Exemple #1
0
    def time_of_solar_azimuth_today(self, azimuth):
        sun = ephem.Sun()
        sun.compute(self.obs)
        self.obs.date = datetime.utcnow().strftime("%Y/%m/%d %H:%M:%S")

        def err_az(x):
            self.obs.date = x
            sun.compute(self.obs)
            err_delta = sun.az - (math.pi / 180. * self.home['solar_azimuth'])
            #print('az: ', sun.az, ', solar_azimuth',  self.home['solar_azimuth'], ', delta: ', err_delta)
            return err_delta

        x = self.obs.date
        #print 'Searching for the correct time...'
        ephem.newton(err_az, x, x + 0.01)
        dt = datetime.strptime(str(self.obs.date), '%Y/%m/%d %H:%M:%S')
        return (dt)
Exemple #2
0
def risings(observer, obj, start_date = ephem.now(), end_date = None):
    alt_func = calc_alt_func(obj, observer)
    stepper = tracker.sat_stepper(observer, obj, start_date, end_date)
    
    # keep going until the sat has set (we ignore risings which already happened before the func got initialized)
    for date, obj in stepper:

        if obj.alt < 0:
            break
        print date, "wait for the sat to set", obj.alt 
    
    prev = None
    risen = False
    rise_date = set_date = None
    # step through the different steps and always look at two consecutive ones
    for date, obj in stepper:
        if prev != None:
            if risen:
                if obj.alt < 0:
                    set_date = ephem.date(ephem.newton(alt_func, prev, date))
                    risen = False
                    #print date, "set at ", set_date
                    
                    if set_date - rise_date > 60.0 / 86400:
                        yield rise_date, set_date
                    else:
                        # ignore
                        pass
                else:
                    pass
                    #print date, "still above horizon", obj.alt
            else:
                if obj.alt >= 0:
                    rise_date = ephem.date(ephem.newton(alt_func, prev, date))
                    risen = True
                    #print date, "rise at", rise_date
                else:
                    pass
                    #print date, "still below", obj.alt
            
        prev = date        
def time_for_altitude(obj, alt, startvals, date):
    CTA_N.date = date

    def rel_pos(when):
        CTA_N.date = when
        obj.compute(CTA_N)
        return obj.alt - alt

    start = float(ephem.date(startvals)) - 0.08
    end = float(ephem.date(startvals)) + 0.08
    start, end = min(start, end), max(start, end)
    return ephem.date(ephem.newton(rel_pos, start, end))
Exemple #4
0
def solar_term(year, degrees, timezone='UTC'):
    """
    Returns the date of the solar term for the given longitude
    and the given year.

    Solar terms are used for Chinese and Taiwanese holidays
    (e.g. Qingming Festival in Taiwan).

    More information:
    - https://en.wikipedia.org/wiki/Solar_term
    - https://en.wikipedia.org/wiki/Qingming

    This function is adapted from the following topic:
    https://answers.launchpad.net/pyephem/+question/110832
    """
    twopi = 2 * pi
    tz = pytz.timezone(timezone)

    # Find out the sun's current longitude.
    sun = ephem.Sun(ephem.Date(str(year)))
    # > Both hlon and hlat have a special meaning for the Sun and Moon.
    # > For a Sun body, they give the Earth's heliocentric longitude and
    # > latitude.
    current_longitude = sun.hlon - pi

    # Find approximately the right time of year.

    target_longitude = degrees * ephem.degree
    difference = (target_longitude - current_longitude) % twopi
    t0 = ephem.Date(str(year)) + 365.25 * difference / twopi

    # Zero in on the exact moment.

    def f(t):
        sun.compute(t)
        longitude = sun.hlon - pi
        return ephem.degrees(target_longitude - longitude).znorm

    d = ephem.Date(ephem.newton(f, t0, t0 + ephem.minute))
    solar_term = d.datetime() + tz.utcoffset(d.datetime())

    return solar_term.date()
Exemple #5
0
    def solar_term(self, year, degrees, timezone='UTC'):
        """
        Returns the date of the solar term for the given longitude
        and the given year.

