Exemple #1
0
    def show_residual(self, ci, psfmix, objmix=None):
        """
        Show plots of the input compared with the fit gaussian mixtures.
        """
        
        psfmodel = gmix_image.gmix2image(psfmix,ci.psf.shape,
                                         counts=ci.psf.sum()) 
        images.compare_images(ci.psf,psfmodel,
                              label1='psf',label2='gmix')

        if objmix is not None:
            skysig=None
            if ci['skysig'] > 0:
                skysig=ci['skysig']
            model0 = gmix_image.gmix2image(objmix,ci.image0.shape,
                                           counts=ci.image0.sum()) 
            model = gmix_image.gmix2image(objmix,ci.image.shape,
                                          psf=psfmix,
                                          counts=ci.image.sum()) 

            images.compare_images(ci.image0,model0,
                                  label1='object0',label2='gmix',
                                  skysig=skysig)
            images.compare_images(ci.image,model,
                                  label1='object+psf',label2='gmix',
                                  skysig=skysig)
        stop
Exemple #2
0
    def make_images(self):
        import gmix_image

        self.psf = gmix_image.gmix2image(self.psf_gmix,self['dims'],
                                         nsub=self.nsub)
        self.image = gmix_image.gmix2image(self.obj_gmix,self['dims'],
                                           nsub=self.nsub)
        #self.image0 = gmix_image.gmix2image(self.obj0_gmix,self['dims'],
        #                                    nsub=self.nsub)
        self.image0=None
Exemple #3
0
    def get_normalized_model(self):
        """
        For jacobian models

        Fit for a flux then run the ydiff on it
        """
        from gmix_image.gmix_fit import GMixFitMultiPSFFlux
        from . import _render

        if self.jacobian is None:
            raise ValueError("only works for jacobian")

        imlist = [self.image0]
        wtlist = [self.image0 * 0 + self.ivar]
        jacoblist = [self.jacobian]
        gmix_list = [self.get_gmix()]

        gm = GMixFitMultiPSFFlux(imlist, wtlist, jacoblist, gmix_list)

        res = gm.get_result()

        gmix = self.get_gmix()

        gmix.set_psum(res["F"])

        model = gmix_image.gmix2image(gmix, self.image0.shape, jacob=self.jacobian)
        return model
Exemple #4
0
def test():
    import images
    dguess=[{'p':0.58,'row':15.,'col':15.,'irr':1.3,'irc':-0.05,'icc':1.16},
            {'p':0.19,'row':15.,'col':15.,'irr':7.7,'irc':-0.23,'icc':6.8}]
    im=gmix_image.gmix2image(dguess, [31,31])
    print 'counts:',im.sum()
    images.multiview(im)
Exemple #5
0
 def show(self):
     import images
     if hasattr(self.gm,'popt'):
         pars=self.gm.popt
     else:
         pars=self.gm.get_pars()
     model=gmix2image(pars,self.psf.shape, coellip=True)
     #print((model-self.psf).max())
     #images.multiview(self.psf)
     #images.multiview(model)
     #model *= self['counts']/model.sum()
     images.compare_images(self.psf, model)
Exemple #6
0
    def process_image(self, image, ngauss, cen, cov, psf=None,
                      coellip=False, cocenter=False, show=False):
        im=image.copy()

        # need no zero pixels and sky value
        im_min = im.min()
        if im_min <= 0:
            im -= im_min
            sky=0.001*im.max()
            im += sky
        else:
            sky = im_min


        # In the iteration, we can sometimes run into negative determinants.
        # we will retry a few times with different random offsets in that case


        flags = GMIXEM_ERROR_NEGATIVE_DET
        ntry=0
        while flags == GMIXEM_ERROR_NEGATIVE_DET and ntry < self['max_retry']:
            guess = self.get_guess(ngauss, cen, cov)
            gm = gmix_image.GMixEM(im,guess,
                                   sky=sky,
                                   maxiter=self['gmix_maxiter'],
                                   tol=self['gmix_tol'],
                                   coellip=coellip,
                                   cocenter=cocenter,
                                   psf=psf,
                                   verbose=self['verbose'])
            flags = gm.flags
            #stderr.write("gmix niter: %d\n" % gm.numiter)
            ntry += 1
        #stderr.write("ntry: %d " % ntry)
        out={'gmix': gm.pars,
             'flags': gm.flags,
             'numiter':gm.numiter,
             'fdiff':gm.fdiff,
             'ntry':ntry}
        if flags == 0 and show:
            print 'psf'
            pprint(psf)
            print 'gmix'
            pprint(out['gmix'])
            imrec=gmix_image.gmix2image(out['gmix'], image.shape, 
                                        psf=psf,counts=image.sum())
            images.compare_images(image,imrec,
                                  label1='image',label2='%d gauss' % ngauss)
        return out
Exemple #7
0
def test_measure_image_width(fwhm=20.0, smooth=0.1, nsub=20, type='erf'):
    import gmix_image
    print 'testing type:',type
    sigma=fwhm/2.3548

    dim=2*5*sigma
    if (dim % 2)==0:
        dim+=1
    dims=[dim]*2
    cen=[(dim-1)//2]*2

    gm=gmix_image.GMix([1.0, cen[0], cen[1], sigma**2, 0.0, sigma**2])

    im=gmix_image.gmix2image(gm, dims)
    
    if type=='erf':
        widths = measure_image_width(im, 0.5, smooth=smooth)
    else:
        widths = measure_image_width_interp(im, 0.5, nsub=nsub)
    print 'true:',fwhm
    print 'meas:',widths
    print 'meas/true-1:',widths/fwhm-1