Exemple #1
0
    def test_basic_relu_multi_input(self) -> None:
        model = BasicModel2()

        input1 = torch.tensor([[3.0]])
        input2 = torch.tensor([[1.0]], requires_grad=True)

        baseline1 = torch.tensor([[0.0]])
        baseline2 = torch.tensor([[0.0]])
        inputs = (input1, input2)
        baselines = (baseline1, baseline2)

        gs = GradientShap(model)
        n_samples = 30000
        attributions, delta = cast(
            Tuple[Tuple[Tensor, ...], Tensor],
            gs.attribute(
                inputs,
                baselines=baselines,
                n_samples=n_samples,
                return_convergence_delta=True,
            ),
        )
        _assert_attribution_delta(self, inputs, attributions, n_samples, delta)

        ig = IntegratedGradients(model)
        attributions_ig = ig.attribute(inputs, baselines=baselines)
        self._assert_shap_ig_comparision(attributions, attributions_ig)
    def test_basic_scalar_baselines_multi_input(self):
        inputs = (torch.ones(10, 3), torch.rand(10, 4))
        baselines_scalars = (0.0, 0.0)
        baselines_tensors = (
            torch.zeros(1, 3),
            torch.zeros(10, 4),
        )

        model = BasicLinearModel()
        model.eval()

        gradient_shap = GradientShap(model)
        attributions_base_scalars, _ = gradient_shap.attribute(
            inputs,
            baselines_scalars,
            n_samples=50,
            return_convergence_delta=True)
        attributions_base_tnsrs, _ = gradient_shap.attribute(
            inputs,
            baselines_tensors,
            n_samples=50,
            return_convergence_delta=True)
        assertTensorAlmostEqual(self, attributions_base_scalars[0],
                                attributions_base_tnsrs[0])
        assertTensorAlmostEqual(self, attributions_base_scalars[1],
                                attributions_base_tnsrs[1])
Exemple #3
0
    def test_classification_baselines_as_function(self) -> None:
        num_in = 40
        inputs = torch.arange(0.0, num_in * 2.0).reshape(2, num_in)

        def generate_baselines() -> Tensor:
            return torch.arange(0.0, num_in * 4.0).reshape(4, num_in)

        def generate_baselines_with_inputs(inputs: Tensor) -> Tensor:
            inp_shape = cast(Tuple[int, ...], inputs.shape)
            return torch.arange(
                0.0,
                inp_shape[1] * 2.0,
            ).reshape(2, inp_shape[1])

        def generate_baselines_returns_array() -> ndarray:
            return np.arange(0.0, num_in * 4.0).reshape(4, num_in)

        # 10-class classification model
        model = SoftmaxModel(num_in, 20, 10)
        model.eval()
        model.zero_grad()

        gradient_shap = GradientShap(model)
        n_samples = 10
        attributions, delta = gradient_shap.attribute(
            inputs,
            baselines=generate_baselines,
            target=torch.tensor(1),
            n_samples=n_samples,
            stdevs=0.009,
            return_convergence_delta=True,
        )
        _assert_attribution_delta(self, (inputs, ), (attributions, ),
                                  n_samples, delta)

        attributions, delta = gradient_shap.attribute(
            inputs,
            baselines=generate_baselines_with_inputs,
            target=torch.tensor(1),
            n_samples=n_samples,
            stdevs=0.00001,
            return_convergence_delta=True,
        )
        _assert_attribution_delta(self, (inputs, ), (attributions, ),
                                  n_samples, delta)

        with self.assertRaises(AssertionError):
            attributions, delta = gradient_shap.attribute(
                inputs,
                baselines=generate_baselines_returns_array,
                target=torch.tensor(1),
                n_samples=n_samples,
                stdevs=0.00001,
                return_convergence_delta=True,
            )
Exemple #4
0
    def test_basic_multi_input(self):
        batch_size = 10

        x1 = torch.ones(batch_size, 3)
        x2 = torch.ones(batch_size, 4)
        inputs = (x1, x2)

        batch_size_baselines = 20
        baselines = (
            torch.zeros(batch_size_baselines, 3),
            torch.zeros(batch_size_baselines, 4),
        )

