Exemple #1
0
    def doMutation(self, chromosomeBeforeM, generationAfterM, flagMutation, fitnessList, i):
        Pm = self.Pm
        dice = []
        length = len(chromosomeBeforeM.genes)
        chromosome = Chromosome([], length)
        geneFlag = []

        for j in range(length):
            dice.append(float('%.2f' % random.uniform(0.0, 1.0)))
            if dice[j] > Pm:
                chromosome.genes.append(chromosomeBeforeM.genes[j])
                geneFlag.append(0)

            if dice[j] <= Pm:
                chromosome.genes.append(
                    float('%.2f' % random.uniform(0.0, 1.0)))
                geneFlag.append(1)

        check = sum(geneFlag)

        if check == 0:
            flagMutation[i] = 0
            chromosome.fitness = fitnessList[i]
        else:
            flagMutation[i] = 1

            #---clustering----
            clustering = Clustering(chromosomeBeforeM, self.data, self.kmax)
            chromosome = clustering.calcChildFit(
                chromosome)
            #------------------

        generationAfterM.chromosomes.append(chromosome)
        return generationAfterM
 def _initial_population(self):
     for i in range(self._m):
         random_gene = self._random_gene_generator(self._n)
         chromosome = Chromosome(random_gene, 0)
         chromosome.fitness = self._evaluator(chromosome)
         self._evaluation_counter += 1
         self._population.append(chromosome)
Exemple #3
0
Fichier : ga.py Projet : ozeasx/GPX
 def random():
     c = Chromosome(self._data.dimension)
     # Avoid duplicates
     while c in self._population:
         c = Chromosome(self._data.dimension)
     c.dist = self._data.tour_dist(c.tour)
     return c
Exemple #4
0
    def download_chromosome(self, name):
        chromosome = Chromosome(name, self.assembly)
        path = chromosome.path()
        directory = os.path.dirname(chromosome.path())

        if not os.path.isdir(directory):
            os.makedirs(directory)
            self.log('Created directory {}'.format(directory), True)

        uri = URI + chromosome.filename()

        self.log('Downloading from {} to {}'.format(uri, path), True)

        r = requests.get(uri, stream=True)

        # TODO can we do this in fewer than 3 passes?

        with open(path, 'wb') as fd:
            for chunk in r.iter_content(chunk_size=1024):
                fd.write(chunk)

        with open(path, 'r') as f:
            header = f.readline()
            content = f.read().replace('\n', '')

        with open(path, 'w') as f:
            f.write(header)
            f.write(content)
            f.write('\n')

        self.log('...Complete', True)
Exemple #5
0
    def download_chromosome(self, name):
        chromosome = Chromosome(name, self.assembly)
        path = chromosome.path()
        directory = os.path.dirname(chromosome.path())

        if not os.path.isdir(directory):
            os.makedirs(directory)
            self.log('Created directory {}'.format(directory), True)

        uri = URI + chromosome.filename()

        self.log(
            'Downloading from {} to {}'.format(uri, path), True)

        r = requests.get(uri, stream=True)

        # TODO can we do this in fewer than 3 passes?

        with open(path, 'wb') as fd:
            for chunk in r.iter_content(chunk_size=1024):
                fd.write(chunk)

        with open(path, 'r') as f:
            header = f.readline()
            content = f.read().replace('\n', '')

        with open(path, 'w') as f:
            f.write(header)
            f.write(content)
            f.write('\n')

        self.log('...Complete', True)
Exemple #6
0
def multi_points_crossover(parent1, parent2, parameters={'prob': 0.4, 'points_count': 'middle'}):
    """
    :param parameters: dictionary of parameters that key = parameter name and value = parameter value
    :param parent1: First parent chromosome, Gene, np.array with len [n^2,1]
    :param parent2: Second parent chromosome, Gene, np.array with len [n^2,1]
    :return: return two chromosome for each children, Chromosome
    """

    if str(parameters['points_count']) == 'middle':
        return default_cross_over(parent1, parent2)
    if parameters['points_count'] > len(parent1.genotype) or parameters['points_count'] <= 0:
        warnings.warn('points must be between 1 and size of genotype. parents will be returned', stacklevel=3)
        return parent1, parent2

