "_grad_norm"))

    train_monitor = TrainingDataMonitoring(variables=observed_vars,
                                           prefix="train",
                                           after_epoch=True)

    dev_inits = [p.clone() for p in init_updates]
    cg_dev = ComputationGraph([cost, bpc, perp] +
                              init_updates.values()).replace(
                                  zip(init_updates.keys(), dev_inits))
    dev_cost, dev_bpc, dev_perp = cg_dev.outputs[:3]
    dev_init_updates = OrderedDict(zip(dev_inits, cg_dev.outputs[3:]))

    dev_monitor = DataStreamMonitoring(variables=[dev_cost, dev_bpc, dev_perp],
                                       data_stream=valid_stream,
                                       prefix="dev",
                                       updates=dev_init_updates)

    # noone does this
    if 'load_path' in kwargs:
        with open(kwargs['load_path']) as f:
            loaded = np.load(f)
            model = Model(cost_train)
            params_dicts = model.get_parameter_dict()
            params_names = params_dicts.keys()
            for param_name in params_names:
                param = params_dicts[param_name]
                # '/f_6_.W' --> 'f_6_.W'
                slash_index = param_name.find('/')
                param_name = param_name[slash_index + 1:]
                if param.get_value().shape == loaded[param_name].shape:
                    print 'Found: ' + param_name
                    param.set_value(loaded[param_name])
                else:
                    print 'Not found: ' + param_name

    extensions = []
    extensions.extend(
        [FinishAfter(after_n_epochs=epochs), train_monitor, dev_monitor])
    if test_cost:
        test_inits = [p.clone() for p in init_updates]
        cg_test = ComputationGraph([cost, bpc, perp] +
                                   init_updates.values()).replace(
                                       zip(init_updates.keys(), test_inits))
        test_cost, test_bpc, test_perp = cg_test.outputs[:3]
        test_init_updates = OrderedDict(zip(test_inits, cg_test.outputs[3:]))

        test_monitor = DataStreamMonitoring(
            variables=[test_cost, test_bpc, test_perp],
            data_stream=test_stream,
            prefix="test",
            updates=test_init_updates)
        extensions.extend([test_monitor])

    if not os.path.exists(experiment_path):
        os.makedirs(experiment_path)
    log_path = os.path.join(experiment_path, 'log.txt')
    fh = logging.FileHandler(filename=log_path)
    fh.setLevel(logging.DEBUG)
    logger.addHandler(fh)

    extensions.append(
        SaveParams('dev_cost', model, experiment_path, every_n_epochs=1))
    extensions.append(SaveLog(every_n_epochs=1))
    extensions.append(ProgressBar())
    extensions.append(Printing())

    class RollsExtension(TrainingExtension):
        """ rolls the cell and state activations between epochs so that first batch gets correct initial activations """
        def __init__(self, shvars):
            self.shvars = shvars

        def before_epoch(self):
            for v in self.shvars:
                v.set_value(np.roll(v.get_value(), 1, 0))

    extensions.append(
        RollsExtension(init_updates.keys() + dev_init_updates.keys() +
                       (test_init_updates.keys() if test_cost else [])))

    class LearningRateSchedule(TrainingExtension):
        """ Lets you set a number to divide learning rate by each epoch + when to start doing that """
        def __init__(self):
            self.epoch_number = 0

        def after_epoch(self):
            self.epoch_number += 1
            if self.epoch_number > decrease_lr_after_epoch:
                learning_rate.set_value(learning_rate.get_value() / lr_decay)

    if bool(lr_decay) != bool(decrease_lr_after_epoch):
        raise ValueError(
            'Need to define both lr_decay and decrease_lr_after_epoch')
    if lr_decay and decrease_lr_after_epoch:
        extensions.append(LearningRateSchedule())

    main_loop = MainLoop(model=model,
                         data_stream=train_stream,
                         algorithm=algorithm,
                         extensions=extensions)
    t1 = time.time()
    print "Building time: %f" % (t1 - t0)

    main_loop.run()
    print "Execution time: %f" % (time.time() - t1)
Exemple #26
0
def main(nvis, nhid, encoding_lstm_dim, decoding_lstm_dim, T=1):
    x = tensor.matrix('features')

    # Construct and initialize model
    encoding_mlp = MLP([Tanh()], [None, None])
    decoding_mlp = MLP([Tanh()], [None, None])
    encoding_lstm = LSTM(dim=encoding_lstm_dim)
    decoding_lstm = LSTM(dim=decoding_lstm_dim)
    draw = DRAW(nvis=nvis,
                nhid=nhid,
                T=T,
                encoding_mlp=encoding_mlp,
                decoding_mlp=decoding_mlp,
                encoding_lstm=encoding_lstm,
                decoding_lstm=decoding_lstm,
                biases_init=Constant(0),
                weights_init=Orthogonal())
    draw.push_initialization_config()
    encoding_lstm.weights_init = IsotropicGaussian(std=0.001)
    decoding_lstm.weights_init = IsotropicGaussian(std=0.001)
    draw.initialize()

