class EpaClassifier: def __init__(self, config, args): self.cfg = config self.jplace_fname = args.jplace_fname self.ignore_refalign = args.ignore_refalign self.tmp_refaln = config.tmp_fname("%NAME%.refaln") #here is the final alignment file for running EPA self.epa_alignment = config.tmp_fname("%NAME%.afa") self.hmmprofile = config.tmp_fname("%NAME%.hmmprofile") self.tmpquery = config.tmp_fname("%NAME%.tmpquery") self.noalign = config.tmp_fname("%NAME%.noalign") self.seqs = None assign_fname = args.output_name + ".assignment.txt" self.out_assign_fname = os.path.join(args.output_dir, assign_fname) jplace_fname = args.output_name + ".jplace" self.out_jplace_fname = os.path.join(args.output_dir, jplace_fname) try: self.refjson = RefJsonParser(config.refjson_fname) except ValueError: self.cfg.exit_user_error("Invalid json file format: %s" % config.refjson_fname) #validate input json format self.refjson.validate() self.reftree = self.refjson.get_reftree() self.rate = self.refjson.get_rate() self.node_height = self.refjson.get_node_height() self.cfg.compress_patterns = self.refjson.get_pattern_compression() self.bid_taxonomy_map = self.refjson.get_branch_tax_map() if not self.bid_taxonomy_map: # old file format (before 1.6), need to rebuild this map from scratch th = TaxTreeHelper(self.cfg, self.refjson.get_origin_taxonomy()) th.set_mf_rooted_tree(self.refjson.get_tax_tree()) th.set_bf_unrooted_tree(self.refjson.get_reftree()) self.bid_taxonomy_map = th.get_bid_taxonomy_map() self.cfg.log.info("Loaded reference tree with %d taxa\n" % len(self.reftree.get_leaves())) self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, self.rate, self.node_height) def require_muscle(self): basepath = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(basepath + "/epac/bin/muscle"): errmsg = "The pipeline uses MUSCLE to merge alignments, please download the programm from:\n" + \ "http://www.drive5.com/muscle/downloads.htm\n" + \ "and specify path to your installation in the config file (sativa.cfg)\n" self.cfg.exit_user_error(errmsg) def require_hmmer(self): basepath = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(basepath + "/epac/bin/hmmbuild") or not os.path.exists( basepath + "/epac/bin/hmmalign"): errmsg = "The pipeline uses HAMMER to align the query seqeunces, please download the programm from:\n" + \ "http://hmmer.janelia.org/\n" + \ "and specify path to your installation in the config file (sativa.cfg)\n" self.cfg.exit_user_error(errmsg) def align_to_refenence(self, noalign, minp=0.9): refaln = self.refjson.get_alignment(fout=self.tmp_refaln) fprofile = self.refjson.get_hmm_profile(self.hmmprofile) # if there is no hmmer profile in json file, build it from scratch if not fprofile: hmm = hmmer(self.cfg, refaln) fprofile = hmm.build_hmm_profile() hm = hmmer(config=self.cfg, refalign=refaln, query=self.tmpquery, refprofile=fprofile, discard=noalign, seqs=self.seqs, minp=minp) self.epa_alignment = hm.align() def merge_alignment(self, query_seqs): refaln = self.refjson.get_alignment_list() with open(self.epa_alignment, "w") as fout: for seq in refaln: fout.write(">" + seq[0] + "\n" + seq[1] + "\n") for name, seq, comment, sid in query_seqs.iter_entries(): fout.write(">" + name + "\n" + seq + "\n") def write_combined_alignment(self): self.query_count = 0 with open(self.epa_alignment, "w") as fout: for name, seq, comment, sid in self.seqs.iter_entries(): ref_name = self.refjson.get_corr_seqid( EpacConfig.REF_SEQ_PREFIX + name) if ref_name in self.refjson.get_sequences_names(): seq_name = ref_name else: seq_name = EpacConfig.QUERY_SEQ_PREFIX + name self.query_count += 1 fout.write(">" + seq_name + "\n" + seq + "\n") def checkinput(self, query_fname, minp=0.9): formats = [ "fasta", "phylip", "iphylip", "phylip_relaxed", "iphylip_relaxed" ] for fmt in formats: try: self.seqs = SeqGroup(sequences=query_fname, format=fmt) break except: self.cfg.log.debug("Guessing input format: not " + fmt) if self.seqs == None: self.cfg.exit_user_error( "Invalid input file format: %s\nThe supported input formats are fasta and phylip" % query_fname) if self.ignore_refalign: self.cfg.log.info( "Assuming query file contains reference sequences, skipping the alignment step...\n" ) self.write_combined_alignment() return self.query_count = len(self.seqs) # add query seq name prefix to avoid confusion between reference and query sequences self.seqs.add_name_prefix(EpacConfig.QUERY_SEQ_PREFIX) self.seqs.write(format="fasta", outfile=self.tmpquery) self.cfg.log.info("Checking if query sequences are aligned ...") entries = self.seqs.get_entries() seql = len(entries[0][1]) aligned = True for entri in entries[1:]: l = len(entri[1]) if not seql == l: aligned = False break if aligned and len(self.seqs) > 1: self.cfg.log.info("Query sequences are aligned") refalnl = self.refjson.get_alignment_length() if refalnl == seql: self.cfg.log.info( "Merging query alignment with reference alignment") self.merge_alignment(self.seqs) else: self.cfg.log.info( "Merging query alignment with reference alignment using MUSCLE" ) self.require_muscle() refaln = self.refjson.get_alignment(fout=self.tmp_refaln) m = muscle(self.cfg) self.epa_alignment = m.merge(refaln, self.tmpquery) else: self.cfg.log.info("Query sequences are not aligned") self.cfg.log.info( "Align query sequences to the reference alignment using HMMER") self.require_hmmer() self.align_to_refenence(self.noalign, minp=minp) def print_ranks(self, rks, confs, minlw=0.0): uncorr_ranks = self.refjson.get_uncorr_ranks(rks) ss = "" css = "" for i in range(len(uncorr_ranks)): conf = confs[i] if conf == confs[0] and confs[0] >= 0.99: conf = 1.0 if conf >= minlw: ss = ss + uncorr_ranks[i] + ";" css = css + "{0:.3f}".format(conf) + ";" else: break if ss == "": return None else: return ss[:-1] + "\t" + css[:-1] def run_epa(self): self.cfg.log.info( "Running RAxML-EPA to place %d query sequences...\n" % self.query_count) raxml = RaxmlWrapper(config) reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre") self.refjson.get_raxml_readable_tree(reftree_fname) optmod_fname = self.cfg.tmp_fname("%NAME%.opt") self.refjson.get_binary_model(optmod_fname) job_name = self.cfg.subst_name("epa_%NAME%") reftree_str = self.refjson.get_raxml_readable_tree() reftree = Tree(reftree_str) self.reftree_size = len(reftree.get_leaves()) # IMPORTANT: set EPA heuristic rate based on tree size! self.cfg.resolve_auto_settings(self.reftree_size) # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file if self.cfg.epa_load_optmod: self.cfg.raxml_model = self.refjson.get_ratehet_model() reduced_align_fname = raxml.reduce_alignment(self.epa_alignment) jp = raxml.run_epa(job_name, reduced_align_fname, reftree_fname, optmod_fname) raxml.copy_epa_jplace(job_name, self.out_jplace_fname, move=True) return jp def run_ptp(self, jp): full_aln = SeqGroup(self.epa_alignment) species_list = epa_2_ptp(epa_jp=jp, ref_jp=self.refjson, full_alignment=full_aln, min_lw=0.5, debug=self.cfg.debug) self.cfg.log.debug("Species clusters:") if fout: fo2 = open(fout + ".species", "w") else: fo2 = None for sp_cluster in species_list: translated_taxa = [] for taxon in sp_cluster: origin_taxon_name = EpacConfig.strip_query_prefix(taxon) translated_taxa.append(origin_taxon_name) s = ",".join(translated_taxa) if fo2: fo2.write(s + "\n") self.cfg.log.debug(s) if fo2: fo2.close() def print_result_line(self, fo, line): if self.cfg.verbose: print(line) if fo: fo.write(line + "\n") def get_noalign_list(self): noalign_list = [] if os.path.exists(self.noalign): with open(self.noalign) as fnoa: lines = fnoa.readlines() for line in lines: taxon_name = line.strip()[1:] origin_taxon_name = EpacConfig.strip_query_prefix( taxon_name) noalign_list.append(origin_taxon_name) return noalign_list def classify(self, query_fname, minp=0.9, ptp=False): if self.jplace_fname: jp = EpaJsonParser(self.jplace_fname) else: self.checkinput(query_fname, minp) jp = self.run_epa() self.cfg.log.info( "Assigning taxonomic labels based on EPA placements...