    crossover_points = np.sort(
        np.random.choice(np.arange(len(parent1.genotype)), replace=False, size=parameters['points_count']))
    crossover_points = np.append(crossover_points, len(parent1.genotype))
    # print('cross over points', crossover_points)
    first_idx = 0
    gen1, gen2 = np.zeros(len(parent1.genotype)), np.zeros(len(parent1.genotype))
    for last_idx in crossover_points:
        if np.random.random() <= parameters['prob']:
            gen2[first_idx: last_idx] = parent2.genotype[first_idx: last_idx]
            gen1[first_idx: last_idx] = parent1.genotype[first_idx: last_idx]
            # print('same')
        else:
            gen1[first_idx: last_idx] = parent2.genotype[first_idx: last_idx]
            gen2[first_idx: last_idx] = parent1.genotype[first_idx: last_idx]
            # print('not same')
        # print(gen1)
        # print(gen2)
        first_idx = last_idx

    chromosome1, chromosome2 = Chromosome(gen1, 0), Chromosome(gen2, 0)
    return chromosome1, chromosome2
Exemple #7
0
def insert_transposition(chromosome: c.Chromosome) -> c.Chromosome:
    """

    :param chromosome:
    :return:
    """
    inserted_gene_index, source_gene_genotype, inserted_gene_genotype = \
        random_select_transposition(chromosome)

    segment_length = rd.randint(1, Parameter.IS_elements_length)
    pre_index = rd.randint(0, Parameter.gene_length - segment_length)
    post_index = pre_index + segment_length
    insert_index = rd.randint(0, Parameter.IS_elements_length - 1)
    modified_length = post_index - pre_index + insert_index

    if modified_length <= Parameter.head_length:
        inserted_gene_genotype = \
            inserted_gene_genotype[0: insert_index] + source_gene_genotype[pre_index: post_index] + \
            inserted_gene_genotype[modified_length:]
    else:
        over_length = modified_length - Parameter.head_length
        inserted_gene_genotype = \
            inserted_gene_genotype[0: insert_index] + source_gene_genotype[pre_index: post_index - over_length] + \
            inserted_gene_genotype[Parameter.head_length:]

    chromosome.genes[inserted_gene_index].genotype = inserted_gene_genotype
    chromosome.update()
    return chromosome
Exemple #8
0
    def test_crossover_at_given_index_longer_chromosomes(
            self, first_chromosome_seed: str, second_chromosome_seed: str,
            crossover_index: int, first_chromosome_crossed_seed: str,
            second_chromosome_crossed_seed: str):

        first_chromosome = Chromosome(first_chromosome_seed)
        second_chromosome = Chromosome(second_chromosome_seed)

        first_chromosome_crossed = CrossedChromosomes(first_chromosome,
                                                      second_chromosome,
                                                      crossover_index).first()
        second_chromosome_crossed = CrossedChromosomes(
            first_chromosome, second_chromosome, crossover_index).second()

        self.assertEqual(
            first_chromosome_crossed,
            Chromosome(first_chromosome_crossed_seed),
            f"crossed: {first_chromosome_crossed.to_string()}, seed: {first_chromosome_crossed_seed}"
        )

        self.assertEqual(
            second_chromosome_crossed,
            Chromosome(second_chromosome_crossed_seed),
            f"crossed: {second_chromosome_crossed.to_string()}, seed: {second_chromosome_crossed_seed}"
        )
Exemple #9
0
    def test_mutate(self, chromosome_seed: str, mutated_seed: str,
                    injected_random_number: "List"):
        chromosome = Chromosome(chromosome_seed)

        chromosome_mutated = chromosome.mutate(injected_random_number)

        self.assertEqual(chromosome_mutated, Chromosome(mutated_seed))
Exemple #10
0
    def start(self, gen_max, pop_size):
        """