        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(7, 1)

            def forward(self, x1, x2):
                return self.linear(torch.cat((x1, x2), dim=-1))

        model = Net()
        model.eval()
        model.zero_grad()

        np.random.seed(0)
        torch.manual_seed(0)
        gradient_shap = GradientShap(model)
        n_samples = 50
        attributions, delta = gradient_shap.attribute(
            (x1, x2),
            baselines,
            n_samples=n_samples,
            return_convergence_delta=True)
        attributions_without_delta = gradient_shap.attribute((x1, x2),
                                                             baselines)

        self._assert_attribution_delta(inputs, attributions, n_samples, delta)
        # Compare with integrated gradients
        ig = IntegratedGradients(model)
        baselines = (torch.zeros(batch_size, 3), torch.zeros(batch_size, 4))
        attributions_ig = ig.attribute(inputs, baselines=baselines)
        self._assert_shap_ig_comparision(attributions, attributions_ig)

        # compare attributions retrieved with and without
        # `return_convergence_delta` flag
        for attribution, attribution_without_delta in zip(
                attributions, attributions_without_delta):
            assertTensorAlmostEqual(self, attribution,
                                    attribution_without_delta)
Exemple #5
0
    def test_basic_multi_input(self) -> None:
        batch_size = 10

        x1 = torch.ones(batch_size, 3)
        x2 = torch.ones(batch_size, 4)
        inputs = (x1, x2)

        batch_size_baselines = 20
        baselines = (
            torch.zeros(batch_size_baselines, 3),
            torch.zeros(batch_size_baselines, 4),
        )

        model = BasicLinearModel()
        model.eval()
        model.zero_grad()

        np.random.seed(0)
        torch.manual_seed(0)
        gradient_shap = GradientShap(model)
        n_samples = 50
        attributions, delta = cast(
            Tuple[Tuple[Tensor, ...], Tensor],
            gradient_shap.attribute(inputs,
                                    baselines,
                                    n_samples=n_samples,
                                    return_convergence_delta=True),
        )
        attributions_without_delta = gradient_shap.attribute((x1, x2),
                                                             baselines)

        _assert_attribution_delta(self, inputs, attributions, n_samples, delta)
        # Compare with integrated gradients
        ig = IntegratedGradients(model)
        baselines = (torch.zeros(batch_size, 3), torch.zeros(batch_size, 4))
        attributions_ig = ig.attribute(inputs, baselines=baselines)
        self._assert_shap_ig_comparision(attributions, attributions_ig)

        # compare attributions retrieved with and without
        # `return_convergence_delta` flag
        for attribution, attribution_without_delta in zip(
                attributions, attributions_without_delta):
            assertTensorAlmostEqual(self, attribution,
                                    attribution_without_delta)
Exemple #6
0
    def test_basic_multilayer_compare_w_inp_features(self):
        model = BasicModel_MultiLayer()
        model.eval()

        inputs = torch.tensor([[10.0, 20.0, 10.0]])
        baselines = torch.randn(30, 3)

        gs = GradientShap(model)
        expected, delta = gs.attribute(
            inputs, baselines, target=0, return_convergence_delta=True
        )
        self.setUp()
        self._assert_attributions(
            model,
            model.linear0,
            inputs,
            baselines,
            0,
            expected,
            expected_delta=delta,
            attribute_to_layer_input=True,
        )
Exemple #7
0
    def test_basic_multi_input_wo_mutliplying_by_inputs(self) -> None:
        batch_size = 10

        x1 = torch.ones(batch_size, 3)
        x2 = torch.ones(batch_size, 4)
        inputs = (x1, x2)

        batch_size_baselines = 20
        baselines = (
            torch.ones(batch_size_baselines, 3) + 2e-5,
            torch.ones(batch_size_baselines, 4) + 2e-5,
        )

        model = BasicLinearModel()
        model.eval()
        model.zero_grad()