        Solar terms are used for Chinese and Taiwanese holidays
        (e.g. Qingming Festival in Taiwan).

        More information:
        - https://en.wikipedia.org/wiki/Solar_term
        - https://en.wikipedia.org/wiki/Qingming

        This function is adapted from the following topic:
        https://answers.launchpad.net/pyephem/+question/110832
        """
        twopi = 2 * pi
        tz = pytz.timezone(timezone)

        # Find out the sun's current longitude.

        sun = ephem.Sun(ephem.Date(str(year)))
        current_longitude = sun.hlong - pi

        # Find approximately the right time of year.

        target_longitude = degrees * ephem.degree
        difference = (target_longitude - current_longitude) % twopi
        t0 = ephem.Date(str(year)) + 365.25 * difference / twopi

        # Zero in on the exact moment.

        def f(t):
            sun.compute(t)
            longitude = sun.hlong - pi
            return ephem.degrees(target_longitude - longitude).znorm

        d = ephem.Date(ephem.newton(f, t0, t0 + ephem.minute))
        solar_term = d.datetime() + tz.utcoffset(d.datetime())

        return solar_term.date()
Exemple #6
0
def when_is_sun_at_degrees_longitude(date: date, degrees: int) -> ephem.Date:
    # Thanks to Brandon Rhode @ https://answers.launchpad.net/pyephem/+question/110832

    # Find out the sun's current longitude.

    sun = ephem.Sun(date)
    current_longitude = sun.hlong - ephem.pi

    # Find approximately the right time of year.

    target_longitude = degrees * ephem.degree
    difference = (target_longitude - current_longitude) % ephem.twopi
    t0 = date + 365.25 * difference / ephem.twopi

    # Zero in on the exact moment.

    def f(t):
        sun.compute(t)
        longitude = sun.hlong - ephem.pi
        return ephem.degrees(target_longitude - longitude).znorm

    return ephem.Date(ephem.newton(f, t0, t0 + ephem.minute))
        def when_is_sun_at_degrees_longitude(degrees):

            # Find out the sun's current longitude.

            sun = ephem.Sun(d)
            current_longitude = sun.hlong - pi
            #print 365.25*current_longitude/twopi

            # Find approximately the right time of year.

            target_longitude = degrees * ephem.degree
            difference = (target_longitude - current_longitude) % twopi
            t0 = d + 365.25 * difference / twopi

            # Zero in on the exact moment.

            def f(t):
                sun.compute(t)
                longitude = sun.hlong - pi
                return ephem.degrees(target_longitude - longitude).znorm

            return ephem.Date(ephem.newton(f, t0, t0 + ephem.minute))
Exemple #8
0
# Predictions section
#Set start date to now
start_date = ephem.now()

#Keep track of fp command nr
N = 0
#List of commands
out = []
while start_date < ephem.now() + nr_days * 24 * ephem.hour:

    # Find a time where delphini enters the area
    while adst(start_date) > 0:
        start_date += 10 * ephem.second
#FIND ENTRANCE
    d1 = ephem.newton(dst, start_date - ephem.minute, start_date)
    delphini.compute(d1)
    y1, x1 = (float(repr(delphini.sublat)) * (180 / np.pi),
              float(repr(delphini.sublong)) * (180 / np.pi))

    #Find EXIT
    start_date += 240 * ephem.second
    d2 = ephem.newton(dst, start_date + ephem.minute, start_date)
    delphini.compute(d2)
    y2, x2 = (float(repr(delphini.sublat)) * (180 / np.pi),
              float(repr(delphini.sublong)) * (180 / np.pi))
    start_date = d2 + 30 * ephem.minute
    d1 = get_epoch(d1)
    d2 = get_epoch(d2)
    duration = d2 - d1
    out.append("tx_inhibit{:d},rparam download 5 0,0,0,0,0,{:d},0,0".format(