        :param gen_max: maximum number of generations
        :param pop_size: initial population size
        :return: best solution found
        """
        self.population = []
        self.population_size = 0
        # self.results = []
        self.best = None

        gen = 1  # from first generation
        self.generate_population(pop_size)  # generate initial population
        self.population_size = pop_size
        if not quite:
            pretty_print('Initital:')
            self.print_chromosomes(self.population)

        while gen <= gen_max:
            gen += 1
            # p = 1
            new_population = list()
            for p in range(self.population_size):
                parents = random.sample(range(self.population_size), 2)
                newbie = self.crossover(self.population[parents[0]],
                                        self.population[parents[1]])
                # TODO check child?
                # newbie.mutate()
                fit = self.fitness(newbie)
                # self.results.append((newbie, fit))
                new_population.append(newbie)
                if self.best is None or self.best[1] > fit:
                    self.best = (newbie, fit)
            if not quite:
                pretty_print('%dth generation (after crossover): ' % gen)
                self.print_chromosomes(new_population)
            self.selection(self.population, new_population)
            if not quite:
                pretty_print('After selection (after crossover): ')
                self.print_chromosomes(self.population)

            mutants = []
            for chrom in self.population:
                new_v = []
                new_v.extend(chrom.get())
                new_chrom = Chromosome(new_v)
                new_chrom.mutate()
                fit = self.fitness(new_chrom)
                mutants.append(new_chrom)
                if self.best is None or self.best[1] > fit:
                    self.best = (chrom, fit)
            if not quite:
                pretty_print('%dth generation (after mutations): ' % gen)
                self.print_chromosomes(mutants)
            self.selection(self.population, mutants)
            if not quite:
                pretty_print('After selection (after mutations): ')
                self.print_chromosomes(self.population)
        return self.best
Exemple #11
0
def gene_transposition(chromosome: c.Chromosome) -> c.Chromosome:
    pre_gene_index = rd.randint(0, Parameter.num_of_genes - 1)
    post_gene_index = rd.randint(0, Parameter.num_of_genes - 1)
    chromosome.genes[pre_gene_index], chromosome.genes[post_gene_index]\
        = chromosome.genes[post_gene_index], chromosome.genes[pre_gene_index]
    chromosome.update()
    return chromosome
Exemple #12
0
def nwox_crossover(parent1, parent2, parameters=None):
    """
    Non-Wrapping Order Crossover (NWOX) - (Cicirello 2006)
    :param parent1: First parent chromosome, Gene, np.array with len [n^2,1]
    :param parent2: Second parent chromosome, Gene, np.array with len [n^2,1]
    :return: return two chromosome for each children, Chromosome
    """
    crossover_points = np.sort(np.random.choice(np.arange(len(parent1.genotype)), replace=False, size=2))

    gen1, gen2 = np.copy(parent1.genotype), np.copy(parent2.genotype)

    # First, all those bits are left as hole which are presenting within the cut-points in other parent
    gen1 = np.setdiff1d(gen1, parent2.genotype[crossover_points[0]: crossover_points[1] + 1], assume_unique=True)
    gen2 = np.setdiff1d(gen2, parent1.genotype[crossover_points[0]: crossover_points[1] + 1], assume_unique=True)

    gen1 = np.concatenate((gen1[:crossover_points[0]],
                           parent2.genotype[crossover_points[0]: crossover_points[1] + 1],
                           gen1[crossover_points[0]:]))

    gen2 = np.concatenate((gen2[:crossover_points[0]],
                           parent1.genotype[crossover_points[0]: crossover_points[1] + 1],
                           gen2[crossover_points[0]:]))

    chromosome1, chromosome2 = Chromosome(gen1, 0), Chromosome(gen2, 0)
    return chromosome1, chromosome2
Exemple #13
0
def order_one_crossover(parent1, parent2, parameters=None):
    """
    :param parent1: First parent chromosome,     Gene, np.array with shape = (1,len(parent))
    :param parent2: Second parent chromosome, Gene, np.array with shape = (1,len(parent))
    :return
    """
    parent1 = parent1.genotype()
    parent2 = parent2.genotype()
    n = len(parent1.genotype)
    start_substr = random.randint(0, n - 2)
    end_substr = random.randint(start_substr + 1, n)
    child1 = parent1.copy()
    child2 = parent2.copy()
    j = end_substr
    i = end_substr
    while j != start_substr:
        if not parent1[i] in child2[start_substr:end_substr]:
            child2[j] = parent1[i]
            j = (j + 1) % n
        i = (i + 1) % n
    j = end_substr
    i = end_substr
    while j != start_substr:
        if not parent2[i] in child1[start_substr:end_substr]:
            child1[j] = parent2[i]
            j = (j + 1) % n
        i = (i + 1) % n
    return Chromosome(child1, 0), Chromosome(child2, 0)
def time_to_procreate():
    selected_index = []
    for i in range(0, len(population)):
        random_number = uniform(0, 1.0)
        if random_number < crossover_rate:
            selected_index.append(i)
    for in_list_index, first_parent_index in enumerate(selected_index):
        second_parent_index = 0
        if in_list_index == len(selected_index) - 1:
            second_parent_index = selected_index[0]
        else:
            second_parent_index = selected_index[in_list_index + 1]
        first_parent = population[first_parent_index]
        second_parent = population[second_parent_index]
        random_point_genes = 2
        first_parent_genes = first_parent.give_group_of_gens(
            random_point_genes)
        second_parent_genes = second_parent.data
        second_parent_genes.pop(random_point_genes)
        second_parent_genes.insert(random_point_genes, first_parent_genes)
        son = Chromosome(second_parent_genes, fitness_function_procedure)
        # Checamos si el hijo supera al padre en fitness