    # Compute cost
    cost = -draw.log_likelihood_lower_bound(x).mean()
    cost.name = 'nll_upper_bound'
    model = Model(cost)

    # Datasets and data streams
    mnist_train = BinarizedMNIST('train')
    train_loop_stream = ForceFloatX(
        DataStream(dataset=mnist_train,
                   iteration_scheme=SequentialScheme(mnist_train.num_examples,
                                                     100)))
    train_monitor_stream = ForceFloatX(
        DataStream(dataset=mnist_train,
                   iteration_scheme=SequentialScheme(mnist_train.num_examples,
                                                     500)))
    mnist_valid = BinarizedMNIST('valid')
    valid_monitor_stream = ForceFloatX(
        DataStream(dataset=mnist_valid,
                   iteration_scheme=SequentialScheme(mnist_valid.num_examples,
                                                     500)))
    mnist_test = BinarizedMNIST('test')
    test_monitor_stream = ForceFloatX(
        DataStream(dataset=mnist_test,
                   iteration_scheme=SequentialScheme(mnist_test.num_examples,
                                                     500)))

    # Get parameters and monitoring channels
    computation_graph = ComputationGraph([cost])
    params = VariableFilter(roles=[PARAMETER])(computation_graph.variables)
    monitoring_channels = dict([
        ('avg_' + channel.tag.name, channel.mean())
        for channel in VariableFilter(
            name='.*term$')(computation_graph.auxiliary_variables)
    ])
    for name, channel in monitoring_channels.items():
        channel.name = name
    monitored_quantities = monitoring_channels.values() + [cost]

    # Training loop
    step_rule = RMSProp(learning_rate=1e-3, decay_rate=0.95)
    algorithm = GradientDescent(cost=cost, params=params, step_rule=step_rule)
    algorithm.add_updates(computation_graph.updates)
    main_loop = MainLoop(
        model=model,
        data_stream=train_loop_stream,
        algorithm=algorithm,
        extensions=[
            Timing(),
            SerializeMainLoop('vae.pkl', save_separately=['model']),
            FinishAfter(after_n_epochs=200),
            DataStreamMonitoring(monitored_quantities,
                                 train_monitor_stream,
                                 prefix="train",
                                 updates=computation_graph.updates),
            DataStreamMonitoring(monitored_quantities,
                                 valid_monitor_stream,
                                 prefix="valid",
                                 updates=computation_graph.updates),
            DataStreamMonitoring(monitored_quantities,
                                 test_monitor_stream,
                                 prefix="test",
                                 updates=computation_graph.updates),
            ProgressBar(),
            Printing()
        ])
    main_loop.run()
Exemple #27
0
def main(job_id, params):
    config = ConfigParser.ConfigParser()
    config.readfp(open('./params'))
    max_epoch = int(config.get('hyperparams', 'max_iter', 100))
    base_lr = float(config.get('hyperparams', 'base_lr', 0.01))
    train_batch = int(config.get('hyperparams', 'train_batch', 256))
    valid_batch = int(config.get('hyperparams', 'valid_batch', 512))
    test_batch = int(config.get('hyperparams', 'valid_batch', 512))

    W_sd = float(config.get('hyperparams', 'W_sd', 0.01))
    W_mu = float(config.get('hyperparams', 'W_mu', 0.0))
    b_sd = float(config.get('hyperparams', 'b_sd', 0.01))
    b_mu = float(config.get('hyperparams', 'b_mu', 0.0))

    hidden_units = int(config.get('hyperparams', 'hidden_units', 32))
    input_dropout_ratio = float(
        config.get('hyperparams', 'input_dropout_ratio', 0.2))
    dropout_ratio = float(config.get('hyperparams', 'dropout_ratio', 0.2))
    weight_decay = float(config.get('hyperparams', 'weight_decay', 0.001))
    max_norm = float(config.get('hyperparams', 'max_norm', 100.0))
    solver = config.get('hyperparams', 'solver_type', 'rmsprop')
    data_file = config.get('hyperparams', 'data_file')
    side = config.get('hyperparams', 'side', 'b')

