Exemple #1
0
def _test_eigen_solver_sparse(callback_type):
    from rbnics.backends.dolfin import EigenSolver

    # Define mesh
    mesh = UnitSquareMesh(10, 10)

    # Define function space
    V_element = VectorElement("Lagrange", mesh.ufl_cell(), 2)
    Q_element = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    W_element = MixedElement(V_element, Q_element)
    W = FunctionSpace(mesh, W_element)

    # Create boundaries
    class Wall(SubDomain):
        def inside(self, x, on_boundary):
            return on_boundary and (x[1] < 0 + DOLFIN_EPS
                                    or x[1] > 1 - DOLFIN_EPS)

    boundaries = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
    boundaries.set_all(0)
    wall = Wall()
    wall.mark(boundaries, 1)

    # Define variational problem
    vq = TestFunction(W)
    (v, q) = split(vq)
    up = TrialFunction(W)
    (u, p) = split(up)
    lhs = inner(grad(u), grad(v)) * dx - div(v) * p * dx - div(u) * q * dx
    rhs = -inner(p, q) * dx

    # Define boundary condition
    bc = [DirichletBC(W.sub(0), Constant((0., 0.)), boundaries, 1)]

    # Define eigensolver depending on callback type
    assert callback_type in ("form callbacks", "tensor callbacks")
    if callback_type == "form callbacks":
        solver = EigenSolver(W, lhs, rhs, bc)
    elif callback_type == "tensor callbacks":
        LHS = assemble(lhs)
        RHS = assemble(rhs)
        solver = EigenSolver(W, LHS, RHS, bc)

    # Solve the eigenproblem
    solver.set_parameters({
        "linear_solver": "mumps",
        "problem_type": "gen_non_hermitian",
        "spectrum": "target real",
        "spectral_transform": "shift-and-invert",
        "spectral_shift": 1.e-5
    })
    solver.solve(1)
    r, c = solver.get_eigenvalue(0)
    assert abs(c) < 1.e-10
    assert r > 0., "r = " + str(r) + " is not positive"
    print("Sparse inf-sup constant: ", sqrt(r))
    return (sqrt(r), solver.condensed_A, solver.condensed_B)
Exemple #2
0
 def mesh_generator(n):
     mesh = UnitSquareMesh(n, n, "left/right")
     dim = mesh.topology().dim()
     domains = MeshFunction("size_t", mesh, dim)
     domains.set_all(0)
     dx = Measure("dx", subdomain_data=domains)
     boundaries = MeshFunction("size_t", mesh, dim - 1)
     boundaries.set_all(0)
     ds = Measure("ds", subdomain_data=boundaries)
     return mesh, dx, ds
def test_compute_first_collision_2d():

    # FIXME: This test should not use facet indices as there are no guarantees
    # on how DOLFIN numbers facets
    reference = {1: [226], 2: [136, 137]}

    p = Point(0.3, 0.3)
    mesh = UnitSquareMesh(16, 16)
    for dim in range(1, 3):
        tree = BoundingBoxTree()
        tree.build(mesh, dim)
        first = tree.compute_first_collision(p)

        # FIXME: Facet test is excluded because it mistakingly relies in the
        # facet indices
        if dim != mesh.topology().dim() - 1:
            assert first in reference[dim]

    tree = mesh.bounding_box_tree()
    first = tree.compute_first_collision(p)
    assert first in reference[mesh.topology().dim()]
def test_compute_first_collision_2d():

    # FIXME: This test should not use facet indices as there are no guarantees
    # on how DOLFIN numbers facets
    reference = {1: [226],
                  2: [136, 137]}

    p = Point(0.3, 0.3)
    mesh = UnitSquareMesh(16, 16)
    for dim in range(1, 3):
        tree = BoundingBoxTree()
        tree.build(mesh, dim)
        first = tree.compute_first_collision(p)

        # FIXME: Facet test is excluded because it mistakingly relies in the
        # facet indices
        if dim != mesh.topology().dim() - 1:
            assert first in reference[dim]

    tree = mesh.bounding_box_tree()
    first = tree.compute_first_collision(p)
    assert first in reference[mesh.topology().dim()]
Exemple #5
0
def square_with_obstacle():
    # Create classes for defining parts of the boundaries and the interior
    # of the domain
    class Left(SubDomain):
        def inside(self, x, on_boundary):
            return near(x[0], 0.0)

    class Right(SubDomain):
        def inside(self, x, on_boundary):
            return near(x[0], 1.0)

    class Bottom(SubDomain):
        def inside(self, x, on_boundary):
            return near(x[1], 0.0)

    class Top(SubDomain):
        def inside(self, x, on_boundary):
            return near(x[1], 1.0)

    class Obstacle(SubDomain):
        def inside(self, x, on_boundary):
            return between(x[1], (0.5, 0.7)) and between(x[0], (0.2, 1.0))

    # Initialize sub-domain instances
    left = Left()
    top = Top()
    right = Right()
    bottom = Bottom()
    obstacle = Obstacle()

    # Define mesh
    mesh = UnitSquareMesh(100, 100, "crossed")

    # Initialize mesh function for interior domains
    domains = CellFunction("size_t", mesh)
    domains.set_all(0)
    obstacle.mark(domains, 1)