        son.calculate_value()
        if son.result > first_parent.result:
            population.pop(first_parent_index)
            population.insert(first_parent_index, son)
Exemple #15
0
    def elite_evaluation(new_population, old_population, problem):

        # Verify if crossover returned better individuals
        new_population.sort(
            key=lambda x: Chromosome.compute_makespan(x, problem))
        old_population.sort(
            key=lambda x: Chromosome.compute_makespan(x, problem))
        min_value_op = Chromosome.compute_makespan(new_population[0], problem)
        min_value_np = Chromosome.compute_makespan(old_population[0], problem)

        if min_value_np < min_value_op:
            return new_population
        else:
            elite_population = []
            # elite selection
            define_10 = int(len(old_population) * 0.1)
            best_10 = old_population[0:define_10]

            # This takes only 90% of the best
            best_90_sel = new_population[:-define_10]

            elite_population.extend(best_10)
            elite_population.extend(best_90_sel)
            assert len(elite_population) == len(new_population)
            return elite_population
 def initialisation(self):
     for _ in range(0, self.__param['popSize']):
         c = Chromosome(self.__problParam)
         path = c.repres
         shuffle(path)
         c.repres = path
         self.__population.append(c)
Exemple #17
0
def _mate_one(pair):
    mother, father = pair
    n = len(mother)

    inv1 = inversion(list(mother.genes))
    inv2 = inversion(list(father.genes))

    line = randint(0, n - 1)

    new_inv1 = inv1[0:line] + inv2[line:n]
    new_inv2 = inv2[0:line] + inv1[line:n]

    # line1 = randint(0, n - 1)
    # line2 = randint(0, n - 1)
    #
    # if line1 > line2:
    #     line1, line2 = line2, line1
    #
    # new_inv1 = inv2[0:line1] + inv1[line1:line2] + inv2[line2:n]
    # new_inv2 = inv1[0:line1] + inv2[line1:line2] + inv1[line2:n]

    child1 = permutation(new_inv1)
    child2 = permutation(new_inv2)

    child1_chrome = Chromosome(child1)
    child2_chrome = Chromosome(child2)

    return child1_chrome, child2_chrome
Exemple #18
0
    def doCrossover(self, generation, i, index):

        chromo = generation.chromosomes
        length = chromo[0].length
        cut = random.randint(1, length - 1)
        parent1 = chromo[index[i]]
        parent2 = chromo[index[i + 1]]
        genesChild1 = parent1.genes[0:cut] + parent2.genes[cut:length]
        genesChild2 = parent1.genes[cut:length] + parent2.genes[0:cut]
        child1 = Chromosome(genesChild1, len(genesChild1))
        child2 = Chromosome(genesChild2, len(genesChild2))