    # Spearmint optimization parameters:
    if params:
        base_lr = float(params['base_lr'][0])
        dropout_ratio = float(params['dropout_ratio'][0])
        hidden_units = params['hidden_units'][0]
        weight_decay = params['weight_decay'][0]

    if 'adagrad' in solver:
        solver_type = CompositeRule([
            AdaGrad(learning_rate=base_lr),
            VariableClipping(threshold=max_norm)
        ])
    else:
        solver_type = CompositeRule([
            RMSProp(learning_rate=base_lr),
            VariableClipping(threshold=max_norm)
        ])

    input_dim = {'l': 11427, 'r': 10519, 'b': 10519 + 11427}
    data_file = config.get('hyperparams', 'data_file')

    if 'b' in side:
        train = H5PYDataset(data_file, which_set='train')
        valid = H5PYDataset(data_file, which_set='valid')
        test = H5PYDataset(data_file, which_set='test')
        x_l = tensor.matrix('l_features')
        x_r = tensor.matrix('r_features')
        x = tensor.concatenate([x_l, x_r], axis=1)

    else:
        train = H5PYDataset(data_file,
                            which_set='train',
                            sources=['{}_features'.format(side), 'targets'])
        valid = H5PYDataset(data_file,
                            which_set='valid',
                            sources=['{}_features'.format(side), 'targets'])
        test = H5PYDataset(data_file,
                           which_set='test',
                           sources=['{}_features'.format(side), 'targets'])
        x = tensor.matrix('{}_features'.format(side))

    y = tensor.lmatrix('targets')

    # Define a feed-forward net with an input, two hidden layers, and a softmax output:
    model = MLP(activations=[
        Rectifier(name='h1'),
        Rectifier(name='h2'),
        Softmax(name='output'),
    ],
                dims=[input_dim[side], hidden_units, hidden_units, 2],
                weights_init=IsotropicGaussian(std=W_sd, mean=W_mu),
                biases_init=IsotropicGaussian(b_sd, b_mu))

    # Don't forget to initialize params:
    model.initialize()

    # y_hat is the output of the neural net with x as its inputs
    y_hat = model.apply(x)

    # Define a cost function to optimize, and a classification error rate.
    # Also apply the outputs from the net and corresponding targets:
    cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat)
    error = MisclassificationRate().apply(y.flatten(), y_hat)
    error.name = 'error'

    # This is the model: before applying dropout
    model = Model(cost)

    # Need to define the computation graph for the cost func:
    cost_graph = ComputationGraph([cost])

    # This returns a list of weight vectors for each layer
    W = VariableFilter(roles=[WEIGHT])(cost_graph.variables)

    # Add some regularization to this model:
    cost += weight_decay * l2_norm(W)
    cost.name = 'entropy'

    # computational graph with l2 reg
    cost_graph = ComputationGraph([cost])

    # Apply dropout to inputs:
    inputs = VariableFilter([INPUT])(cost_graph.variables)
    dropout_inputs = [
        input for input in inputs if input.name.startswith('linear_')
    ]
    dropout_graph = apply_dropout(cost_graph, [dropout_inputs[0]],
                                  input_dropout_ratio)
    dropout_graph = apply_dropout(dropout_graph, dropout_inputs[1:],
                                  dropout_ratio)
    dropout_cost = dropout_graph.outputs[0]
    dropout_cost.name = 'dropout_entropy'

    # Learning Algorithm (notice: we use the dropout cost for learning):
    algo = GradientDescent(step_rule=solver_type,
                           params=dropout_graph.parameters,
                           cost=dropout_cost)

    # algo.step_rule.learning_rate.name = 'learning_rate'

    # Data stream used for training model:
    training_stream = Flatten(
        DataStream.default_stream(dataset=train,
                                  iteration_scheme=ShuffledScheme(
                                      train.num_examples,
                                      batch_size=train_batch)))

    training_monitor = TrainingDataMonitoring([
        dropout_cost,
        aggregation.mean(error),
        aggregation.mean(algo.total_gradient_norm)
    ],
                                              after_batch=True)

    # Use the 'valid' set for validation during training:
    validation_stream = Flatten(
        DataStream.default_stream(dataset=valid,
                                  iteration_scheme=ShuffledScheme(
                                      valid.num_examples,
                                      batch_size=valid_batch)))

    validation_monitor = DataStreamMonitoring(variables=[cost, error],
                                              data_stream=validation_stream,
                                              prefix='validation',
                                              after_epoch=True)

    test_stream = Flatten(
        DataStream.default_stream(
            dataset=test,
            iteration_scheme=ShuffledScheme(test.num_examples,
                                            batch_size=test_batch)))

    test_monitor = DataStreamMonitoring(variables=[error],
                                        data_stream=test_stream,
                                        prefix='test',
                                        after_training=True)

    plotting = Plot('AdniNet_{}'.format(side),
                    channels=[
                        ['dropout_entropy', 'validation_entropy'],
                        ['error', 'validation_error'],
                    ],
                    after_batch=False)