    # Initialize mesh function for boundary domains
    boundaries = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
    boundaries.set_all(0)
    left.mark(boundaries, 1)
    top.mark(boundaries, 2)
    right.mark(boundaries, 3)
    bottom.mark(boundaries, 4)

    boundary_indices = {"left": 1, "top": 2, "right": 3, "bottom": 4}
    f = Constant(0.0)
    theta0 = Constant(293.0)
    return mesh, f, boundaries, boundary_indices, theta0
Exemple #6
0
def test_compute_first_collision_2d():

    reference = {1: [226],
                  2: [136, 137]}

    p = Point(0.3, 0.3)
    mesh = UnitSquareMesh(16, 16)
    for dim in range(1, 3):
        tree = BoundingBoxTree()
        tree.build(mesh, dim)
        first = tree.compute_first_collision(p)
        assert first in reference[dim]

    tree = mesh.bounding_box_tree()
    first = tree.compute_first_collision(p)
    assert first in reference[mesh.topology().dim()]
    def test_compute_first_collision_2d(self):

        reference = {1: [226], 2: [136, 137]}

        p = Point(0.3, 0.3)
        mesh = UnitSquareMesh(16, 16)
        for dim in range(1, 3):
            tree = BoundingBoxTree()
            tree.build(mesh, dim)
            first = tree.compute_first_collision(p)
            if MPI.num_processes() == 1:
                self.assertIn(first, reference[dim])

        tree = mesh.bounding_box_tree()
        first = tree.compute_first_collision(p)
        if MPI.num_processes() == 1:
            self.assertIn(first, reference[mesh.topology().dim()])
Exemple #8
0
    def test_compute_first_collision_2d(self):

        reference = {1: [226],
                     2: [136, 137]}

        p = Point(0.3, 0.3)
        mesh = UnitSquareMesh(16, 16)
        for dim in range(1, 3):
            tree = BoundingBoxTree()
            tree.build(mesh, dim)
            first = tree.compute_first_collision(p)
            if MPI.size(mesh.mpi_comm()) == 1:
                self.assertIn(first, reference[dim])

        tree = mesh.bounding_box_tree()
        first = tree.compute_first_collision(p)
        if MPI.size(mesh.mpi_comm()) == 1:
            self.assertIn(first, reference[mesh.topology().dim()])
Exemple #9
0
    def test_compute_collisions_2d(self):

        reference = {1: [226],
                     2: [136, 137]}

        p = Point(0.3, 0.3)
        mesh = UnitSquareMesh(16, 16)
        for dim in range(1, 3):
            tree = BoundingBoxTree()
            tree.build(mesh, dim)
            entities = tree.compute_collisions(p)
            if MPI.num_processes() == 1:
                self.assertEqual(sorted(entities), reference[dim])

        tree = mesh.bounding_box_tree()
        entities = tree.compute_collisions(p)
        if MPI.num_processes() == 1:
            self.assertEqual(sorted(entities), reference[mesh.topology().dim()])
Exemple #10
0
    def test_tiling(self):

        tile = UnitSquareMesh(2, 2)

        mf = MeshFunction('size_t', tile, tile.topology().dim() - 1, 0)
        CompiledSubDomain('near(x[0], 0.5) || near(x[1], 0.5)').mark(mf, 1)

        mesh_data = {}
        mesh_data = load_data(tile, mf, dim=1, data=mesh_data)

        mesh, mesh_data = TileMesh(tile, shape=(23, 13), mesh_data=mesh_data)
        f = mf_from_data(mesh, mesh_data)[1]

        self.assertTrue(
            np.linalg.norm(mesh.coordinates().min(axis=0) -
                           np.zeros(2)) < 1E-13)

        self.assertTrue(
            np.linalg.norm(mesh.coordinates().max(axis=0) -
                           np.array([23., 13.])) < 1E-13)

        self.assertTrue(23 * 13 * 4 == sum(1 for _ in SubsetIterator(f, 1)))
def test_ale():

    # Create some mesh
    mesh = UnitSquareMesh(4, 5)

    # Make some cell function
    # FIXME: Initialization by array indexing is probably
    #        not a good way for parallel test
    cellfunc = MeshFunction('size_t', mesh, mesh.topology().dim())
    cellfunc.array()[0:4] = 0
    cellfunc.array()[4:]  = 1

    # Create submeshes - this does not work in parallel
    submesh0 = SubMesh(mesh, cellfunc, 0)
    submesh1 = SubMesh(mesh, cellfunc, 1)

    # Move submesh0
    disp = Constant(("0.1", "-0.1"))
    ALE.move(submesh0, disp)

    # Move and smooth submesh1 accordignly
    ALE.move(submesh1, submesh0)

    # Move mesh accordingly
    parent_vertex_indices_0 = \
        submesh0.data().array('parent_vertex_indices', 0)
    parent_vertex_indices_1 = \
        submesh1.data().array('parent_vertex_indices', 0)
    mesh.coordinates()[parent_vertex_indices_0[:]] = \
        submesh0.coordinates()[:]
    mesh.coordinates()[parent_vertex_indices_1[:]] = \
        submesh1.coordinates()[:]

    # If test passes here then it is probably working
    # Check for cell quality for sure
    magic_number = 0.28
    rmin = MeshQuality.radius_ratio_min_max(mesh)[0]
    assert rmin > magic_number