        # ----clustering----
        clustering = Clustering(generation, self.data, self.kmax)
        child1 = clustering.calcChildFit(child1)
        child2 = clustering.calcChildFit(child2)
        # -------------------

        listA = []
        listA.append(parent1)
        listA.append(parent2)
        listA.append(child1)
        listA.append(child2)
        # sort parent and child by fitness / dec
        listA = sorted(listA, reverse=True,
                       key=lambda elem: elem.fitness)

        generation.chromosomes[index[i]] = listA[0]
        generation.chromosomes[index[i + 1]] = listA[1]

        return generation
 def __init__(self, parent1_id, parent2_id, num_nodes, level=2, gene_type='MOTIF'):
     Chromosome.__init__(parent1_id, parent2_id, gene_type)
     if level < 2:
         raise ValueError('Invalid level value')
     self._size = num_nodes
     self._level = level
     self._genes = None
     self._num_params = 0
Exemple #20
0
 def _generate_random_population(self):
     self.chromosomes = []
     for _ in range(POP_SIZE):
         c = Chromosome(self.goal)
         c.calculate_fitness(self.graph, self.removed_graph)
         self.chromosomes.append(c)
     # sort population
     self.chromosomes = sorted(self.chromosomes, key=lambda x: x.fitness)
Exemple #21
0
def crossover(first_parent, second_parent):
    crossover_point = np.random.randint(1, 3)
    first_parent = copy.deepcopy(first_parent.get_genes())
    second_parent = copy.deepcopy(second_parent.get_genes())
    first_child = Chromosome(first_parent[:crossover_point]+second_parent[crossover_point:])
    second_child = Chromosome((second_parent[:crossover_point] + first_parent[crossover_point:]))

    return [first_child, second_child]
Exemple #22
0
 def initialisation(self):
     for _ in range(0, self.pop_size):
         r = [i for i in range(1, self.max_value)]
         shuffle(r)
         r = [0] + r
         r.append(0)
         cr = Chromosome(self.min_value, self.max_value, self.dim)
         cr.repres = r
         self.population.append(cr)
Exemple #23
0
def single_point_crossover(first_parent, second_parent, crossover_point):
    first_parent = first_parent.get_genes()
    second_parent = second_parent.get_genes()
    first_child = Chromosome(first_parent[:crossover_point] +
                             second_parent[crossover_point:])
    second_child = Chromosome(
        (second_parent[:crossover_point] + first_parent[crossover_point:]))

    return [first_child, second_child]
Exemple #24
0
def position_based_crossover(parent1, parent2, parameters=None):
    """
    :param parameters: dictionary of parameters that key = parameter name and value = parameter value
    :param parent1: First parent chromosome, Gene, np.array with size [1,n]
    :param parent2: Second parent chromosome, Gene, np.array with size [1,n]
    :return: return two chromosome for each children, Chromosome
    """

    def find_cycle(parent1, parent2, cycle, first):

        ind = np.where(parent2 == cycle[-1])[0][0]
        cycle.append(parent1[ind])
        if parent1[ind] == first:
            return cycle
        return find_cycle(parent1, parent2, cycle, first)

    par_size = len(parent1.genotype)

    points = np.random.choice(par_size, 3, replace=False)

    gen1, gen2 = np.zeros(par_size, dtype=np.int), np.zeros(par_size, dtype=np.int)
    for i in range(len(points)):
        gen1[points[i]], gen2[points[i]] = parent2.genotype[points[i]], parent1.genotype[points[i]]
    cycle_index = []
    for i in range(par_size):
        if i not in points:
            cycle = [parent2.genotype[i]]
            cycle_index.append(find_cycle(parent1.genotype, parent2.genotype, cycle, parent2.genotype[i]))
        else:
            cycle_index.append([])

    for i in range(par_size):
        if i not in points:
            cycle = cycle_index[i]
            for j in range(1, len(cycle)):
                if cycle[j] not in gen1:
                    gen1[i] = cycle[j]
                    break

    cycle_index = []
    for i in range(par_size):
        if i not in points:
            cycle = [parent1.genotype[i]]
            cycle_index.append(find_cycle(parent2.genotype, parent1.genotype, cycle, parent1.genotype[i]))
        else:
            cycle_index.append([])
    for i in range(par_size):
        if i not in points:
            cycle = cycle_index[i]
            for j in range(1, len(cycle)):
                if cycle[j] not in gen2:
                    gen2[i] = cycle[j]
                    break

    chromosome1, chromosome2 = Chromosome(gen1, 0), Chromosome(gen2, 0)

    return chromosome1, chromosome2
Exemple #25
0
    def test_optional_threshold(self, chromosome_seed: str, mutated_seed: str,
                                injected_random_number: "List",
                                threshold: float):
        chromosome = Chromosome(chromosome_seed)