    # Checkpoint class used to save model and log:
    stamp = datetime.datetime.fromtimestamp(
        time.time()).strftime('%Y-%m-%d-%H:%M')
    checkpoint = Checkpoint('./models/{}net/{}'.format(side, stamp),
                            save_separately=['model', 'log'],
                            every_n_epochs=1)

    # Home-brewed class for early stopping when we detect we have started to overfit
    early_stopper = FinishIfOverfitting(error_name='error',
                                        validation_name='validation_error',
                                        threshold=0.1,
                                        epochs=5,
                                        burn_in=100)

    # The main loop will train the network and output reports, etc
    main_loop = MainLoop(data_stream=training_stream,
                         model=model,
                         algorithm=algo,
                         extensions=[
                             validation_monitor,
                             training_monitor,
                             plotting,
                             FinishAfter(after_n_epochs=max_epoch),
                             early_stopper,
                             Printing(),
                             ProgressBar(),
                             checkpoint,
                             test_monitor,
                         ])
    main_loop.run()

    ve = float(main_loop.log.last_epoch_row['validation_error'])
    te = float(main_loop.log.last_epoch_row['error'])
    spearmint_loss = ve + abs(te - ve)
    print 'Spearmint Loss: {}'.format(spearmint_loss)
    return spearmint_loss
Exemple #28
0
def main(args):
    """Run experiment. """
    lr_tag = float_tag(args.learning_rate)

    x_dim, train_stream, valid_stream, test_stream = datasets.get_streams(
        args.data, args.batch_size)

    #------------------------------------------------------------
    # Setup model
    deterministic_act = Tanh
    deterministic_size = 1.

    if args.method == 'vae':
        sizes_tag = args.layer_spec.replace(",", "-")
        layer_sizes = [int(i) for i in args.layer_spec.split(",")]
        layer_sizes, z_dim = layer_sizes[:-1], layer_sizes[-1]

        name = "%s-%s-%s-lr%s-spl%d-%s" % \
            (args.data, args.method, args.name, lr_tag, args.n_samples, sizes_tag)

        if args.activation == "tanh":
            hidden_act = Tanh()
        elif args.activation == "logistic":
            hidden_act = Logistic()
        elif args.activation == "relu":
            hidden_act = Rectifier()
        else:
            raise "Unknown hidden nonlinearity %s" % args.hidden_act

        model = VAE(x_dim=x_dim,
                    hidden_layers=layer_sizes,
                    hidden_act=hidden_act,
                    z_dim=z_dim,
                    batch_norm=args.batch_normalization)
        model.initialize()
    elif args.method == 'dvae':
        sizes_tag = args.layer_spec.replace(",", "-")
        layer_sizes = [int(i) for i in args.layer_spec.split(",")]
        layer_sizes, z_dim = layer_sizes[:-1], layer_sizes[-1]

        name = "%s-%s-%s-lr%s-spl%d-%s" % \
            (args.data, args.method, args.name, lr_tag, args.n_samples, sizes_tag)

        if args.activation == "tanh":
            hidden_act = Tanh()
        elif args.activation == "logistic":
            hidden_act = Logistic()
        elif args.activation == "relu":
            hidden_act = Rectifier()
        else:
            raise "Unknown hidden nonlinearity %s" % args.hidden_act

        model = DVAE(x_dim=x_dim,
                     hidden_layers=layer_sizes,
                     hidden_act=hidden_act,
                     z_dim=z_dim,
                     batch_norm=args.batch_normalization)
        model.initialize()
    elif args.method == 'rws':
        sizes_tag = args.layer_spec.replace(",", "-")
        qbase = "" if not args.no_qbaseline else "noqb-"

        name = "%s-%s-%s-%slr%s-dl%d-spl%d-%s" % \
            (args.data, args.method, args.name, qbase, lr_tag, args.deterministic_layers, args.n_samples, sizes_tag)

        p_layers, q_layers = create_layers(args.layer_spec, x_dim,
                                           args.deterministic_layers,
                                           deterministic_act,
                                           deterministic_size)

        model = ReweightedWakeSleep(
            p_layers,
            q_layers,
            qbaseline=(not args.no_qbaseline),
        )
        model.initialize()
    elif args.method == 'bihm-rws':
        sizes_tag = args.layer_spec.replace(",", "-")
        name = "%s-%s-%s-lr%s-dl%d-spl%d-%s" % \
            (args.data, args.method, args.name, lr_tag, args.deterministic_layers, args.n_samples, sizes_tag)

        p_layers, q_layers = create_layers(args.layer_spec, x_dim,
                                           args.deterministic_layers,
                                           deterministic_act,
                                           deterministic_size)

        model = BiHM(
            p_layers,
            q_layers,
            l1reg=args.l1reg,
            l2reg=args.l2reg,
        )
        model.initialize()
    elif args.method == 'continue':
        import cPickle as pickle
        from os.path import basename, splitext

        with open(args.model_file, 'rb') as f:
            m = pickle.load(f)

        if isinstance(m, MainLoop):
            m = m.model

        model = m.get_top_bricks()[0]
        while len(model.parents) > 0:
            model = model.parents[0]

        assert isinstance(model, (BiHM, ReweightedWakeSleep, VAE))

        mname, _, _ = basename(args.model_file).rpartition("_model.pkl")
        name = "%s-cont-%s-lr%s-spl%s" % (mname, args.name, lr_tag,
                                          args.n_samples)
    else:
        raise ValueError("Unknown training method '%s'" % args.method)