\n") placements = jp.get_placement() if self.out_assign_fname: fo = open(self.out_assign_fname, "w") else: fo = None noassign_list = [] for place in placements: taxon_name = place["n"][0] origin_taxon_name = EpacConfig.strip_query_prefix(taxon_name) edges = place["p"] ranks, lws = self.classify_helper.classify_seq(edges) rankout = self.print_ranks(ranks, lws, self.cfg.min_lhw) if rankout == None: noassign_list.append(origin_taxon_name) else: output = "%s\t%s\t" % (origin_taxon_name, rankout) if self.cfg.check_novelty: isnovo = self.novelty_check(place_edge=str(edges[0][0]), ranks=ranks, lws=lws) output += "*" if isnovo else "o" self.print_result_line(fo, output) noassign_list += self.get_noalign_list() for taxon_name in noassign_list: output = "%s\t\t\t?" % origin_taxon_name self.print_result_line(fo, output) if fo: fo.close() ############################################# # # EPA-PTP species delimitation # ############################################# if ptp: self.run_ptp(jp) def novelty_check(self, place_edge, ranks, lws): """If the taxonomic assignment is not assigned to the genus level, we need to check if it is due to the incomplete reference taxonomy or it is likely to be something new: 1. If the final ranks are assinged because of lw cut, that means with samller lw the ranks can be further assinged to lowers. This indicate the undetermined ranks in the assignment is not due to the incomplete reference taxonomy, so the query sequence is likely to be something new. 2. Otherwise We check all leaf nodes' immediate lower rank below this ml placement point, if they are not empty, output all ranks and indicate this could be novelty. """ lowrank = 0 for i in max(range(len(ranks)), 6): """above genus level""" rk = ranks[i] lw = lws[i] if rk == "-": break else: lowrank = lowrank + 1 if lw >= 0 and lw < self.cfg.min_lhw: return True if lowrank >= 5 and lowrank < len(ranks) and not ranks[lowrank] == "-": return False else: placenode = self.reftree.search_nodes(B=place_edge)[0] if placenode.is_leaf(): return False else: leafnodes = placenode.get_leaves() flag = True for leaf in leafnodes: br_num = leaf.B branks = self.bid_taxonomy_map[br_num] if lowrank >= len(branks) or branks[lowrank] == "-": flag = False break return flag
class LeaveOneTest: def __init__(self, config): self.cfg = config self.mis_fname = self.cfg.out_fname("%NAME%.mis") self.premis_fname = self.cfg.out_fname("%NAME%.premis") self.misrank_fname = self.cfg.out_fname("%NAME%.misrank") self.stats_fname = self.cfg.out_fname("%NAME%.stats") if os.path.isfile(self.mis_fname): print "\nERROR: Output file already exists: %s" % self.mis_fname print "Please specify a different job name using -n or remove old output files." self.cfg.exit_user_error() self.tmp_refaln = config.tmp_fname("%NAME%.refaln") self.reftree_lbl_fname = config.tmp_fname("%NAME%_lbl.tre") self.reftree_tax_fname = config.tmp_fname("%NAME%_tax.tre") self.optmod_fname = self.cfg.tmp_fname("%NAME%.opt") self.reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre") self.mislabels = [] self.mislabels_cnt = [] self.rank_mislabels = [] self.rank_mislabels_cnt = [] self.misrank_conf_map = {} def write_bid_tax_map(self, bid_tax_map, final): if self.cfg.debug: fname_suffix = "final" if final else "l1out" bid_fname = self.cfg.tmp_fname("%NAME%_" + "bid_tax_map_%s.txt" % fname_suffix) with open(bid_fname, "w") as outf: for bid, bid_rec in bid_tax_map.iteritems(): outf.write("%s\t%s\t%d\t%f\n" % (bid, bid_rec[0], bid_rec[1], bid_rec[2])); def write_assignments(self, assign_map, final): if self.cfg.debug: fname_suffix = "final" if final else "l1out" assign_fname = self.cfg.tmp_fname("%NAME%_" + "taxassign_%s.txt" % fname_suffix) with open(assign_fname, "w") as outf: for seq_name in assign_map.iterkeys(): ranks, lws = assign_map[seq_name] outf.write("%s\t%s\t%s\n" % (seq_name, ";".join(ranks), ";".join(["%.3f" % l for l in lws]))) def load_refjson(self, refjson_fname): try: self.refjson = RefJsonParser(refjson_fname) except ValueError: self.cfg.exit_user_error("ERROR: Invalid json file format!") #validate input json format (valid, err) = self.refjson.validate() if not valid: self.cfg.log.error("ERROR: Parsing reference JSON file failed:\n%s", err) self.cfg.exit_user_error() self.rate = self.refjson.get_rate() self.node_height = self.refjson.get_node_height() self.origin_taxonomy = self.refjson.get_origin_taxonomy() self.tax_tree = self.refjson.get_tax_tree() self.cfg.compress_patterns = self.refjson.get_pattern_compression() self.bid_taxonomy_map = self.refjson.get_branch_tax_map() if not self.bid_taxonomy_map: # old file format (before 1.6), need to rebuild this map from scratch th = TaxTreeHelper(self.cfg, self.origin_taxonomy) th.set_mf_rooted_tree(self.tax_tree) th.set_bf_unrooted_tree(self.refjson.get_reftree()) self.bid_taxonomy_map = th.get_bid_taxonomy_map() self.write_bid_tax_map(self.bid_taxonomy_map, final=False) reftree_str = self.refjson.get_raxml_readable_tree() self.reftree = Tree(reftree_str) self.reftree_size = len(self.reftree.get_leaves()) # IMPORTANT: set EPA heuristic rate based on tree size! self.cfg.resolve_auto_settings(self.reftree_size) # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file if self.cfg.epa_load_optmod: self.cfg.raxml_model = self.refjson.get_ratehet_model() self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, self.rate, self.node_height) self.taxtree_helper = TaxTreeHelper(self.cfg, self.origin_taxonomy, self.tax_tree) tax_code_name = self.refjson.get_taxcode() self.tax_code = TaxCode(tax_code_name) self.taxonomy = Taxonomy(prefix=EpacConfig.REF_SEQ_PREFIX, tax_map=self.origin_taxonomy) self.tax_common_ranks = self.taxonomy.get_common_ranks() # print "Common ranks: ", self.tax_common_ranks self.mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS self.rank_mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS def run_epa_trainer(self): epa_trainer.run_trainer(self.cfg) if not os.path.isfile(self.cfg.refjson_fname): self.cfg.log.error("\nBuilding reference tree failed, see error messages above.") self.cfg.exit_fatal_error() def classify_seq(self, placement): edges = placement["p"] if len(edges) > 0: return self.classify_helper.classify_seq(edges) else: print "ERROR: no placements! something is definitely wrong!" def check_seq_tax_labels(self, seq_name, orig_ranks, ranks, lws): mis_rec = None num_common_ranks = len(self.tax_common_ranks) orig_rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks) new_rank_level = Taxonomy.lowest_assigned_rank_level(ranks) #if new_rank_level < 0 or (new_rank_level < num_common_ranks and orig_rank_level >= num_common_ranks): # if new_rank_level < 0: if len(ranks) == 0: mis_rec = {} mis_rec['name'] = seq_name mis_rec['orig_level'] = -1 mis_rec['real_level'] = 0 mis_rec['level_name'] = "[NotIngroup]" mis_rec['inv_level'] = -1 * mis_rec['real_level'] # just for sorting mis_rec['orig_ranks'] = orig_ranks mis_rec['ranks'] = [] mis_rec['lws'] = [1.0] mis_rec['conf'] = mis_rec['lws'][0] else: mislabel_lvl = -1 min_len = min(len(orig_ranks),len(ranks)) for rank_lvl in range(min_len): if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[rank_lvl] != orig_ranks[rank_lvl]: mislabel_lvl = rank_lvl break if mislabel_lvl >= 0: real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl) mis_rec = {} mis_rec['name'] = seq_name mis_rec['orig_level'] = mislabel_lvl mis_rec['real_level'] = real_lvl mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0] mis_rec['inv_level'] = -1 * mis_rec['real_level'] # just for sorting mis_rec['orig_ranks'] = orig_ranks mis_rec['ranks'] = ranks mis_rec['lws'] = lws mis_rec['conf'] = lws[mislabel_lvl] if mis_rec: self.mislabels.append(mis_rec) return mis_rec def filter_mislabels(self): filtered_mis = [] for i in range(len(self.mislabels)): if self.mislabels[i]['conf'] >= self.cfg.conf_cutoff: filtered_mis.append(self.mislabels[i]) self.mislabels = filtered_mis def check_rank_tax_labels(self, rank_name, orig_ranks, ranks, lws): mislabel_lvl = -1 min_len = min(len(orig_ranks),len(ranks)) for rank_lvl in range(min_len): if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[rank_lvl] != orig_ranks[rank_lvl]: mislabel_lvl = rank_lvl break if mislabel_lvl >= 0: real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl) mis_rec = {} mis_rec['name'] = rank_name mis_rec['orig_level'] = mislabel_lvl mis_rec['real_level'] = real_lvl mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0] mis_rec['inv_level'] = -1 * real_lvl # just for sorting mis_rec['orig_ranks'] = orig_ranks mis_rec['ranks'] = ranks mis_rec['lws'] = lws mis_rec['conf'] = lws[mislabel_lvl] self.rank_mislabels.append(mis_rec) return mis_rec else: return None def mis_rec_to_string_old(self, mis_rec): lvl = mis_rec['orig_level'] output = mis_rec['name'] + "\t" output += "%s\t%s\t%s\t%.3f\n" % (mis_rec['level_name'], mis_rec['orig_ranks'][lvl], mis_rec['ranks'][lvl], mis_rec['lws'][lvl]) output += ";".join(mis_rec['orig_ranks']) + "\n" output += ";".join(mis_rec['ranks']) + "\n" output += "\t".join(["%.3f" % conf for conf in mis_rec['lws']]) + "\n" return output def mis_rec_to_string(self, mis_rec): lvl = mis_rec['orig_level'] uncorr_name = EpacConfig.strip_ref_prefix(self.refjson.get_uncorr_seqid(mis_rec['name'])) uncorr_orig_ranks = self.refjson.get_uncorr_ranks(mis_rec['orig_ranks']) uncorr_ranks = self.refjson.get_uncorr_ranks(mis_rec['ranks']) output = uncorr_name + "\t" if lvl >= 0: output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'], uncorr_orig_ranks[lvl], uncorr_ranks[lvl], mis_rec['lws'][lvl]) else: output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'], "NA", "NA", mis_rec['lws'][0]) output += Taxonomy.lineage_str(uncorr_orig_ranks) + "\t" output += Taxonomy.lineage_str(uncorr_ranks) + "\t" output += ";".join(["%.3f" % conf for conf in mis_rec['lws']]) if 'rank_conf' in mis_rec: output += "\t%.3f" % mis_rec['rank_conf'] return output def sort_mislabels(self): self.mislabels = sorted(self.mislabels, key=itemgetter('inv_level', 'conf', 'name'), reverse=True) for mis_rec in self.mislabels: real_lvl = mis_rec["real_level"] self.mislabels_cnt[real_lvl] += 1 if self.cfg.ranktest: self.rank_mislabels = sorted(self.rank_mislabels, key=itemgetter('inv_level', 'conf', 'name'), reverse=True) for mis_rec in self.rank_mislabels: real_lvl = mis_rec["real_level"] self.rank_mislabels_cnt[real_lvl] += 1 def write_stats(self, toFile=False): self.cfg.log.info("Mislabeled sequences by rank:") seq_sum = 0 rank_sum = 0 stats = [] for i in range(len(self.mislabels_cnt)): if i > 0: rname = self.tax_code.rank_level_name(i)[0].ljust(12) else: rname = "[NotIngroup]" if self.mislabels_cnt[i] > 0: seq_sum += self.mislabels_cnt[i] # output = "%s:\t%d" % (rname, seq_sum) output = "%s:\t%d" % (rname, self.mislabels_cnt[i]) if self.cfg.ranktest: rank_sum += self.rank_mislabels_cnt[i] output += "\t%d" % rank_sum self.cfg.log.info(output) stats.append(output) if toFile: with open(self.stats_fname, "w") as fo_stat: for line in stats: fo_stat.write(line + "\n") def write_mislabels(self, final=True): if final: out_fname = self.mis_fname else: out_fname = self.premis_fname with open(out_fname, "w") as fo_all: fields = ["SeqID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath", "PerRankConfidence"] if self.cfg.ranktest: fields += ["HigherRankMisplacedConfidence"] header = ";" + "\t".join(fields) + "\n" fo_all.write(header) if self.cfg.verbose and len(self.mislabels) > 0 and final: print "Mislabeled sequences:\n" print header for mis_rec in self.mislabels: output = self.mis_rec_to_string(mis_rec) + "\n" fo_all.write(output) if self.cfg.verbose and final: print(output) if not final: return if self.cfg.ranktest: with open(self.misrank_fname, "w") as fo_all: fields = ["RankID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath", "PerRankConfidence"] header = ";" + "\t".join(fields) + "\n" fo_all.write(header) if self.cfg.verbose and len(self.rank_mislabels) > 0: print "\nMislabeled higher ranks:\n" print header for mis_rec in self.rank_mislabels: output = self.mis_rec_to_string(mis_rec) + "\n" fo_all.write(output) if self.cfg.verbose: print(output) self.write_stats() def run_leave_subtree_out_test(self): job_name = self.cfg.subst_name("l1out_rank_%NAME%") # if self.jplace_fname: # jp = EpaJsonParser(self.jplace_fname) # else: #create file with subtrees rank_tips = {} rank_parent = {} for node in self.tax_tree.traverse("postorder"): if node.is_leaf() or node.is_root(): continue tax_path = node.name ranks = Taxonomy.split_rank_uid(tax_path) rank_lvl = Taxonomy.lowest_assigned_rank_level(ranks) if rank_lvl < 2: continue parent_ranks = Taxonomy.split_rank_uid(node.up.name) parent_lvl = Taxonomy.lowest_assigned_rank_level(parent_ranks) if parent_lvl < 1: continue rank_seqs = node.get_leaf_names() rank_size = len(rank_seqs) if rank_size < 2 or rank_size > self.reftree_size-4: continue # print rank_lvl, "\t", tax_path, "\t", rank_seqs, "\n" rank_tips[tax_path] = node.get_leaf_names() rank_parent[tax_path] = parent_ranks subtree_list = rank_tips.items() if len(subtree_list) == 0: return 0 subtree_list_file = self.cfg.tmp_fname("treelist_%NAME%.txt") with open(subtree_list_file, "w") as fout: for rank_name, tips in subtree_list: fout.write("%s\n" % " ".join(tips)) jp_list = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname, mode="l1o_subtree", subtree_fname=subtree_list_file) subtree_count = 0 for jp in jp_list: placements = jp.get_placement() for place in placements: ranks, lws = self.classify_seq(place) tax_path = subtree_list[subtree_count][0] orig_ranks = Taxonomy.split_rank_uid(tax_path) rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks) rank_prefix = self.guess_rank_level_name(orig_ranks, rank_level)[0] rank_name = orig_ranks[rank_level] if not rank_name.startswith(rank_prefix): rank_name = rank_prefix + rank_name parent_ranks = rank_parent[tax_path] # print orig_ranks, "\n", parent_ranks, "\n", ranks, "\n" mis_rec = self.check_rank_tax_labels(rank_name, parent_ranks, ranks, lws) if mis_rec: self.misrank_conf_map[tax_path] = mis_rec['conf'] subtree_count += 1 return subtree_count def run_leave_seq_out_test(self): job_name = self.cfg.subst_name("l1out_seq_%NAME%") placements = [] if self.cfg.jplace_fname: if os.path.isdir(self.cfg.jplace_fname): jplace_fmask = os.path.join(self.cfg.jplace_fname, '*.jplace') else: jplace_fmask = self.cfg.jplace_fname jplace_fname_list = glob.glob(jplace_fmask) for jplace_fname in jplace_fname_list: jp = EpaJsonParser(jplace_fname) placements += jp.get_placement() config.log.debug("Loaded %d placements from %s\n", len(placements), jplace_fmask) else: jp = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname, mode="l1o_seq") placements = jp.get_placement() if self.cfg.output_interim_files: out_jplace_fname = self.cfg.out_fname("%NAME%.l1out_seq.jplace") self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True, mode="l1o_seq") seq_count = 0 l1out_ass = {} for place in placements: seq_name = place["n"][0] # get original taxonomic label # orig_ranks = self.get_orig_ranks(seq_name) orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name) # get EPA tax label ranks, lws = self.classify_seq(place) l1out_ass[seq_name] = (ranks, lws) # check if they match mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws) # cross-check with higher rank mislabels if self.cfg.ranktest and mis_rec: rank_conf = 0 for lvl in range(2,len(orig_ranks)): tax_path = Taxonomy.get_rank_uid(orig_ranks, lvl) if tax_path in self.misrank_conf_map: rank_conf = max(rank_conf, self.misrank_conf_map[tax_path]) mis_rec['rank_conf'] = rank_conf seq_count += 1 self.write_assignments(l1out_ass, final=False) return seq_count def run_final_epa_test(self): self.reftree_outgroup = self.refjson.get_outgroup() tmp_reftree = self.reftree.copy(method="newick") name2refnode = {} for leaf in tmp_reftree.iter_leaves(): name2refnode[leaf.name] = leaf tmp_taxtree = self.tax_tree.copy(method="newick") name2taxnode = {} for leaf in tmp_taxtree.iter_leaves(): name2taxnode[leaf.name] = leaf for mis_rec in self.mislabels: rname = mis_rec['name'] # rname = EpacConfig.REF_SEQ_PREFIX + name if rname in name2refnode: name2refnode[rname].delete() else: print "Node not found in the reference tree: %s" % rname if rname in name2taxnode: name2taxnode[rname].delete() else: print "Node not found in the taxonomic tree: %s" % rname # remove unifurcation at the root if len(tmp_reftree.children) == 1: tmp_reftree = tmp_reftree.children[0] self.mislabels = [] th = TaxTreeHelper(self.cfg, self.origin_taxonomy) th.set_mf_rooted_tree(tmp_taxtree) epa_result = self.run_epa_once(tmp_reftree) reftree_epalbl_str = epa_result.get_std_newick_tree() placements = epa_result.get_placement() # update branchid-taxonomy mapping to account for possible changes in branch numbering reftree_tax = Tree(reftree_epalbl_str) th.set_bf_unrooted_tree(reftree_tax) bid_tax_map = th.get_bid_taxonomy_map() self.write_bid_tax_map(bid_tax_map, final=True) cl = TaxClassifyHelper(self.cfg, bid_tax_map, self.rate, self.node_height) # newtax_fname = self.cfg.subst_name("newtax_%NAME%.tre") # th.get_tax_tree().write(outfile=newtax_fname, format=3) final_ass = {} for place in placements: seq_name = place["n"][0] # get original taxonomic label orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name) # EXPERIMENTAL FEATURE - disabled for now! # It could happen that certain ranks were present in the "original" reference tree, but # are completely missing in the pruned tree (e.g., all seqs of a species were considered "suspicious" # after the leave-one-out test and thus pruned) # In this case, EPA has no chance to infer full original taxonomic annotation (=species) since the corresponding clade # is now missing. To account for this fact, we amend the original taxonomic annotation and set ranks missing from # pruned tree to "Undefined". # orig_ranks = th.strip_missing_ranks(orig_ranks) # print orig_ranks # get EPA tax label ranks, lws = cl.classify_seq(place["p"]) final_ass[seq_name] = (ranks, lws) #print seq_name, ": ", orig_ranks, "--->", ranks # check if they match mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws) self.write_assignments(final_ass, final=True) def run_epa_once(self, reftree): reftree_fname = self.cfg.tmp_fname("final_ref_%NAME%.tre") job_name = self.cfg.subst_name("final_epa_%NAME%") reftree.write(outfile=reftree_fname) # IMPORTANT: don't load the model, since it's invalid for the pruned true !!! optmod_fname="" epa_result = self.raxml.run_epa(job_name, self.refalign_fname, reftree_fname, optmod_fname) if self.cfg.output_interim_files: out_jplace_fname = self.cfg.out_fname("%NAME%.final_epa.jplace") self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True) return epa_result def run_test(self): self.raxml = RaxmlWrapper(self.cfg) # config.log.info("Number of sequences in the reference: %d\n", self.reftree_size) self.refjson.get_raxml_readable_tree(self.reftree_fname) self.refalign_fname = self.refjson.get_alignment(self.tmp_refaln) self.refjson.get_binary_model(self.optmod_fname) if self.cfg.ranktest: config.log.info("Running the leave-one-rank-out test...\n") subtree_count = self.run_leave_subtree_out_test() config.log.info("Running the leave-one-sequence-out test...\n") self.run_leave_seq_out_test() if len(self.mislabels) > 0: config.log.info("Leave-one-out test identified %d suspicious sequences; running final EPA test to check them...\n", len(self.mislabels)) if self.cfg.debug: self.write_mislabels(final=False) self.run_final_epa_test() self.filter_mislabels() self.sort_mislabels() self.write_mislabels() config.log.info("\nTotal mislabels: %d / %.2f %%", len(self.mislabels), (float(len(self.mislabels)) / self.reftree_size * 100))
class LeaveOneTest: def __init__(self, config): self.cfg = config self.mis_fname = self.cfg.out_fname("%NAME%.mis") self.premis_fname = self.cfg.out_fname("%NAME%.premis") self.misrank_fname = self.cfg.out_fname("%NAME%.misrank") self.stats_fname = self.cfg.out_fname("%NAME%.stats") if os.path.isfile(self.mis_fname): print("\nERROR: Output file already exists: %s" % self.mis_fname) print( "Please specify a different job name using -n or remove old output files." ) self.cfg.exit_user_error() self.tmp_refaln = config.tmp_fname("%NAME%.refaln") self.reftree_lbl_fname = config.tmp_fname("%NAME%_lbl.tre") self.reftree_tax_fname = config.tmp_fname("%NAME%_tax.tre") self.optmod_fname = self.cfg.tmp_fname("%NAME%.opt") self.reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre") self.mislabels = [] self.mislabels_cnt = [] self.rank_mislabels = [] self.rank_mislabels_cnt = [] self.misrank_conf_map = {} def write_bid_tax_map(self, bid_tax_map, final): if self.cfg.debug: fname_suffix = "final" if final else "l1out" bid_fname = self.cfg.tmp_fname("%NAME%_" + "bid_tax_map_%s.txt" % fname_suffix) with open(bid_fname, "w") as outf: for bid, bid_rec in bid_tax_map.items(): outf.write("%s\t%s\t%d\t%f\n" % (bid, bid_rec[0], bid_rec[1], bid_rec[2])) def write_assignments(self, assign_map, final): if self.cfg.debug: fname_suffix = "final" if final else "l1out" assign_fname = self.cfg.tmp_fname("%NAME%_" + "taxassign_%s.txt" % fname_suffix) with open(assign_fname, "w") as outf: for seq_name in assign_map.keys(): ranks, lws = assign_map[seq_name] outf.write("%s\t%s\t%s\n" % (seq_name, ";".join(ranks), ";".join( ["%.3f" % l for l in lws]))) def load_refjson(self, refjson_fname): try: self.refjson = RefJsonParser(refjson_fname) except ValueError: self.cfg.exit_user_error("ERROR: Invalid json file format!") #validate input json format (valid, err) = self.refjson.validate() if not valid: self.cfg.log.error( "ERROR: Parsing reference JSON file failed:\n%s", err) self.cfg.exit_user_error() self.rate = self.refjson.get_rate() self.node_height = self.refjson.get_node_height() self.origin_taxonomy = self.refjson.get_origin_taxonomy() self.tax_tree = self.refjson.get_tax_tree() self.cfg.compress_patterns = self.refjson.get_pattern_compression() self.bid_taxonomy_map = self.refjson.get_branch_tax_map() if not self.bid_taxonomy_map: # old file format (before 1.6), need to rebuild this map from scratch th = TaxTreeHelper(self.cfg, self.origin_taxonomy) th.set_mf_rooted_tree(self.tax_tree) th.set_bf_unrooted_tree(self.refjson.get_reftree()) self.bid_taxonomy_map = th.get_bid_taxonomy_map() self.write_bid_tax_map(self.bid_taxonomy_map, final=False) reftree_str = self.refjson.get_raxml_readable_tree() self.reftree = Tree(reftree_str) self.reftree_size = len(self.reftree.get_leaves()) # IMPORTANT: set EPA heuristic rate based on tree size! self.cfg.resolve_auto_settings(self.reftree_size) # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file if self.cfg.epa_load_optmod: self.cfg.raxml_model = self.refjson.get_ratehet_model() self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, self.rate, self.node_height) self.taxtree_helper = TaxTreeHelper(self.cfg, self.origin_taxonomy, self.tax_tree) tax_code_name = self.refjson.get_taxcode() self.tax_code = TaxCode(tax_code_name) self.taxonomy = Taxonomy(prefix=EpacConfig.REF_SEQ_PREFIX, tax_map=self.origin_taxonomy) self.tax_common_ranks = self.taxonomy.get_common_ranks() # print "Common ranks: ", self.tax_common_ranks self.mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS self.rank_mislabels_cnt = [0] * TaxCode.UNI_TAX_LEVELS def run_epa_trainer(self): epa_trainer.run_trainer(self.cfg) if not os.path.isfile(self.cfg.refjson_fname): self.cfg.log.error( "\nBuilding reference tree failed, see error messages above.") self.cfg.exit_fatal_error() def classify_seq(self, placement): edges = placement["p"] if len(edges) > 0: return self.classify_helper.classify_seq(edges) else: print("ERROR: no placements! something is definitely wrong!") def check_seq_tax_labels(self, seq_name, orig_ranks, ranks, lws): mis_rec = None num_common_ranks = len(self.tax_common_ranks) orig_rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks) new_rank_level = Taxonomy.lowest_assigned_rank_level(ranks) #if new_rank_level < 0 or (new_rank_level < num_common_ranks and orig_rank_level >= num_common_ranks): # if new_rank_level < 0: if len(ranks) == 0: mis_rec = {} mis_rec['name'] = seq_name mis_rec['orig_level'] = -1 mis_rec['real_level'] = 0 mis_rec['level_name'] = "[NotIngroup]" mis_rec['inv_level'] = -1 * mis_rec[ 'real_level'] # just for sorting mis_rec['orig_ranks'] = orig_ranks mis_rec['ranks'] = [] mis_rec['lws'] = [1.0] mis_rec['conf'] = mis_rec['lws'][0] else: mislabel_lvl = -1 min_len = min(len(orig_ranks), len(ranks)) for rank_lvl in range(min_len): if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[ rank_lvl] != orig_ranks[rank_lvl]: mislabel_lvl = rank_lvl break if mislabel_lvl >= 0: real_lvl = self.tax_code.guess_rank_level( orig_ranks, mislabel_lvl) mis_rec = {} mis_rec['name'] = seq_name mis_rec['orig_level'] = mislabel_lvl mis_rec['real_level'] = real_lvl mis_rec['level_name'] = self.tax_code.rank_level_name( real_lvl)[0] mis_rec['inv_level'] = -1 * mis_rec[ 'real_level'] # just for sorting mis_rec['orig_ranks'] = orig_ranks mis_rec['ranks'] = ranks mis_rec['lws'] = lws mis_rec['conf'] = lws[mislabel_lvl] if mis_rec: self.mislabels.append(mis_rec) return mis_rec def filter_mislabels(self): filtered_mis = [] for i in range(len(self.mislabels)): if self.mislabels[i]['conf'] >= self.cfg.conf_cutoff: filtered_mis.append(self.mislabels[i]) self.mislabels = filtered_mis def check_rank_tax_labels(self, rank_name, orig_ranks, ranks, lws): mislabel_lvl = -1 min_len = min(len(orig_ranks), len(ranks)) for rank_lvl in range(min_len): if ranks[rank_lvl] != Taxonomy.EMPTY_RANK and ranks[ rank_lvl] != orig_ranks[rank_lvl]: mislabel_lvl = rank_lvl break if mislabel_lvl >= 0: real_lvl = self.tax_code.guess_rank_level(orig_ranks, mislabel_lvl) mis_rec = {} mis_rec['name'] = rank_name mis_rec['orig_level'] = mislabel_lvl mis_rec['real_level'] = real_lvl mis_rec['level_name'] = self.tax_code.rank_level_name(real_lvl)[0] mis_rec['inv_level'] = -1 * real_lvl # just for sorting mis_rec['orig_ranks'] = orig_ranks mis_rec['ranks'] = ranks mis_rec['lws'] = lws mis_rec['conf'] = lws[mislabel_lvl] self.rank_mislabels.append(mis_rec) return mis_rec else: return None def mis_rec_to_string_old(self, mis_rec): lvl = mis_rec['orig_level'] output = mis_rec['name'] + "\t" output += "%s\t%s\t%s\t%.3f\n" % ( mis_rec['level_name'], mis_rec['orig_ranks'][lvl], mis_rec['ranks'][lvl], mis_rec['lws'][lvl]) output += ";".join(mis_rec['orig_ranks']) + "\n" output += ";".join(mis_rec['ranks']) + "\n" output += "\t".join(["%.3f" % conf for conf in mis_rec['lws']]) + "\n" return output def mis_rec_to_string(self, mis_rec): lvl = mis_rec['orig_level'] uncorr_name = EpacConfig.strip_ref_prefix( self.refjson.get_uncorr_seqid(mis_rec['name'])) uncorr_orig_ranks = self.refjson.get_uncorr_ranks( mis_rec['orig_ranks']) uncorr_ranks = self.refjson.get_uncorr_ranks(mis_rec['ranks']) output = uncorr_name + "\t" if lvl >= 0: output += "%s\t%s\t%s\t%.3f\t" % ( mis_rec['level_name'], uncorr_orig_ranks[lvl], uncorr_ranks[lvl], mis_rec['lws'][lvl]) else: output += "%s\t%s\t%s\t%.3f\t" % (mis_rec['level_name'], "NA", "NA", mis_rec['lws'][0]) output += Taxonomy.lineage_str(uncorr_orig_ranks) + "\t" output += Taxonomy.lineage_str(uncorr_ranks) + "\t" output += ";".join(["%.3f" % conf for conf in mis_rec['lws']]) if 'rank_conf' in mis_rec: output += "\t%.3f" % mis_rec['rank_conf'] return output def sort_mislabels(self): self.mislabels = sorted(self.mislabels, key=itemgetter('inv_level', 'conf', 'name'), reverse=True) for mis_rec in self.mislabels: real_lvl = mis_rec["real_level"] self.mislabels_cnt[real_lvl] += 1 if self.cfg.ranktest: self.rank_mislabels = sorted(self.rank_mislabels, key=itemgetter( 'inv_level', 'conf', 'name'), reverse=True) for mis_rec in self.rank_mislabels: real_lvl = mis_rec["real_level"] self.rank_mislabels_cnt[real_lvl] += 1 def write_stats(self, toFile=False): self.cfg.log.info("Mislabeled sequences by rank:") seq_sum = 0 rank_sum = 0 stats = [] for i in range(len(self.mislabels_cnt)): if i > 0: rname = self.tax_code.rank_level_name(i)[0].ljust(12) else: rname = "[NotIngroup]" if self.mislabels_cnt[i] > 0: seq_sum += self.mislabels_cnt[i] # output = "%s:\t%d" % (rname, seq_sum) output = "%s:\t%d" % (rname, self.mislabels_cnt[i]) if self.cfg.ranktest: rank_sum += self.rank_mislabels_cnt[i] output += "\t%d" % rank_sum self.cfg.log.info(output) stats.append(output) if toFile: with open(self.stats_fname, "w") as fo_stat: for line in stats: fo_stat.write(line + "\n") def write_mislabels_header(self, fo, final, fields): header = ";" + "\t".join(fields) + "\n" # write to file if final: for line in DISCLAIMER.split("\n"): fo.write(";%s\n" % line) fo.write(";\n") fo.write(header) # print to console if final and self.cfg.verbose and len(self.rank_mislabels) > 0: print(DISCLAIMER, "\n") print("Mislabeled sequences:\n") print(header) def write_rank_mislabels(self, final=True): if not self.cfg.ranktest: return with open(self.misrank_fname, "w") as fo_all: fields = [ "RankID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath", "PerRankConfidence" ] self.write_mislabels_header(fo_all, final, fields) for mis_rec in self.rank_mislabels: output = self.mis_rec_to_string(mis_rec) + "\n" fo_all.write(output) if self.cfg.verbose: print(output) def write_mislabels(self, final=True): if final: out_fname = self.mis_fname else: out_fname = self.premis_fname with open(out_fname, "w") as fo_all: fields = [ "SeqID", "MislabeledLevel", "OriginalLabel", "ProposedLabel", "Confidence", "OriginalTaxonomyPath", "ProposedTaxonomyPath", "PerRankConfidence" ] if self.cfg.ranktest: fields += ["HigherRankMisplacedConfidence"] self.write_mislabels_header(fo_all, final, fields) for mis_rec in self.mislabels: output = self.mis_rec_to_string(mis_rec) + "\n" fo_all.write(output) if self.cfg.verbose and final: print(output) if final: self.write_rank_mislabels() self.write_stats() def get_parent_tip_ranks(self, tax_tree): rank_tips = {} rank_parent = {} for node in tax_tree.traverse("postorder"): if node.is_leaf() or node.is_root(): continue tax_path = node.name ranks = Taxonomy.split_rank_uid(tax_path) rank_lvl = Taxonomy.lowest_assigned_rank_level(ranks) if rank_lvl < 2: continue parent_ranks = Taxonomy.split_rank_uid(node.up.name) parent_lvl = Taxonomy.lowest_assigned_rank_level(parent_ranks) if parent_lvl < 1: continue rank_seqs = node.get_leaf_names() rank_size = len(rank_seqs) if rank_size < 2 or rank_size > self.reftree_size - 4: continue # print rank_lvl, "\t", tax_path, "\t", rank_seqs, "\n" rank_tips[tax_path] = node.get_leaf_names() rank_parent[tax_path] = parent_ranks return rank_parent, rank_tips def run_leave_subtree_out_test(self): job_name = self.cfg.subst_name("l1out_rank_%NAME%") # if self.jplace_fname: # jp = EpaJsonParser(self.jplace_fname) # else: #create file with subtrees rank_parent, rank_tips = self.get_parent_tip_ranks(self.tax_tree) subtree_list = list(rank_tips.items()) if len(subtree_list) == 0: return 0 subtree_list_file = self.cfg.tmp_fname("treelist_%NAME%.txt") with open(subtree_list_file, "w") as fout: for rank_name, tips in subtree_list: fout.write("%s\n" % " ".join(tips)) jp_list = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname, mode="l1o_subtree", subtree_fname=subtree_list_file) subtree_count = 0 for jp in jp_list: placements = jp.get_placement() for place in placements: ranks, lws = self.classify_seq(place) tax_path = subtree_list[subtree_count][0] orig_ranks = Taxonomy.split_rank_uid(tax_path) rank_level = Taxonomy.lowest_assigned_rank_level(orig_ranks) rank_prefix = self.tax_code.guess_rank_level_name( orig_ranks, rank_level)[0] rank_name = orig_ranks[rank_level] if not rank_name.startswith(rank_prefix): rank_name = rank_prefix + rank_name parent_ranks = rank_parent[tax_path] # print orig_ranks, "\n", parent_ranks, "\n", ranks, "\n" mis_rec = self.check_rank_tax_labels(rank_name, parent_ranks, ranks, lws) if mis_rec: self.misrank_conf_map[tax_path] = mis_rec['conf'] subtree_count += 1 return subtree_count def run_leave_seq_out_test(self): job_name = self.cfg.subst_name("l1out_seq_%NAME%") placements = [] if self.cfg.jplace_fname: if os.path.isdir(self.cfg.jplace_fname): jplace_fmask = os.path.join(self.cfg.jplace_fname, '*.jplace') else: jplace_fmask = self.cfg.jplace_fname jplace_fname_list = glob.glob(jplace_fmask) for jplace_fname in jplace_fname_list: jp = EpaJsonParser(jplace_fname) placements += jp.get_placement() config.log.debug("Loaded %d placements from %s\n", len(placements), jplace_fmask) else: jp = self.raxml.run_epa(job_name, self.refalign_fname, self.reftree_fname, self.optmod_fname, mode="l1o_seq") placements = jp.get_placement() if self.cfg.output_interim_files: out_jplace_fname = self.cfg.out_fname( "%NAME%.l1out_seq.jplace") self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True, mode="l1o_seq") seq_count = 0 l1out_ass = {} for place in placements: seq_name = place["n"][0] # get original taxonomic label # orig_ranks = self.get_orig_ranks(seq_name) orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name) # get EPA tax label ranks, lws = self.classify_seq(place) l1out_ass[seq_name] = (ranks, lws) # check if they match mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws) # cross-check with higher rank mislabels if self.cfg.ranktest and mis_rec: rank_conf = 0 for lvl in range(2, len(orig_ranks)): tax_path = Taxonomy.get_rank_uid(orig_ranks, lvl) if tax_path in self.misrank_conf_map: rank_conf = max(rank_conf, self.misrank_conf_map[tax_path]) mis_rec['rank_conf'] = rank_conf seq_count += 1 self.write_assignments(l1out_ass, final=False) return seq_count def prune_mislabels_from_tree(self, src_tree, tree_name): pruned_tree = src_tree.copy(method="newick") name2node = {} for leaf in pruned_tree.iter_leaves(): name2node[leaf.name] = leaf for mis_rec in self.mislabels: rname = mis_rec['name'] # rname = EpacConfig.REF_SEQ_PREFIX + name if rname in name2node: name2node[rname].delete() else: config.log.debug("Node not found in the %s tree: %s" % (tree_name, rname)) return pruned_tree def run_final_epa_test(self): self.reftree_outgroup = self.refjson.get_outgroup() pruned_reftree = self.prune_mislabels_from_tree( self.reftree, "reference") pruned_taxtree = self.prune_mislabels_from_tree( self.reftree, "taxonomic") # remove unifurcation at the root if len(pruned_reftree.children) == 1: pruned_reftree = pruned_reftree.children[0] self.mislabels = [] th = TaxTreeHelper(self.cfg, self.origin_taxonomy) th.set_mf_rooted_tree(pruned_taxtree) reftree_epalbl_str = None if self.cfg.final_jplace_fname: if os.path.isdir(self.cfg.final_jplace_fname): jplace_fmask = os.path.join(self.cfg.final_jplace_fname, '*.jplace') else: jplace_fmask = self.cfg.final_jplace_fname jplace_fname_list = glob.glob(jplace_fmask) placements = [] for jplace_fname in jplace_fname_list: jp = EpaJsonParser(jplace_fname) placements += jp.get_placement() if not reftree_epalbl_str: reftree_epalbl_str = jp.get_std_newick_tree() config.log.debug("Loaded %d final epa placements from %s\n", len(placements), jplace_fmask) else: epa_result = self.run_epa_once(pruned_reftree) reftree_epalbl_str = epa_result.get_std_newick_tree() placements = epa_result.get_placement() # update branchid-taxonomy mapping to account for possible changes in branch numbering reftree_tax = Tree(reftree_epalbl_str) th.set_bf_unrooted_tree(reftree_tax) bid_tax_map = th.get_bid_taxonomy_map() self.write_bid_tax_map(bid_tax_map, final=True) cl = TaxClassifyHelper(self.cfg, bid_tax_map, self.rate, self.node_height) # newtax_fname = self.cfg.subst_name("newtax_%NAME%.tre") # th.get_tax_tree().write(outfile=newtax_fname, format=3) final_ass = {} for place in placements: seq_name = place["n"][0] # get original taxonomic label orig_ranks = self.taxtree_helper.get_seq_ranks_from_tree(seq_name) # EXPERIMENTAL FEATURE - disabled for now! # It could happen that certain ranks were present in the "original" reference tree, but # are completely missing in the pruned tree (e.g., all seqs of a species were considered "suspicious" # after the leave-one-out test and thus pruned) # In this case, EPA has no chance to infer full original taxonomic annotation (=species) since the corresponding clade # is now missing. To account for this fact, we amend the original taxonomic annotation and set ranks missing from # pruned tree to "Undefined". # orig_ranks = th.strip_missing_ranks(orig_ranks) # print orig_ranks # get EPA tax label ranks, lws = cl.classify_seq(place["p"]) final_ass[seq_name] = (ranks, lws) #print seq_name, ": ", orig_ranks, "--->", ranks # check if they match mis_rec = self.check_seq_tax_labels(seq_name, orig_ranks, ranks, lws) self.write_assignments(final_ass, final=True) def run_epa_once(self, reftree): reftree_fname = self.cfg.tmp_fname("final_ref_%NAME%.tre") job_name = self.cfg.subst_name("final_epa_%NAME%") reftree.write(outfile=reftree_fname) # IMPORTANT: don't load the model, since it's invalid for the pruned true !!! optmod_fname = "" epa_result = self.raxml.run_epa(job_name, self.refalign_fname, reftree_fname, optmod_fname) if self.cfg.output_interim_files: out_jplace_fname = self.cfg.out_fname("%NAME%.final_epa.jplace") self.raxml.copy_epa_jplace(job_name, out_jplace_fname, move=True) return epa_result def run_test(self): self.raxml = RaxmlWrapper(self.cfg) # config.log.info("Number of sequences in the reference: %d\n", self.reftree_size) self.refjson.get_raxml_readable_tree(self.reftree_fname) self.refalign_fname = self.refjson.get_alignment(self.tmp_refaln) self.refjson.get_binary_model(self.optmod_fname) if self.cfg.ranktest: config.log.info("Running the leave-one-rank-out test...\n") subtree_count = self.run_leave_subtree_out_test() config.log.info("Running the leave-one-sequence-out test...\n") self.run_leave_seq_out_test() if len(self.mislabels) > 0: config.log.info( "Leave-one-out test identified %d suspicious sequences; running final EPA test to check them...\n", len(self.mislabels)) if self.cfg.debug: self.write_mislabels(final=False) self.run_final_epa_test() self.filter_mislabels() self.sort_mislabels() self.write_mislabels() config.log.info("\nTotal mislabels: %d / %.2f %%", len(self.mislabels), (float(len(self.mislabels)) / self.reftree_size * 100))
class EpaClassifier: def __init__(self, config, args): self.cfg = config self.jplace_fname = args.jplace_fname self.ignore_refalign = args.ignore_refalign self.tmp_refaln = config.tmp_fname("%NAME%.refaln") #here is the final alignment file for running EPA self.epa_alignment = config.tmp_fname("%NAME%.afa") self.hmmprofile = config.tmp_fname("%NAME%.hmmprofile") self.tmpquery = config.tmp_fname("%NAME%.tmpquery") self.noalign = config.tmp_fname("%NAME%.noalign") self.seqs = None try: self.refjson = RefJsonParser(config.refjson_fname) except ValueError: print("Invalid json file format!") sys.exit() #validate input json format self.refjson.validate() self.bid_taxonomy_map = self.refjson.get_bid_tanomomy_map() self.reftree = self.refjson.get_reftree() self.rate = self.refjson.get_rate() self.node_height = self.refjson.get_node_height() self.cfg.compress_patterns = self.refjson.get_pattern_compression() self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, args.p_value, self.rate, self.node_height) def cleanup(self): FileUtils.remove_if_exists(self.tmp_refaln) FileUtils.remove_if_exists(self.epa_alignment) FileUtils.remove_if_exists(self.hmmprofile) FileUtils.remove_if_exists(self.tmpquery) FileUtils.remove_if_exists(self.noalign) def align_to_refenence(self, noalign, minp = 0.9): refaln = self.refjson.get_alignment(fout = self.tmp_refaln) fprofile = self.refjson.get_hmm_profile(self.hmmprofile) # if there is no hmmer profile in json file, build it from scratch if not fprofile: hmm = hmmer(self.cfg, refaln) fprofile = hmm.build_hmm_profile() hm = hmmer(config = self.cfg, refalign = refaln , query = self.tmpquery, refprofile = fprofile, discard = noalign, seqs = self.seqs, minp = minp) self.epa_alignment = hm.align() def merge_alignment(self, query_seqs): refaln = self.refjson.get_alignment_list() with open(self.epa_alignment, "w") as fout: for seq in refaln: fout.write(">" + seq[0] + "\n" + seq[1] + "\n") for name, seq, comment, sid in query_seqs.iter_entries(): fout.write(">" + name + "\n" + seq + "\n") def checkinput(self, query_fname, minp = 0.9): formats = ["fasta", "phylip", "iphylip", "phylip_relaxed", "iphylip_relaxed"] for fmt in formats: try: self.seqs = SeqGroup(sequences=query_fname, format = fmt) break except: print("Guessing input format: not " + fmt) if self.seqs == None: print("Invalid input file format!") print("The supported input formats are fasta and phylip") sys.exit() if self.ignore_refalign: print("Assuming query file