Exemple #1
0
def simulate_diffractions(grain_params):
    pbar = ProgressBar(widgets=['simulate_diffractions',
                                Percentage(),
                                Bar()],
                       maxval=len(grain_params)).start()

    image_stack = np.zeros((nframes, nrows, ncols), dtype=bool)
    for i in range(len(grain_params)):
        sim_results = xrdutil.simulateGVecs(pd,
                                            detector_params,
                                            grain_params[i],
                                            panel_dims=panel_dims,
                                            pixel_pitch=pixel_size,
                                            ome_range=ome_range,
                                            ome_period=ome_period,
                                            distortion=None)
        valid_ids, valid_hkl, valid_ang, valid_xy, ang_ps = sim_results
        j_pix = gridutil.cellIndices(x_col_edges, valid_xy[:, 0])
        i_pix = gridutil.cellIndices(y_row_edges, valid_xy[:, 1])
        k_frame = gridutil.cellIndices(ome_edges, valid_ang[:, 2])

        # assign intensity
        for j, k in enumerate(k_frame):
            image_stack[k][i_pix[j], j_pix[j]] = True
        pbar.update(i + 1)
        pass
    pbar.finish()

    #np.save('gold_cubes.npy', image_stack)
    return image_stack
Exemple #2
0
def simulate_diffractions(grain_params):
    pbar = ProgressBar(widgets=['simulate_diffractions', Percentage(), Bar()],
                       maxval=len(grain_params)).start()

    image_stack = np.zeros((nframes, nrows, ncols), dtype=bool)
    for i in range(len(grain_params)):
        sim_results = xrdutil.simulateGVecs(pd,
                                            detector_params,
                                            grain_params[i],
                                            panel_dims=panel_dims,
                                            pixel_pitch=pixel_size,
                                            ome_range=ome_range,
                                            ome_period=ome_period,
                                            distortion=None)
        valid_ids, valid_hkl, valid_ang, valid_xy, ang_ps = sim_results
        j_pix = gridutil.cellIndices(x_col_edges, valid_xy[:, 0])
        i_pix = gridutil.cellIndices(y_row_edges, valid_xy[:, 1])
        k_frame = gridutil.cellIndices(ome_edges, valid_ang[:, 2])

        # assign intensity
        for j, k in enumerate(k_frame):
            image_stack[k][i_pix[j], j_pix[j]] = True
        pbar.update(i+1)
        pass
    pbar.finish()

    #np.save('gold_cubes.npy', image_stack)
    return image_stack
Exemple #3
0
def _evaluate_diffraction_angles(exp_maps):
    panel_dims_expanded = [(-10, -10), (10, 10)]
    pbar = ProgressBar(widgets=['evaluate diffraction angles', Percentage(), Bar()],
                       maxval=n_grains).start()
    all_angles = []
    for i in range(n_grains):
        gparams = np.hstack([exp_maps[i, :].flatten(), ref_gparams])
        sim_results = xrdutil.simulateGVecs(pd,
                                            detector_params,
                                            gparams,
                                            panel_dims=panel_dims_expanded,
                                            pixel_pitch=pixel_size,
                                            ome_range=ome_range,
                                            ome_period=ome_period,
                                            distortion=None)
        all_angles.append(sim_results[2])
        pbar.update(i+1)
        pass
    pbar.finish()

    return all_angles
Exemple #4
0
def evaluate_diffraction_angles(experiment, controller=None):
    panel_dims_expanded = [(-10, -10), (10, 10)]
    subprocess = 'evaluate diffraction angles'
    pbar = controller.start(subprocess, len(experiment.exp_maps))
    all_angles = []
    ref_gparams = np.array([0., 0., 0., 1., 1., 1., 0., 0., 0.])
    for i, exp_map in enumerate(experiment.exp_maps):
        gparams = np.hstack([exp_map, ref_gparams])
        sim_results = xrdutil.simulateGVecs(experiment.plane_data,
                                            experiment.detector_params,
                                            gparams,
                                            panel_dims=panel_dims_expanded,
                                            pixel_pitch=experiment.pixel_size,
                                            ome_range=experiment.ome_range,
                                            ome_period=experiment.ome_period,
                                            distortion=None)
        all_angles.append(sim_results[2])
        controller.update(i + 1)
        pass
    controller.finish(subprocess)