    #------------------------------------------------------------

    x = tensor.matrix('features')

    #------------------------------------------------------------
    # Testset monitoring

    train_monitors = []
    valid_monitors = []
    test_monitors = []
    for s in [1, 10, 100, 1000]:
        log_p, log_ph = model.log_likelihood(x, s)
        log_p = -log_p.mean()
        log_ph = -log_ph.mean()
        log_p.name = "log_p_%d" % s
        log_ph.name = "log_ph_%d" % s

        #train_monitors += [log_p, log_ph]
        #valid_monitors += [log_p, log_ph]
        test_monitors += [log_p, log_ph]

    #------------------------------------------------------------
    # Z estimation
    #for s in [100000]:
    #    z2 = tensor.exp(model.estimate_log_z2(s)) / s
    #    z2.name = "z2_%d" % s
    #
    #    valid_monitors += [z2]
    #    test_monitors += [z2]

    #------------------------------------------------------------
    # Gradient and training monitoring

    if args.method in ['vae', 'dvae']:
        log_p_bound, gradients = model.get_gradients(x, args.n_samples)
        log_p_bound = -log_p_bound.mean()
        log_p_bound.name = "log_p_bound"
        cost = log_p_bound

        train_monitors += [
            log_p_bound,
            named(model.kl_term.mean(), 'kl_term'),
            named(model.recons_term.mean(), 'recons_term')
        ]
        valid_monitors += [
            log_p_bound,
            named(model.kl_term.mean(), 'kl_term'),
            named(model.recons_term.mean(), 'recons_term')
        ]
        test_monitors += [
            log_p_bound,
            named(model.kl_term.mean(), 'kl_term'),
            named(model.recons_term.mean(), 'recons_term')
        ]
    else:
        log_p, log_ph, gradients = model.get_gradients(x, args.n_samples)
        log_p = -log_p.mean()
        log_ph = -log_ph.mean()
        log_p.name = "log_p"
        log_ph.name = "log_ph"
        cost = log_ph

        train_monitors += [log_p, log_ph]
        valid_monitors += [log_p, log_ph]

    #------------------------------------------------------------
    # Detailed monitoring
    """
    n_layers = len(p_layers)

    log_px, w, log_p, log_q, samples = model.log_likelihood(x, n_samples)

    exp_samples = []
    for l in xrange(n_layers):
        e = (w.dimshuffle(0, 1, 'x')*samples[l]).sum(axis=1)
        e.name = "inference_h%d" % l
        e.tag.aggregation_scheme = aggregation.TakeLast(e)
        exp_samples.append(e)

    s1 = samples[1]
    sh1 = s1.shape
    s1_ = s1.reshape([sh1[0]*sh1[1], sh1[2]])
    s0, _ = model.p_layers[0].sample_expected(s1_)
    s0 = s0.reshape([sh1[0], sh1[1], s0.shape[1]])
    s0 = (w.dimshuffle(0, 1, 'x')*s0).sum(axis=1)
    s0.name = "inference_h0^"
    s0.tag.aggregation_scheme = aggregation.TakeLast(s0)
    exp_samples.append(s0)

    # Draw P-samples
    p_samples, _, _ = model.sample_p(100)
    #weights = model.importance_weights(samples)
    #weights = weights / weights.sum()

    for i, s in enumerate(p_samples):
        s.name = "psamples_h%d" % i
        s.tag.aggregation_scheme = aggregation.TakeLast(s)

    #
    samples = model.sample(100, oversample=100)

    for i, s in enumerate(samples):
        s.name = "samples_h%d" % i
        s.tag.aggregation_scheme = aggregation.TakeLast(s)
    """
    cg = ComputationGraph([cost])

    #------------------------------------------------------------

    if args.step_rule == "momentum":
        step_rule = Momentum(args.learning_rate, 0.95)
    elif args.step_rule == "rmsprop":
        step_rule = RMSProp(args.learning_rate)
    elif args.step_rule == "adam":
        step_rule = Adam(args.learning_rate)
    else:
        raise "Unknown step_rule %s" % args.step_rule

