Exemple #1
0
def test_demag_two_spin_xx():
    mesh = CuboidMesh(nx=2, ny=1, nz=1)
    sim = Sim(mesh)
    demag = Demag()
    sim.add(demag)
    sim.set_m((1, 0, 0))
    field = demag.compute_field()
    print(field)
    assert (field[0] == 2e-7)
    assert (field[3] == 2e-7)
Exemple #2
0
def test_demag_two_spin_xx():
    mesh = CuboidMesh(nx=2, ny=1, nz=1)
    sim = Sim(mesh)

    demag = Demag()
    sim.add(demag)

    sim.set_m((1, 0, 0))
    field = demag.compute_field()
    print field
    assert(field[0] == 2e-7)
    assert(field[3] == 2e-7)
Exemple #3
0
def test_demag_fft_exact_oommf():
    mesh = CuboidMesh(nx=5, ny=3, nz=2, unit_length=1e-9)
    sim = Sim(mesh)
    demag = Demag()
    sim.add(demag)

    def init_m(pos):
        x = pos[0]
        if x <= 2:
            return (1, 0, 0)
        elif x >= 4:
            return (0, 0, 1)
        else:
            return (0, 1, 0)

    sim.set_m(init_m)
    fft = demag.compute_field()
    exact = demag.compute_exact()
    np.testing.assert_allclose(fft, exact, rtol=1e-10)
Exemple #4
0
def test_demag_fft_exact():
    mesh = CuboidMesh(nx=5, ny=3, nz=4)
    sim = Sim(mesh)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):
        x = pos[0]
        if x <= 2:
            return (1, 0, 0)
        elif x >= 4:
            return (0, 0, 1)
        else:
            return (0, 1, 0)

    sim.set_m(init_m)
    fft = demag.compute_field()
    exact = demag.compute_exact()
    # print fft,exact
    print np.max(np.abs(fft - exact))

    assert np.max(np.abs(fft - exact)) < 5e-22
Exemple #5
0
def test_demag_fft_exact():
    mesh = CuboidMesh(nx=5, ny=3, nz=4)
    sim = Sim(mesh)

    demag = Demag()
    sim.add(demag)

    def init_m(pos):
        x = pos[0]
        if x <= 2:
            return (1, 0, 0)
        elif x >= 4:
            return (0, 0, 1)
        else:
            return (0, 1, 0)

    sim.set_m(init_m)
    fft = demag.compute_field()
    exact = demag.compute_exact()
    # print fft,exact
    print np.max(np.abs(fft - exact))

    assert np.max(np.abs(fft - exact)) < 5e-22
Exemple #6
0
def relax_system(mesh):

    sim = Sim(mesh, name='relax')
    sim.mu_s = 1e-23
    sim.driver.gamma = 1.76e11
    sim.driver.alpha = 1.0
    J = 1e-22
    exch = UniformExchange(J)
    sim.add(exch)
    demag = Demag()
    sim.add(demag)
    sim.set_m(init_m)

    ts = np.linspace(0, 5e-10, 101)
    for t in ts:
        sim.driver.run_until(t)
        sim.save_vtk()
    np.save('m0.npy', sim.spin)
Exemple #7
0
def test_cuboid_demags_2D():
    """
    Comparison of the FFT approach for hexagonal meshes, named
    DemagHexagonal, where it is used a system with the double number
    of nodes along the x direction (i.e. a mesh with twice the number
    of nodes of the original mesh), against the full calculation
    of the Demag field
    """
    # Number of atoms
    N = 15
    a = 0.4

    mesh = CuboidMesh(a, a, a, N, N, 1, unit_length=1e-9)
    mu_s = 2 * const.mu_B

    # Centre
    xc = (mesh.Lx * 0.5)
    yc = (mesh.Ly * 0.5)

    sim = Sim(mesh)
    sim.mu_s = mu_s

    sim.set_m(lambda pos: m_init_2Dvortex(pos, (xc, yc)))
    # Brute force demag calculation
    sim.add(DemagFull())

    sim.get_interaction('DemagFull').compute_field()
    # print sim.get_interaction('DemagFull').field
    DemagFull_energy = sim.compute_energy() / const.meV

    # Demag using the FFT approach
    sim2 = Sim(mesh)
    sim2.mu_s = mu_s

    sim2.set_m(lambda pos: m_init_2Dvortex(pos, (xc, yc)))

    sim2.add(Demag())
    sim2.get_interaction('Demag').compute_field()
    sim2.compute_energy()

    demag_fft_energy = sim2.compute_energy() / const.meV

    # We compare both energies scaled in meV
    assert (DemagFull_energy - demag_fft_energy) < 1e-10
Exemple #8
0
def test_cuboid_demags_1Dchain():
    """
    Test a brute force calculation of the demagnetising field, called
    DemagFull, based on the sum of the dipolar contributions of the whole
    system for every lattice site, against the default FFT approach for the
    demag field. We compute the energies scaled in meV.
    This test is performed in a cuboid mesh to assure that the DemagFull
    library is calculating the same than the default demag function
    """
    N = 12
    a = 0.4
    mesh = CuboidMesh(a, a, a, N, 1, 1, unit_length=1e-9)
    mu_s = 2 * const.mu_B

    sim = Sim(mesh)
    sim.mu_s = mu_s

    sim.set_m(lambda pos: m_init_dw(pos, N, a))
    # Brute force demag calculation
    sim.add(DemagFull())

    sim.get_interaction('DemagFull').compute_field()
    # print sim.get_interaction('DemagFull').field
    DemagFull_energy = sim.compute_energy() / const.meV

    # Demag using the FFT approach
    sim2 = Sim(mesh)
    sim2.mu_s = mu_s

    sim2.set_m(lambda pos: m_init_dw(pos, N, a))

    sim2.add(Demag())
    sim2.get_interaction('Demag').compute_field()
    sim2.compute_energy()

    demag_fft_energy = sim2.compute_energy() / const.meV

    # We compare both energies scaled in meV
    assert (DemagFull_energy - demag_fft_energy) < 1e-10
Exemple #9
0
#         self.fmm.compute_field(self.theta, self.field)
#         self.field *= 1e-7
#         return self.field

mesh = fidimag.common.CuboidMesh(nx=Nx,
                                 ny=Ny,
                                 nz=Nz,
                                 dx=1,
                                 dy=1,
                                 dz=1,
                                 unit_length=1e-9)
N = mesh.n
print("Nparticles = {}".format(N))

demagfmm = DemagFMM(order, ncrit, theta=theta)
demagfft = Demag()
demagfull = DemagFull()

sim = fidimag.atomistic.Sim(mesh)
sim.set_m((0, 0, 1), normalise=True)
print(f"Bohr Magnetom = {fidimag.common.constant.mu_B}")
sim.set_mu_s(fidimag.common.constant.mu_B)

sim.add(demagfft)
sim.add(demagfmm)
sim.add(demagfull)

start = time.time()
demagfft.compute_field()
end = time.time()
t = end - start