        np.random.seed(0)
        torch.manual_seed(0)
        gradient_shap = GradientShap(model)
        gradient_shap_wo_mutliplying_by_inputs = GradientShap(
            model, multiply_by_inputs=False)
        n_samples = 50
        attributions = cast(
            Tuple[Tuple[Tensor, ...], Tensor],
            gradient_shap.attribute(
                inputs,
                baselines,
                n_samples=n_samples,
                stdevs=0.0,
            ),
        )
        attributions_wo_mutliplying_by_inputs = cast(
            Tuple[Tuple[Tensor, ...], Tensor],
            gradient_shap_wo_mutliplying_by_inputs.attribute(
                inputs,
                baselines,
                n_samples=n_samples,
                stdevs=0.0,
            ),
        )
        assertTensorAlmostEqual(
            self,
            attributions_wo_mutliplying_by_inputs[0] *
            (x1 - baselines[0][0:1]),
            attributions[0],
        )
        assertTensorAlmostEqual(
            self,
            attributions_wo_mutliplying_by_inputs[1] *
            (x2 - baselines[1][0:1]),
            attributions[1],
        )
Exemple #8
0
    def test_classification(self):
        num_in = 40
        inputs = torch.arange(0.0, num_in * 2.0).reshape(2, num_in)
        baselines = torch.arange(0.0, num_in * 4.0).reshape(4, num_in)
        target = torch.tensor(1)
        # 10-class classification model
        model = SoftmaxModel(num_in, 20, 10)
        model.eval()
        model.zero_grad()

        gradient_shap = GradientShap(model)
        n_samples = 10
        attributions, delta = gradient_shap.attribute(
            inputs,
            baselines=baselines,
            target=target,
            n_samples=n_samples,
            stdevs=0.009,
            return_convergence_delta=True,
        )
        _assert_attribution_delta(self, (inputs, ), (attributions, ),
                                  n_samples, delta)

        # try to call `compute_convergence_delta` externally
        with self.assertRaises(AssertionError):
            gradient_shap.compute_convergence_delta(attributions,
                                                    inputs,
                                                    baselines,
                                                    target=target)
        # now, let's expand target and choose random baselines from `baselines` tensor
        rand_indices = np.random.choice(baselines.shape[0],
                                        inputs.shape[0]).tolist()
        chosen_baselines = baselines[rand_indices]

        target_extendes = torch.tensor([1, 1])
        external_delta = gradient_shap.compute_convergence_delta(
            attributions, chosen_baselines, inputs, target=target_extendes)
        _assert_delta(self, external_delta)

        # Compare with integrated gradients
        ig = IntegratedGradients(model)
        baselines = torch.arange(0.0, num_in * 2.0).reshape(2, num_in)
        attributions_ig = ig.attribute(inputs,
                                       baselines=baselines,
                                       target=target)
        self._assert_shap_ig_comparision((attributions, ), (attributions_ig, ))
Exemple #9
0
    def attribute(
        self,
        inputs: TensorOrTupleOfTensorsGeneric,
        neuron_selector: Union[int, Tuple[Union[int, slice], ...], Callable],
        baselines: Union[TensorOrTupleOfTensorsGeneric,
                         Callable[..., TensorOrTupleOfTensorsGeneric]],
        n_samples: int = 5,
        stdevs: float = 0.0,
        additional_forward_args: Any = None,
        attribute_to_neuron_input: bool = False,
    ) -> TensorOrTupleOfTensorsGeneric:
        r"""
        Args:

            inputs (tensor or tuple of tensors):  Input for which SHAP attribution
                        values are computed. If `forward_func` takes a single
                        tensor as input, a single input tensor should be provided.
                        If `forward_func` takes multiple tensors as input, a tuple
                        of the input tensors should be provided. It is assumed
                        that for all given input tensors, dimension 0 corresponds
                        to the number of examples, and if multiple input tensors
                        are provided, the examples must be aligned appropriately.
            neuron_selector (int, callable, or tuple of ints or slices):
                        Selector for neuron
                        in given layer for which attribution is desired.
                        Neuron selector can be provided as:

                        - a single integer, if the layer output is 2D. This integer
                          selects the appropriate neuron column in the layer input
                          or output

                        - a tuple of integers or slice objects. Length of this
                          tuple must be one less than the number of dimensions
                          in the input / output of the given layer (since
                          dimension 0 corresponds to number of examples).
                          The elements of the tuple can be either integers or
                          slice objects (slice object allows indexing a
                          range of neurons rather individual ones).

                          If any of the tuple elements is a slice object, the
                          indexed output tensor is used for attribution. Note
                          that specifying a slice of a tensor would amount to
                          computing the attribution of the sum of the specified
                          neurons, and not the individual neurons independantly.