    return all_angles
Exemple #5
0
def evaluate_diffraction_angles(experiment , controller=None):
    panel_dims_expanded = [(-10, -10), (10, 10)]
    subprocess='evaluate diffraction angles'
    pbar = controller.start(subprocess,
                            len(experiment.exp_maps))
    all_angles = []
    ref_gparams = np.array([0., 0., 0., 1., 1., 1., 0., 0., 0.])
    for i, exp_map in enumerate(experiment.exp_maps):
        gparams = np.hstack([exp_map, ref_gparams])
        sim_results = xrdutil.simulateGVecs(experiment.plane_data,
                                            experiment.detector_params,
                                            gparams,
                                            panel_dims=panel_dims_expanded,
                                            pixel_pitch=experiment.pixel_size,
                                            ome_range=experiment.ome_range,
                                            ome_period=experiment.ome_period,
                                            distortion=None)
        all_angles.append(sim_results[2])
        controller.update(i+1)
        pass
    controller.finish(subprocess)

    return all_angles
def evaluate_diffraction_angles(experiment, controller=None):
    """Uses simulateGVecs to generate the angles used per each grain.
    returns a list containg one array per grain.

    experiment -- a bag of experiment values, including the grains specs and other
                  required parameters.
    """
    # extract required data from experiment
    exp_maps = experiment.exp_maps
    plane_data = experiment.plane_data
    detector_params = experiment.detector_params
    pixel_size = experiment.pixel_size
    ome_range = experiment.ome_range
    ome_period = experiment.ome_period

    panel_dims_expanded = [(-10, -10), (10, 10)]
    subprocess='evaluate diffraction angles'
    pbar = controller.start(subprocess,
                            len(experiment.exp_maps))
    all_angles = []
    ref_gparams = np.array([0., 0., 0., 1., 1., 1., 0., 0., 0.])
    for i, exp_map in enumerate(experiment.exp_maps):
        gparams = np.hstack([exp_map, ref_gparams])
        sim_results = xrdutil.simulateGVecs(plane_data,
                                            detector_params,
                                            gparams,
                                            panel_dims=panel_dims_expanded,
                                            pixel_pitch=pixel_size,
                                            ome_range=ome_range,
                                            ome_period=ome_period,
                                            distortion=None)
        all_angles.append(sim_results[2])
        controller.update(i+1)
        pass
    controller.finish(subprocess)

    return all_angles
Exemple #7
0
def evaluate_diffraction_angles(experiment, controller=None):
    """Uses simulateGVecs to generate the angles used per each grain.
    returns a list containg one array per grain.

    experiment -- a bag of experiment values, including the grains specs and other
                  required parameters.
    """
    # extract required data from experiment
    exp_maps = experiment.exp_maps
    plane_data = experiment.plane_data
    detector_params = experiment.detector_params
    pixel_size = experiment.pixel_size
    ome_range = experiment.ome_range
    ome_period = experiment.ome_period

    panel_dims_expanded = [(-10, -10), (10, 10)]
    subprocess='evaluate diffraction angles'
    pbar = controller.start(subprocess,
                            len(exp_maps))
    all_angles = []
    ref_gparams = np.array([0., 0., 0., 1., 1., 1., 0., 0., 0.])
    for i, exp_map in enumerate(exp_maps):
        gparams = np.hstack([exp_map, ref_gparams])
        sim_results = xrdutil.simulateGVecs(plane_data,
                                            detector_params,
                                            gparams,
                                            panel_dims=panel_dims_expanded,
                                            pixel_pitch=pixel_size,
                                            ome_range=ome_range,
                                            ome_period=ome_period,
                                            distortion=None)
        all_angles.append(sim_results[2])
        controller.update(i+1)
        pass
    controller.finish(subprocess)

    return all_angles
Exemple #8
0
def _evaluate_diffraction_angles(exp_maps):
    panel_dims_expanded = [(-10, -10), (10, 10)]
    pbar = ProgressBar(
        widgets=['evaluate diffraction angles',
                 Percentage(),
                 Bar()],
        maxval=n_grains).start()
    all_angles = []
    for i in range(n_grains):
        gparams = np.hstack([exp_maps[i, :].flatten(), ref_gparams])
        sim_results = xrdutil.simulateGVecs(pd,
                                            detector_params,
                                            gparams,
                                            panel_dims=panel_dims_expanded,
                                            pixel_pitch=pixel_size,
                                            ome_range=ome_range,
                                            ome_period=ome_period,
                                            distortion=None)
        all_angles.append(sim_results[2])
        pbar.update(i + 1)
        pass
    pbar.finish()

    return all_angles
def find_orientations(cfg, hkls=None, clean=False, profile=False):
    """
    Takes a config dict as input, generally a yml document

    NOTE: single cfg instance, not iterator!
    """