contains reference sequences, skipping the alignment step...") with open(self.epa_alignment, "w") as fout: for name, seq, comment, sid in self.seqs.iter_entries(): ref_name = self.REF_PREFIX + name if ref_name in self.refjson.get_sequences_names(): seq_name = ref_name else: seq_name = EpacConfig.QUERY_SEQ_PREFIX + name fout.write(">" + seq_name + "\n" + seq + "\n") return # add query seq name prefix to avoid confusion between reference and query sequences self.seqs.add_name_prefix(EpacConfig.QUERY_SEQ_PREFIX) self.seqs.write(format="fasta", outfile=self.tmpquery) print("Checking if query sequences are aligned ...") entries = self.seqs.get_entries() seql = len(entries[0][1]) aligned = True for entri in entries[1:]: l = len(entri[1]) if not seql == l: aligned = False break if aligned and len(self.seqs) > 1: print("Query sequences are aligned") refalnl = self.refjson.get_alignment_length() if refalnl == seql: print("Merging query alignment with reference alignment") self.merge_alignment(self.seqs) else: print("Merging query alignment with reference alignment using MUSCLE") require_muscle() refaln = self.refjson.get_alignment(fout = self.tmp_refaln) m = muscle(self.cfg) self.epa_alignment = m.merge(refaln, self.tmpquery) else: print("Query sequences are not aligned") print("Align query sequences to the reference alignment using HMMER") require_hmmer() self.align_to_refenence(self.noalign, minp = minp) print("Running EPA ......") print("") def print_ranks(self, rks, confs, minlw = 0.0): ss = "" css = "" for i in range(len(rks)): conf = confs[i] if conf == confs[0] and confs[0] >=0.99: conf = 1.0 if conf >= minlw: ss = ss + rks[i] + ";" css = css + "{0:.3f}".format(conf) + ";" else: break if ss == "": return None else: return ss[:-1] + "\t" + css[:-1] def classify(self, query_fname, fout = None, method = "1", minlw = 0.0, pv = 0.02, minp = 0.9, ptp = False): if self.jplace_fname: jp = EpaJsonParser(self.jplace_fname) else: self.checkinput(query_fname, minp) raxml = RaxmlWrapper(config) reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre") self.refjson.get_raxml_readable_tree(reftree_fname) optmod_fname = self.cfg.tmp_fname("%NAME%.opt") self.refjson.get_binary_model(optmod_fname) job_name = self.cfg.subst_name("epa_%NAME%") reftree_str = self.refjson.get_raxml_readable_tree() reftree = Tree(reftree_str) self.reftree_size = len(reftree.get_leaves()) # IMPORTANT: set EPA heuristic rate based on tree size! self.cfg.resolve_auto_settings(self.reftree_size) # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file if self.cfg.epa_load_optmod: self.cfg.raxml_model = self.refjson.get_ratehet_model() reduced_align_fname = raxml.reduce_alignment(self.epa_alignment) jp = raxml.run_epa(job_name, reduced_align_fname, reftree_fname, optmod_fname) placements = jp.get_placement() if fout: fo = open(fout, "w") else: fo = None output2 = "" for place in placements: output = None taxon_name = place["n"][0] origin_taxon_name = EpacConfig.strip_query_prefix(taxon_name) edges = place["p"] # edges = self.erlang_filter(edges, p = pv) if len(edges) > 0: ranks, lws = self.classify_helper.classify_seq(edges, method, minlw) isnovo = self.novelty_check(place_edge = str(edges[0][0]), ranks =ranks, lws = lws, minlw = minlw) rankout = self.print_ranks(ranks, lws, minlw) if rankout == None: output2 = output2 + origin_taxon_name+ "\t\t\t?\n" else: output = "%s\t%s\t" % (origin_taxon_name, self.print_ranks(ranks, lws, minlw)) if isnovo: output += "*" else: output +="o" if self.cfg.verbose: print(output) if fo: fo.write(output + "\n") else: output2 = output2 + origin_taxon_name+ "\t\t\t?\n" if os.path.exists(self.noalign): with open(self.noalign) as fnoa: lines = fnoa.readlines() for line in lines: taxon_name = line.strip()[1:] origin_taxon_name = EpacConfig.strip_query_prefix(taxon_name) output = "%s\t\t\t?" % origin_taxon_name if self.cfg.verbose: print(output) if fo: fo.write(output + "\n") if self.cfg.verbose: print(output2) if fo: fo.write(output2) fo.close() ############################################# # # EPA-PTP species delimitation # ############################################# if ptp: full_aln = SeqGroup(self.epa_alignment) species_list = epa_2_ptp(epa_jp = jp, ref_jp = self.refjson, full_alignment = full_aln, min_lw = 0.5, debug = self.cfg.debug) if self.cfg.verbose: print "Species clusters:" if fout: fo2 = open(fout+".species", "w") else: fo2 = None for sp_cluster in species_list: translated_taxa = [] for taxon in sp_cluster: origin_taxon_name = EpacConfig.strip_query_prefix(taxon) translated_taxa.append(origin_taxon_name) s = ",".join(translated_taxa) if fo2: fo2.write(s + "\n") if self.cfg.verbose: print s if fo2: fo2.close() ############################################# if not self.jplace_fname: if not self.cfg.debug: raxml.cleanup(job_name) FileUtils.remove_if_exists(reduced_align_fname) FileUtils.remove_if_exists(reftree_fname) FileUtils.remove_if_exists(optmod_fname) def novelty_check(self, place_edge, ranks, lws, minlw): """If the taxonomic assignment is not assigned to the genus level, we need to check if it is due to the incomplete reference taxonomy or it is likely to be something new: 1. If the final ranks are assinged because of lw cut, that means with samller lw the ranks can be further assinged to lowers. This indicate the undetermined ranks in the assignment is not due to the incomplete reference taxonomy, so the query sequence is likely to be something new. 2. Otherwise We check all leaf nodes' immediate lower rank below this ml placement point, if they are not empty, output all ranks and indicate this could be novelty. """ lowrank = 0 for i in range(len(ranks)): if i < 6: """above genus level""" rk = ranks[i] lw = lws[i] if rk == "-": break else: lowrank = lowrank + 1 if lw >=0 and lw < minlw: return True if lowrank >= 5 and not ranks[lowrank] == "-": return False else: placenode = self.reftree.search_nodes(B = place_edge)[0] if placenode.is_leaf(): return False else: leafnodes = placenode.get_leaves() flag = True for leaf in leafnodes: br_num = leaf.B branks = self.bid_taxonomy_map[br_num] if branks[lowrank] == "-": flag = False break return flag
class EpaClassifier: def __init__(self, config, args): self.cfg = config self.jplace_fname = args.jplace_fname self.ignore_refalign = args.ignore_refalign self.tmp_refaln = config.tmp_fname("%NAME%.refaln") #here is the final alignment file for running EPA self.epa_alignment = config.tmp_fname("%NAME%.afa") self.hmmprofile = config.tmp_fname("%NAME%.hmmprofile") self.tmpquery = config.tmp_fname("%NAME%.tmpquery") self.noalign = config.tmp_fname("%NAME%.noalign") self.seqs = None assign_fname = args.output_name + ".assignment.txt" self.out_assign_fname = os.path.join(args.output_dir, assign_fname) jplace_fname = args.output_name + ".jplace" self.out_jplace_fname = os.path.join(args.output_dir, jplace_fname) try: self.refjson = RefJsonParser(config.refjson_fname) except ValueError: self.cfg.exit_user_error("Invalid json file format: %s" % config.refjson_fname) #validate input json format self.refjson.validate() self.reftree = self.refjson.get_reftree() self.rate = self.refjson.get_rate() self.node_height = self.refjson.get_node_height() self.cfg.compress_patterns = self.refjson.get_pattern_compression() self.bid_taxonomy_map = self.refjson.get_branch_tax_map() if not self.bid_taxonomy_map: # old file format (before 1.6), need to rebuild this map from scratch th = TaxTreeHelper(self.cfg, self.refjson.get_origin_taxonomy()) th.set_mf_rooted_tree(self.refjson.get_tax_tree()) th.set_bf_unrooted_tree(self.refjson.get_reftree()) self.bid_taxonomy_map = th.get_bid_taxonomy_map() self.cfg.log.info("Loaded reference tree with %d taxa\n" % len(self.reftree.get_leaves())) self.classify_helper = TaxClassifyHelper(self.cfg, self.bid_taxonomy_map, self.rate, self.node_height) def require_muscle(self): basepath = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(basepath + "/epac/bin/muscle"): errmsg = "The pipeline uses MUSCLE to merge alignments, please download the programm from:\n" + \ "http://www.drive5.com/muscle/downloads.htm\n" + \ "and specify path