                        - a callable, which should
                          take the target layer as input (single tensor or tuple
                          if multiple tensors are in layer) and return a neuron or
                          aggregate of the layer's neurons for attribution.
                          For example, this function could return the
                          sum of the neurons in the layer or sum of neurons with
                          activations in a particular range. It is expected that
                          this function returns either a tensor with one element
                          or a 1D tensor with length equal to batch_size (one scalar
                          per input example)
            baselines (tensor, tuple of tensors, callable):
                        Baselines define the starting point from which expectation
                        is computed and can be provided as:

                        - a single tensor, if inputs is a single tensor, with
                          the first dimension equal to the number of examples
                          in the baselines' distribution. The remaining dimensions
                          must match with input tensor's dimension starting from
                          the second dimension.

                        - a tuple of tensors, if inputs is a tuple of tensors,
                          with the first dimension of any tensor inside the tuple
                          equal to the number of examples in the baseline's
                          distribution. The remaining dimensions must match
                          the dimensions of the corresponding input tensor
                          starting from the second dimension.

                        - callable function, optionally takes `inputs` as an
                          argument and either returns a single tensor
                          or a tuple of those.

                        It is recommended that the number of samples in the baselines'
                        tensors is larger than one.
            n_samples (int, optional):  The number of randomly generated examples
                        per sample in the input batch. Random examples are
                        generated by adding gaussian random noise to each sample.
                        Default: `5` if `n_samples` is not provided.
            stdevs    (float, or a tuple of floats optional): The standard deviation
                        of gaussian noise with zero mean that is added to each
                        input in the batch. If `stdevs` is a single float value
                        then that same value is used for all inputs. If it is
                        a tuple, then it must have the same length as the inputs
                        tuple. In this case, each stdev value in the stdevs tuple
                        corresponds to the input with the same index in the inputs
                        tuple.
                        Default: 0.0
            additional_forward_args (any, optional): If the forward function
                        requires additional arguments other than the inputs for
                        which attributions should not be computed, this argument
                        can be provided. It can contain a tuple of ND tensors or
                        any arbitrary python type of any shape.
                        In case of the ND tensor the first dimension of the
                        tensor must correspond to the batch size. It will be
                        repeated for each `n_steps` for each randomly generated
                        input sample.
                        Note that the gradients are not computed with respect
                        to these arguments.
                        Default: None
            attribute_to_neuron_input (bool, optional): Indicates whether to
                        compute the attributions with respect to the neuron input
                        or output. If `attribute_to_neuron_input` is set to True
                        then the attributions will be computed with respect to
                        neuron's inputs, otherwise it will be computed with respect
                        to neuron's outputs.
                        Note that currently it is assumed that either the input
                        or the output of internal neuron, depending on whether we
                        attribute to the input or output, is a single tensor.
                        Support for multiple tensors will be added later.
                        Default: False

        Returns:
            **attributions** or 2-element tuple of **attributions**, **delta**:
            - **attributions** (*tensor* or tuple of *tensors*):
                        Attribution score computed based on GradientSHAP with respect
                        to each input feature. Attributions will always be
                        the same size as the provided inputs, with each value
                        providing the attribution of the corresponding input index.
                        If a single tensor is provided as inputs, a single tensor is
                        returned. If a tuple is provided for inputs, a tuple of
                        corresponding sized tensors is returned.

        Examples::

            >>> # ImageClassifier takes a single input tensor of images Nx3x32x32,
            >>> # and returns an Nx10 tensor of class probabilities.
            >>> net = ImageClassifier()
            >>> neuron_grad_shap = NeuronGradientShap(net, net.linear2)
            >>> input = torch.randn(3, 3, 32, 32, requires_grad=True)
            >>> # choosing baselines randomly
            >>> baselines = torch.randn(20, 3, 32, 32)
            >>> # Computes gradient SHAP of first neuron in linear2 layer
            >>> # with respect to the input's of the network.
            >>> # Attribution size matches input size: 3x3x32x32
            >>> attribution = neuron_grad_shap.attribute(input, neuron_ind=0
                                                            baselines)

        """
        gs = GradientShap(self.forward_func, self.multiplies_by_inputs)
        gs.gradient_func = construct_neuron_grad_fn(
            self.layer,
            neuron_selector,
            self.device_ids,
            attribute_to_neuron_input=attribute_to_neuron_input,
        )

        # NOTE: using __wrapped__ to not log
        return gs.attribute.__wrapped__(  # type: ignore
            gs,  # self
            inputs,
            baselines,
            n_samples=n_samples,
            stdevs=stdevs,
            additional_forward_args=additional_forward_args,
        )