    #parameters = cg.parameters[:4] + cg.parameters[5:]
    parameters = cg.parameters

    algorithm = GradientDescent(
        cost=cost,
        parameters=parameters,
        gradients=gradients,
        step_rule=CompositeRule([
            #StepClipping(25),
            step_rule,
            #RemoveNotFinite(1.0),
        ]))

    #------------------------------------------------------------

    train_monitors += [
        aggregation.mean(algorithm.total_gradient_norm),
        aggregation.mean(algorithm.total_step_norm)
    ]

    #------------------------------------------------------------

    # Live plotting?
    plotting_extensions = []
    if args.live_plotting:
        plotting_extensions = [
            PlotManager(
                name,
                [
                    Plotter(channels=[[
                        "valid_%s" % cost.name, "valid_log_p"
                    ], ["train_total_gradient_norm", "train_total_step_norm"]],
                            titles=[
                                "validation cost",
                                "norm of training gradient and step"
                            ]),
                    DisplayImage(
                        [
                            WeightDisplay(model.p_layers[0].mlp.
                                          linear_transformations[0].W,
                                          n_weights=100,
                                          image_shape=(28, 28))
                        ]
                        #ImageDataStreamDisplay(test_stream, image_shape=(28,28))]
                    )
                ])
        ]

    main_loop = MainLoop(
        model=Model(cost),
        data_stream=train_stream,
        algorithm=algorithm,
        extensions=[
            Timing(),
            ProgressBar(),
            TrainingDataMonitoring(
                train_monitors, prefix="train", after_epoch=True),
            DataStreamMonitoring(
                valid_monitors, data_stream=valid_stream, prefix="valid"),
            DataStreamMonitoring(test_monitors,
                                 data_stream=test_stream,
                                 prefix="test",
                                 after_epoch=False,
                                 after_training=True,
                                 every_n_epochs=10),
            #SharedVariableModifier(
            #    algorithm.step_rule.components[0].learning_rate,
            #    half_lr_func,
            #    before_training=False,
            #    after_epoch=False,
            #    after_batch=False,
            #    every_n_epochs=half_lr),
            TrackTheBest('valid_%s' % cost.name),
            Checkpoint(name + ".pkl", save_separately=['log', 'model']),
            FinishIfNoImprovementAfter('valid_%s_best_so_far' % cost.name,
                                       epochs=args.patience),
            FinishAfter(after_n_epochs=args.max_epochs),
            Printing()
        ] + plotting_extensions)
    main_loop.run()
from blocks.initialization import IsotropicGaussian, Constant

from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_noise, apply_dropout

from datastream import RandomTransposeIt

step_rule_name = 'adam'
learning_rate = 0.1
momentum = 0.9

if step_rule_name == 'adadelta':
    step_rule = AdaDelta()
elif step_rule_name == 'rmsprop':
    step_rule = RMSProp()
elif step_rule_name == 'momentum':
    step_rule_name = "mom%s,%s" % (repr(learning_rate), repr(momentum))
    step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
elif step_rule_name == 'adam':
    step_rule = Adam()
else:
    raise ValueError("No such step rule: " + step_rule_name)

ibatchsize = None
iter_scheme = RandomTransposeIt(ibatchsize, False, None, False)
valid_iter_scheme = RandomTransposeIt(ibatchsize, False, None, False)

w_noise_std = 0.05
r_dropout = 0.0
s_dropout = 0.0
def test_rmsprop_broadcastable():
    verify_broadcastable_handling(RMSProp(0.1, 0.5, 1e5))
Exemple #31
0
def train(args, trial=11, no_valid=False):
    # Creating unique strings to save for experiments.
    data_valid = "data/"+args.data_name+"_trial_"+str(trial)+"_valid_size_"+str(args.train_size)+\
    "_transitions_"+str(args.transitions)
    data_test = data_valid.replace("_valid_size", "_test_size")
    # If we want validation set to match modData of test set
    if modDataValid == 1:
        data_valid = data_valid.replace("_trial_", "_" + modData + "_trial_")
        data_test = data_test.replace("_trial_", "_" + modData + "_trial_")