        chromosome_mutated = chromosome.mutate(injected_random_number,
                                               threshold=threshold)

        self.assertEqual(chromosome_mutated, Chromosome(mutated_seed))
Exemple #26
0
def Mutation(chrom, alphabet, mutation_amount):
    for i in range(mutation_amount):
        char_to_replace = random.choice(chrom.Get_Value())
        new_char = random.choice(alphabet)

        chrom = Chromosome(chrom.Get_Value().replace(char_to_replace, new_char,
                                                     1))

    return chrom
def crossover(c1, c2):
    '''Takes as input 2 chromosomes and returns a new chromosome which is a mix of the first 2'''
    c_new = Chromosome(len(advertisements))
    for i in range(len(advertisements)):
        if i % 2 == 0:
            c_new.array[i] = c1.array[i]
        else:
            c_new.array[i] = c2.array[i]
    return c_new
Exemple #28
0
 def initialPopulation(self, variable_config):
     pop = []
     chrom = Chromosome(variable_config)
     for i in range(variable_config.D * variable_config.Np):
         pop.append(chrom.initialChromosome(variable_config))
     pop = np.array(pop)
     pop = pop.reshape(
         (variable_config.Np, (variable_config.D * variable_config.n)))
     return pop
Exemple #29
0
def ga(pixel_arr, constraints, pop_size=100, g_max=40, p_c=0.6, p_m=0.4, verbose=True):

    start_time = time.time()
    num_rows, num_cols = pixel_arr.shape[0], pixel_arr.shape[1]
    population = [Chromosome(pixel_arr) for i in range(pop_size)]
    avg_fitness = sum(c.fitness for c in population)
    best_ind = max(population, key=lambda c: c.fitness)
    
    if verbose:
        print("Generation 0:")
        print("Best fitness:", best_ind.fitness, "Avg fitness:", avg_fitness)
        print("Number of segmentations:", max(best_ind.segments))
        print("Edge value:", best_ind.edge_value)
        print("Connectivity:", best_ind.connectivity)
        print("Deviation:", best_ind.deviation)
        print(f"Initial generation time: {time.time() - start_time}\n", flush=True)
    
    for g in range(1, g_max+1):
        start_time = time.time()
        offspring = []
        for i in range(pop_size//2):
            p1 = parent_selection(population)
            p2 = parent_selection(population)
            if random() < p_c:
                cutoff = randint(0, len(p1.genotype)-1)
                c1_geno = crossover(p1.genotype, p2.genotype, cutoff)
                c2_geno = crossover(p2.genotype, p1.genotype, cutoff)
            else:
                c1_geno = p1.genotype
                c2_geno = p2.genotype

            if random() < p_m:
                c1_geno = mutate(c1_geno, num_rows, num_cols, arr, constraints)
            if random() < p_m:
                c2_geno = mutate(c2_geno, num_rows, num_cols, arr, constraints)

            c1 = Chromosome(pixel_arr, c1_geno)
            c2 = Chromosome(pixel_arr, c2_geno)
        
            offspring.append(c1)
            offspring.append(c2)   

        population = elitist_replacement(population, offspring)

        avg_fitness = sum(c.fitness for c in population)
        best_ind = max(population, key=lambda c: c.fitness)
        
        if verbose:
            print(f"Generation {g}:")
            print("Best fitness:", best_ind.fitness, "Avg fitness:", avg_fitness)
            print("Number of segmentations:", max(best_ind.segments))
            print("Edge value:", best_ind.edge_value)
            print("Connectivity:", best_ind.connectivity)
            print("Deviation:", best_ind.deviation)
            print(f"Time elapsed: {time.time() - start_time}\n", flush=True)
    
    return best_ind
Exemple #30
0
    def test_exe(self):
        p1 = Chromosome("111100111100120000000013")
        p2 = Chromosome("000012131313111112001112")
        crossover_point = 4
        children = OnePoint().exe(p1, p2, crossover_point)
        expected_1 = Chromosome("111112131313111112001112")
        expected_2 = Chromosome("000000111100120000000013")

        self.assertEqual(children[0].solution, expected_1.solution)
        self.assertEqual(children[1].solution, expected_2.solution)
    def tournament_pair(self):
        mother = self.getByTournament()
        father = self.getByTournament()