to your installation in the config file (sativa.cfg)\n" self.cfg.exit_user_error(errmsg) def require_hmmer(self): basepath = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(basepath + "/epac/bin/hmmbuild") or not os.path.exists(basepath + "/epac/bin/hmmalign"): errmsg = "The pipeline uses HAMMER to align the query seqeunces, please download the programm from:\n" + \ "http://hmmer.janelia.org/\n" + \ "and specify path to your installation in the config file (sativa.cfg)\n" self.cfg.exit_user_error(errmsg) def align_to_refenence(self, noalign, minp = 0.9): refaln = self.refjson.get_alignment(fout = self.tmp_refaln) fprofile = self.refjson.get_hmm_profile(self.hmmprofile) # if there is no hmmer profile in json file, build it from scratch if not fprofile: hmm = hmmer(self.cfg, refaln) fprofile = hmm.build_hmm_profile() hm = hmmer(config = self.cfg, refalign = refaln , query = self.tmpquery, refprofile = fprofile, discard = noalign, seqs = self.seqs, minp = minp) self.epa_alignment = hm.align() def merge_alignment(self, query_seqs): refaln = self.refjson.get_alignment_list() with open(self.epa_alignment, "w") as fout: for seq in refaln: fout.write(">" + seq[0] + "\n" + seq[1] + "\n") for name, seq, comment, sid in query_seqs.iter_entries(): fout.write(">" + name + "\n" + seq + "\n") def checkinput(self, query_fname, minp = 0.9): formats = ["fasta", "phylip", "iphylip", "phylip_relaxed", "iphylip_relaxed"] for fmt in formats: try: self.seqs = SeqGroup(sequences=query_fname, format = fmt) break except: self.cfg.log.debug("Guessing input format: not " + fmt) if self.seqs == None: self.cfg.exit_user_error("Invalid input file format: %s\nThe supported input formats are fasta and phylip" % query_fname) if self.ignore_refalign: self.cfg.log.info("Assuming query file contains reference sequences, skipping the alignment step...\n") self.query_count = 0 with open(self.epa_alignment, "w") as fout: for name, seq, comment, sid in self.seqs.iter_entries(): ref_name = self.refjson.get_corr_seqid(EpacConfig.REF_SEQ_PREFIX + name) if ref_name in self.refjson.get_sequences_names(): seq_name = ref_name else: seq_name = EpacConfig.QUERY_SEQ_PREFIX + name self.query_count += 1 fout.write(">" + seq_name + "\n" + seq + "\n") return self.query_count = len(self.seqs) # add query seq name prefix to avoid confusion between reference and query sequences self.seqs.add_name_prefix(EpacConfig.QUERY_SEQ_PREFIX) self.seqs.write(format="fasta", outfile=self.tmpquery) self.cfg.log.info("Checking if query sequences are aligned ...") entries = self.seqs.get_entries() seql = len(entries[0][1]) aligned = True for entri in entries[1:]: l = len(entri[1]) if not seql == l: aligned = False break if aligned and len(self.seqs) > 1: self.cfg.log.info("Query sequences are aligned") refalnl = self.refjson.get_alignment_length() if refalnl == seql: self.cfg.log.info("Merging query alignment with reference alignment") self.merge_alignment(self.seqs) else: self.cfg.log.info("Merging query alignment with reference alignment using MUSCLE") self.require_muscle() refaln = self.refjson.get_alignment(fout = self.tmp_refaln) m = muscle(self.cfg) self.epa_alignment = m.merge(refaln, self.tmpquery) else: self.cfg.log.info("Query sequences are not aligned") self.cfg.log.info("Align query sequences to the reference alignment using HMMER") self.require_hmmer() self.align_to_refenence(self.noalign, minp = minp) def print_ranks(self, rks, confs, minlw = 0.0): uncorr_ranks = self.refjson.get_uncorr_ranks(rks) ss = "" css = "" for i in range(len(uncorr_ranks)): conf = confs[i] if conf == confs[0] and confs[0] >=0.99: conf = 1.0 if conf >= minlw: ss = ss + uncorr_ranks[i] + ";" css = css + "{0:.3f}".format(conf) + ";" else: break if ss == "": return None else: return ss[:-1] + "\t" + css[:-1] def classify(self, query_fname, minp = 0.9, ptp = False): if self.jplace_fname: jp = EpaJsonParser(self.jplace_fname) else: self.checkinput(query_fname, minp) self.cfg.log.info("Running RAxML-EPA to place %d query sequences...\n" % self.query_count) raxml = RaxmlWrapper(config) reftree_fname = self.cfg.tmp_fname("ref_%NAME%.tre") self.refjson.get_raxml_readable_tree(reftree_fname) optmod_fname = self.cfg.tmp_fname("%NAME%.opt") self.refjson.get_binary_model(optmod_fname) job_name = self.cfg.subst_name("epa_%NAME%") reftree_str = self.refjson.get_raxml_readable_tree() reftree = Tree(reftree_str) self.reftree_size = len(reftree.get_leaves()) # IMPORTANT: set EPA heuristic rate based on tree size! self.cfg.resolve_auto_settings(self.reftree_size) # If we're loading the pre-optimized model, we MUST set the same rate het. mode as in the ref file if self.cfg.epa_load_optmod: self.cfg.raxml_model = self.refjson.get_ratehet_model() reduced_align_fname = raxml.reduce_alignment(self.epa_alignment) jp = raxml.run_epa(job_name, reduced_align_fname, reftree_fname, optmod_fname) raxml.copy_epa_jplace(job_name, self.out_jplace_fname, move=True) self.cfg.log.info("Assigning taxonomic labels based on EPA placements...\n") placements = jp.get_placement() if self.out_assign_fname: fo = open(self.out_assign_fname, "w") else: fo = None noassign_list = [] for place in placements: taxon_name = place["n"][0] origin_taxon_name = EpacConfig.strip_query_prefix(taxon_name) edges = place["p"] if len(edges) > 0: ranks, lws = self.classify_helper.classify_seq(edges) isnovo = self.novelty_check(place_edge = str(edges[0][0]), ranks=ranks, lws=lws) rankout = self.print_ranks(ranks, lws, self.cfg.min_lhw) if rankout == None: noassign_list.append(origin_taxon_name) else: output = "%s\t%s\t" % (origin_taxon_name, rankout) if isnovo: output += "*" else: output +="o" if self.cfg.verbose: print(output) if fo: fo.write(output + "\n") else: noassign_list.append(origin_taxon_name) if os.path.exists(self.noalign): with open(self.noalign) as fnoa: lines = fnoa.readlines() for line in lines: taxon_name = line.strip()[1:] origin_taxon_name = EpacConfig.strip_query_prefix(taxon_name) noassign_list.append(origin_taxon_name) for taxon_name in noassign_list: output = "%s\t\t\t?" % origin_taxon_name if self.cfg.verbose: print(output) if fo: fo.write(output + "\n") if fo: fo.close() ############################################# # # EPA-PTP species delimitation # ############################################# if ptp: full_aln = SeqGroup(self.epa_alignment) species_list = epa_2_ptp(epa_jp = jp, ref_jp = self.refjson, full_alignment = full_aln, min_lw = 0.5, debug = self.cfg.debug) self.cfg.log.debug("Species clusters:") if fout: fo2 = open(fout+".species", "w") else: fo2 = None for sp_cluster in species_list: translated_taxa = [] for taxon in sp_cluster: origin_taxon_name = EpacConfig.strip_query_prefix(taxon) translated_taxa.append(origin_taxon_name) s = ",".join(translated_taxa) if fo2: fo2.write(s + "\n") self.cfg.log.debug(s) if fo2: fo2.close() ############################################# def novelty_check(self, place_edge, ranks, lws): """If the taxonomic assignment is not assigned to the genus level, we need to check if it is due to the incomplete reference taxonomy or it is likely to be something new: 1. If the final ranks are assinged because of lw cut, that means with samller lw the ranks can be further assinged to lowers. This indicate the undetermined ranks in the assignment is not due to the incomplete reference taxonomy, so the query sequence is likely to be something new. 2. Otherwise We check all leaf nodes' immediate lower rank below this ml placement point, if they are not empty, output all ranks and indicate this could be novelty. """ lowrank = 0 for i in range(len(ranks)): if i < 6: """above genus level""" rk = ranks[i] lw = lws[i] if rk == "-": break else: lowrank = lowrank + 1 if lw >=0 and lw < self.cfg.min_lhw: return True if lowrank >= 5 and lowrank < len(ranks) and not ranks[lowrank] == "-": return False else: placenode = self.reftree.search_nodes(B = place_edge)[0] if placenode.is_leaf(): return False else: leafnodes = placenode.get_leaves() flag = True for leaf in leafnodes: br_num = leaf.B branks = self.bid_taxonomy_map[br_num] if branks[lowrank] == "-": flag = False break return flag