    # By default, it is m0
    data_train = "data/"+args.data_name+"_trial_"+str(trial)+"_train_size_"+str(args.train_size)+\
    "_transitions_"+str(args.transitions)

    subStr = "rnn_type_"+args.rnn_type + "_trial_"+str(trial) + "_hiddenSize_"+str(args.hidden_size)+\
    "_numLayers_"+str(args.num_layers)+ \
    "_dropout_"+str(args.dropout)+"_train_size_"+str(args.train_size) + "_transitions_"+str(args.transitions)+\
    "_novalid_"+str(args.no_valid)

    if modData == "m1":
        data_train = data_train.replace("_trial_", "_m1_trial_")
        subStr = subStr.replace("_trial_", "_m1_trial_")
    elif modData == "m3":
        data_train = data_train.replace("_trial_", "_m3_trial_")
        subStr = subStr.replace("_trial_", "_m3_trial_")

        data_valid = "data/"+args.data_name+"_m3_trial_"+str(trial)+"_valid_size_"+str(args.train_size)+\
        "_transitions_"+str(args.transitions)
        data_test = "data/"+args.data_name+"_m3_trial_"+str(trial)+"_test_size_"+str(args.train_size)+\
        "_transitions_"+str(args.transitions)

    print("on test: " + subStr)
    # Perform folder prefixing
    prefix_path = models_folder + args.data_name + "/" + subStr +"_tgrad_"+str(args.truncate_gradient)+\
    "_boost_"+bStr(args.boosting)

    load_path2 = prefix + load_path
    save_path2 = prefix + save_path
    last_path2 = prefix + last_path

    plots_output2 = plots_output + args.data_name + "/" + subStr +"_tgrad_"+str(args.truncate_gradient)+\
    "_boost_"+bStr(args.boosting)

    # obtain vocabulary size
    ix_to_char, char_to_ix, vocab_size = get_metadata(
        data_test.replace("_test", ""))
    print("vocab_size: " + str(vocab_size))

    # Get train, valid, test streams
    sharedDataTrain, train_stream = get_stream_inGPU(data_train,
                                                     sharedName='sharedData')
    train_streamCopy = copy.deepcopy(train_stream)
    sharedDataValid, dev_stream = get_stream_inGPU(data_valid,
                                                   sharedName='sharedData')
    valid_streamCopy = copy.deepcopy(dev_stream)
    sharedDataTest, test_stream = get_stream_inGPU(data_test,
                                                   sharedName='sharedData')
    test_streamCopy = copy.deepcopy(test_stream)

    # Create dummy sums
    sharedMRRSUM = shared(np.array(0.0, dtype=theano.config.floatX))
    sharedTOTSUM = shared(np.array(0.0, dtype=theano.config.floatX))
    sharedSUMVARs = {
        'sharedMRRSUM': sharedMRRSUM,
        'sharedTOTSUM': sharedTOTSUM
    }

    # Initialize batches
    batch_index_From = T.scalar('int_stream_From', dtype='int32')
    batch_index_To = T.scalar('int_stream_To', dtype='int32')

    # Index theano variables
    x = sharedDataTrain['x'][:, batch_index_From:batch_index_To]
    x.name = 'x'

    x_mask = sharedDataTrain['x_mask'][:, batch_index_From:batch_index_To]
    x_mask.name = 'x_mask'

    x_mask_o = sharedDataTrain['x_mask_o'][:, batch_index_From:batch_index_To]
    x_mask_o.name = 'x_mask_o'

    x_mask_o_mask = sharedDataTrain[
        'x_mask_o_mask'][:, batch_index_From:batch_index_To]
    x_mask_o_mask.name = 'x_mask_o_mask'

    y = sharedDataTrain['y'][:, batch_index_From:batch_index_To]
    y.name = 'y'

    y_mask = sharedDataTrain['y_mask'][:, batch_index_From:batch_index_To]
    y_mask.name = 'y_mask'

    y_mask_o = sharedDataTrain['y_mask_o'][:, batch_index_From:batch_index_To]
    y_mask_o.name = 'y_mask_o'

    y_mask_o_mask = sharedDataTrain[
        'y_mask_o_mask'][:, batch_index_From:batch_index_To]
    y_mask_o_mask.name = 'y_mask_o_mask'

    lens = sharedDataTrain['lens'][:, batch_index_From:batch_index_To]
    lens.name = 'lens'

    # Generate temp shared vars
    tempSharedData = {}
    tempSharedData[theano.config.floatX] = [
        shared(np.array([[0], [0]], dtype=theano.config.floatX)),
        shared(np.array([[0], [0]], dtype=theano.config.floatX)),
        shared(np.array([[0], [0]], dtype=theano.config.floatX)),
        shared(np.array([[0], [0]], dtype=theano.config.floatX)),
        shared(np.array([[0], [0]], dtype=theano.config.floatX)),
        shared(np.array([[0], [0]], dtype=theano.config.floatX))
    ]

    tempSharedData['uint8'] = [
        shared(np.array([[0], [0]], dtype='uint8')),
        shared(np.array([[0], [0]], dtype='uint8')),
        shared(np.array([[0], [0]], dtype='uint8'))
    ]

    # Final mask is due to the generated mask and the input mask
    x_mask_final = x_mask * x_mask_o * x_mask_o_mask
    y_mask_final = y_mask * y_mask_o * y_mask_o_mask