        # create larger population
        size = self.params["NumChromes"]
        mothers = [Chromosome(str(mother)) for i in range(0, size/2)]
        fathers = [Chromosome(str(father)) for i in range(0, size/2)]
        return zip(mothers, fathers)
Exemple #32
0
def testRecombinate():
    first = Chromosome()
    second = Chromosome()
    print(first.dnArray)
    print(second.dnArray)
    print(first.arithmeticArray)
    print(second.arithmeticArray)
    first.recombinate(second)
    print(first.dnArray)
    print(second.dnArray)
    print(first.arithmeticArray)
Exemple #33
0
    def populate(self, size, chromosome_blueprint):
        self.size = size
        self.gene_count = len(chromosome_blueprint)

        for n in range(0, size):
            c = Chromosome.construct(chromosome_blueprint)
            self.chromosomes.append(c)
Exemple #34
0
def crossover(parent1, parent2, p_crossover):
    '''
    Performs crossover with the parents to produce the offspring
    :param parent1:
    :param parent2:
    :param p_crossover:
    :param p_mutation:
    :return: tuple (child1, child2)

    '''
    #par1_chromo = parent1['chromosome']
    #par2_chromo = parent2['chromosome']
    #child1_chromo = copy.deepcopy(par1_chromo)
    #child2_chromo = copy.deepcopy(par2_chromo)

    #gets the arrays with values to perform the exchange
    p1_array = parent1['chromosome'].to_array()
    p2_array = parent2['chromosome'].to_array()

    #initially, children are copies of parents
    c1_array = copy.copy(p1_array)
    c2_array = copy.copy(p2_array)

    assert len(c1_array) == len(c2_array)

    length = len(c1_array)

    if random.random() < p_crossover:
        #select crossover point
        xover_point = random.randint(1, length - 1)
        #print type(par1_chromo._genes), type(child1_chromo._genes)

        #performs one-point exchange around the xover point
        c1_array[0: xover_point] = p1_array[0: xover_point]
        c1_array[xover_point: length] = p2_array[xover_point: length]

        c2_array[0: xover_point] = p2_array[0: xover_point]
        c2_array[xover_point: length] = p1_array[xover_point: length]

    #builds new chromosomes from the (possibly crossovered) arrays
    child1_chromo = Chromosome.from_array(c1_array)
    child2_chromo = Chromosome.from_array(c2_array)

    return (
        {'chromosome': child1_chromo, 'fitness': 0, 'reliability': 0},
        {'chromosome': child2_chromo, 'fitness': 0, 'reliability': 0}
    )
Exemple #35
0
    def get_missing_chromosomes(self):
        missing_chromosomes = []

        for name, length in Chromosome.sorted_chromosome_length_tuples(self.assembly):
            chromosome = Chromosome(name, self.assembly)
            filepath = chromosome.path()

            if not os.path.isfile(filepath):
                missing_chromosomes.append(name)
            else:
                expected_size = length + len(chromosome.header()) + 1
                size = os.path.getsize(filepath)
                if size != expected_size:
                    missing_chromosomes.append(name)
                    os.remove(filepath)

        return missing_chromosomes
Exemple #36
0
    def multiply(self):
        """Generate offspring until we're back to the right population size.
        """
        while len(self.chromosomes) < self.size:
            x = random.choice(self.chromosomes)
            y = random.choice(self.chromosomes)

            chromosome = Chromosome.offspring(x, y, self.crossover_rate, self.mutation_rate)

            self.chromosomes.append(chromosome)
Exemple #37
0
def generate_new_population(M, seed=True):
    chrs=[]
    
    if seed:
        # Seeding one chromosome with one
        # minmin chromosome 
        for _ in itertools.repeat(None, P_SIZE-1):
            chrs.append(Chromosome(M))
        # Seed min-min
        ch = Chromosome(M, tabu_list=None, empty=True)
        mapping = minmin.run(M)
        if DEBUG: print mapping, mapping.makespan()
        
        for t in range(mapping._model.ntasks):
            ch.map.assign(t, mapping.machine(t))
        chrs.append(ch)
        print "Seeded chromosome value:", ch.value()
    else:
        # No seeding happens here
        for _ in itertools.repeat(None, P_SIZE):
            chrs.append(Chromosome(M))
            