    # Build neural network
    linear_output, cost = nn_fprop(
        x,
        x_mask_final,
        y,
        y_mask_final,
        lens,
        vocab_size,
        hidden_size,
        num_layers,
        rnn_type,
        boosting=boosting,
        scan_kwargs={'truncate_gradient': truncate_gradient})

    # Keep a constant in gpu memory
    constant1 = shared(np.float32(1.0))
    cost_int, ymasksum = RR_cost(y, linear_output, y_mask_final, constant1)

    # Validation calculations
    fRR = function(inputs=[
        theano.In(batch_index_From, borrow=True),
        theano.In(batch_index_To, borrow=True)
    ],
                   updates=[(sharedMRRSUM, sharedMRRSUM + cost_int),
                            (sharedTOTSUM, sharedTOTSUM + ymasksum)])

    # COST
    cg = ComputationGraph(cost)

    if dropout > 0:
        # Apply dropout only to the non-recurrent inputs (Zaremba et al. 2015)
        inputs = VariableFilter(theano_name_regex=r'.*apply_input.*')(
            cg.variables)
        cg = apply_dropout(cg, inputs, dropout)
        cost = cg.outputs[0]

    # Learning algorithm
    step_rules = [
        RMSProp(learning_rate=rmsPropLearnRate, decay_rate=decay_rate),
        StepClipping(step_clipping)
    ]
    algorithm = GradientDescent(cost=cost,
                                parameters=cg.parameters,
                                step_rule=CompositeRule(step_rules))

    # Extensions

    # This is for tracking our best result
    trackbest = track_best('valid_MRR', save_path2, last_path2, num_epochs,
                           nepochs, maxIterations, epsilon, tempSharedData)

    if onlyPlots:
        prefixes = ["train_cross", "valid_cross", "test_cross"]
        gradient_norm = aggregation.mean(algorithm.total_gradient_norm)
        step_norm = aggregation.mean(algorithm.total_step_norm)
        monitored_vars = [cost, gradient_norm, step_norm]
        #this is faster
        train_monitor = myTrainingDataMonitoring(
            variables=monitored_vars,
            prefix=prefixes[0],
            after_batch=True,
            saveEveryXIteration=saveEveryXIteration)
        #train_monitor = DataStreamMonitoringPlot(variables=[cost],
        #                    data_stream=train_streamCopy, prefix=prefixes[0], sharedDataTrain=sharedDataTrain, sharedDataActualTest=sharedDataTrain, after_batch=True, saveEveryXIteration = saveEveryXIteration)
        valid_monitor = DataStreamMonitoringPlot(
            variables=[cost],
            data_stream=valid_streamCopy,
            prefix=prefixes[1],
            sharedDataTrain=sharedDataTrain,
            sharedDataActualTest=sharedDataValid,
            after_batch=True,
            saveEveryXIteration=saveEveryXIteration)
        test_monitor = DataStreamMonitoringPlot(
            variables=[cost],
            data_stream=test_streamCopy,
            prefix=prefixes[2],
            sharedDataTrain=sharedDataTrain,
            sharedDataActualTest=sharedDataTest,
            after_batch=True,
            saveEveryXIteration=saveEveryXIteration)
        trackbest = [trackbest[0], trackbest[2], trackbest[3], trackbest[4]]
        plot = Plot('Live Plotting',
                    saveFolder=plots_output2,
                    channels=[
                        'train_cross_cost', 'valid_cross_cost',
                        'test_cross_cost'
                    ],
                    numProcesses=numProcesses,
                    saveEveryXIteration=saveEveryXIteration,
                    after_batch=True)
        extensions = [
            train_monitor,
            valid_monitor,
            test_monitor,
            plot,
            Printing(),
            ProgressBar(),
        ] + trackbest
    else:
        dev_monitor = myDataStreamMonitoring(after_epoch=True,
                                             before_epoch=False,
                                             data_stream=dev_stream,
                                             prefix="valid",
                                             fRR=fRR,
                                             sharedVars=sharedSUMVARs,
                                             sharedDataTrain=sharedDataTrain,
                                             sharedDataValid=sharedDataValid)
        extensions = [
            dev_monitor,
            Printing(),
            ProgressBar(),
        ] + trackbest

    if learning_rate_decay not in (0, 1):
        extensions.append(
            SharedVariableModifier(step_rules[0].learning_rate,
                                   lambda n, lr: np.cast[theano.config.floatX]
                                   (learning_rate_decay * lr),
                                   after_epoch=True,
                                   after_batch=False))

    print 'number of parameters in the model: ' + str(
        T.sum([p.size for p in cg.parameters]).eval())
    # Finally build the main loop and train the model
    main_loop = MainLoop(data_stream=train_stream,
                         algorithm=algorithm,
                         model=Model(cost),
                         extensions=extensions)
    main_loop.run()