    return chrs
Exemple #38
0
    def download_chromosomes(self):
        to_download = self.get_missing_chromosomes()
        self.log("Downloading {} chromosomes".format(len(to_download)))

        for name in to_download:
            chromosome = Chromosome(name, self.assembly)
            self.log(chromosome.path())
            path = chromosome.path()
            directory = os.path.dirname(chromosome.path())
            if not os.path.isdir(directory):
                os.makedirs(directory)
                self.log('created directory {}'.format(directory), True)
            self.log('Downloading {} to {}'.format(self.uri + chromosome.filename(), path))
            r = requests.get(self.uri + chromosome.filename(), stream=True)
            with open(path, 'wb') as fd:
                for chunk in r.iter_content(chunk_size=1024):
                    fd.write(chunk)
            self.log('Complete')

        run_build_test_suite(self.assembly)
 def setUp(self):
     self.chromosome_manager = ChromosomeManager(42)
     self.chromosome = Chromosome(self.chromosome_manager)
class ChromosomeTestCase(unittest.TestCase):
    chromosome = None

    def setUp(self):
        self.chromosome_manager = ChromosomeManager(42)
        self.chromosome = Chromosome(self.chromosome_manager)

    def test_str(self):
        self.chromosome.binary_string = '010111000011101100101010011111010100'
        self.assertEqual(str(self.chromosome), '010111000011101100101010011111010100')

    def test_evaluation_with_correct_data(self):
        self.chromosome.binary_string = '010111000011101100101010011111010100'
        self.chromosome.evaluate(5)
        self.assertEqual(self.chromosome.result, 5)
        self.assertEqual(self.chromosome.score, 1e18)

    def test_evaluation_with_incorrect_data(self):
        self.chromosome.binary_string = '111111111111111111111111111111111111'
        self.chromosome.evaluate(20)
        self.assertEqual(self.chromosome.result, 0)
        self.assertEqual(self.chromosome.score, 0.05)

    def test_evaluation_with_correct_and_incorrect_data(self):
        self.chromosome.binary_string = '011011100001101010110101100110111100'
        self.chromosome.evaluate(10)
        self.assertEqual(self.chromosome.result, 11)
        self.assertEqual(self.chromosome.score, 1)

    def test_evaluation_with_zero_division(self):
        self.chromosome.binary_string = '001011111111111111111111110111110000'
        self.chromosome.evaluate(5)
        self.assertEqual(self.chromosome.result, 2)
        self.assertEqual(self.chromosome.score, 1 / 3)

    def test_fill_with_random_values(self):
        self.chromosome.fill_with_random_values()
        self.assertEqual(len(self.chromosome.binary_string), 36)
        for char in self.chromosome.binary_string:
            self.assertTrue(0 <= int(char) <= 1)

    def test_mutate(self):
        original_binary_string = '010111000011101100101010011111010100'
        self.chromosome.binary_string = original_binary_string
        mutated_chars = self.chromosome.mutate(0.1)
        levenshtein_distance = self._get_levenshtein_distance(original_binary_string, self.chromosome.binary_string)
        self.assertEqual(mutated_chars, levenshtein_distance)

    def test_mutate_full(self):
        original_binary_string = '010111000011101100101010011111010100'
        reversed_string = '101000111100010011010101100000101011'
        self.chromosome.binary_string = original_binary_string
        mutated_chars = self.chromosome.mutate(1)
        self.assertEqual(mutated_chars, 36)
        self.assertEqual(self.chromosome.binary_string, reversed_string)

    def _get_levenshtein_distance(self, string1, string2):
        self.assertEqual(len(string1), len(string2))
        length = len(string1)
        different_chars_count = 0
        for i in range(0, length):
            if string1[i] != string2[i]:
                different_chars_count += 1
        return different_chars_count
Exemple #41
0
def testComputeSum():
    first = Chromosome()
    print(toRealExpression(first.arithmeticArray))
    first.computeSum()
def prepare_chromosomes(size):
    Chromosome._possible_splits = Chromosome.generate_possible_splits(size)
    CircularChromosome._possible_splits = CircularChromosome.generate_possible_splits(size)