    # ...make this an attribute in cfg?
    analysis_id = '%s_%s' %(
        cfg.analysis_name.strip().replace(' ', '-'),
        cfg.material.active.strip().replace(' ', '-'),
        )

    # grab planeData object
    matl = cPickle.load(open('materials.cpl', 'r'))
    md = dict(zip([matl[i].name for i in range(len(matl))], matl))
    pd = md[cfg.material.active].planeData

    # make image_series
    image_series = cfg.image_series.omegaseries

    # need instrument cfg later on down...
    instr_cfg = get_instrument_parameters(cfg)
    detector_params = np.hstack([
        instr_cfg['detector']['transform']['tilt_angles'],
        instr_cfg['detector']['transform']['t_vec_d'],
        instr_cfg['oscillation_stage']['chi'],
        instr_cfg['oscillation_stage']['t_vec_s'],
        ])
    rdim = cfg.instrument.detector.pixels.size[0]*cfg.instrument.detector.pixels.rows
    cdim = cfg.instrument.detector.pixels.size[1]*cfg.instrument.detector.pixels.columns
    panel_dims = ((-0.5*cdim, -0.5*rdim),
                  ( 0.5*cdim,  0.5*rdim),
                  )
    # UGH! hard-coded distortion...
    if instr_cfg['detector']['distortion']['function_name'] == 'GE_41RT':
        distortion = (dFuncs.GE_41RT,
                      instr_cfg['detector']['distortion']['parameters'],
                      )
    else:
        distortion = None

    min_compl = cfg.find_orientations.clustering.completeness

    # start logger
    logger.info("beginning analysis '%s'", cfg.analysis_name)

    # load the eta_ome orientation maps
    eta_ome = load_eta_ome_maps(cfg, pd, image_series, hkls=hkls, clean=clean)

    ome_range = (
        np.min(eta_ome.omeEdges),
        np.max(eta_ome.omeEdges)
        )
    try:
        # are we searching the full grid of orientation space?
        qgrid_f = cfg.find_orientations.use_quaternion_grid
        quats = np.load(qgrid_f)
        logger.info("Using %s for full quaternion search", qgrid_f)
        hkl_ids = None
    except (IOError, ValueError, AttributeError):
        # or doing a seeded search?
        logger.info("Defaulting to seeded search")
        hkl_seeds = cfg.find_orientations.seed_search.hkl_seeds
        hkl_ids = [
            eta_ome.planeData.hklDataList[i]['hklID'] for i in hkl_seeds
        ]
        hklseedstr = ', '.join(
            [str(i) for i in eta_ome.planeData.hkls.T[hkl_seeds]]
            )
        logger.info(
            "Seeding search using hkls from %s: %s",
            cfg.find_orientations.orientation_maps.file,
            hklseedstr
            )
        quats = generate_orientation_fibers(
            eta_ome,
            detector_params[6],
            cfg.find_orientations.threshold,
            cfg.find_orientations.seed_search.hkl_seeds,
            cfg.find_orientations.seed_search.fiber_ndiv,
            ncpus=cfg.multiprocessing,
            )
        if save_as_ascii:
            np.savetxt(
                os.path.join(cfg.working_dir, 'trial_orientations.dat'),
                quats.T,
                fmt="%.18e",
                delimiter="\t"
                )
            pass
        pass # close conditional on grid search
    
    # generate the completion maps
    logger.info("Running paintgrid on %d trial orientations", quats.shape[1])
    if profile:
        logger.info("Profiling mode active, forcing ncpus to 1")
        ncpus = 1
    else:
        ncpus = cfg.multiprocessing
        logger.info(
            "%d of %d available processors requested", ncpus, mp.cpu_count()
            )
    compl = idx.paintGrid(
        quats,
        eta_ome,
        etaRange=np.radians(cfg.find_orientations.eta.range),
        omeTol=np.radians(cfg.find_orientations.omega.tolerance),
        etaTol=np.radians(cfg.find_orientations.eta.tolerance),
        omePeriod=np.radians(cfg.find_orientations.omega.period),
        threshold=cfg.find_orientations.threshold,
        doMultiProc=ncpus > 1,
        nCPUs=ncpus
        )

    if save_as_ascii:
        np.savetxt(os.path.join(cfg.working_dir, 'completeness.dat'), compl)
    else:
        np.save(
            os.path.join(
                cfg.working_dir,
                'scored_orientations_%s.npy' %analysis_id
                ),
            np.vstack([quats, compl])
            )

    ##########################################################
    ##   Simulate N random grains to get neighborhood size  ##
    ##########################################################
    if hkl_ids is not None:
        ngrains = 100
        rand_q = mutil.unitVector(np.random.randn(4, ngrains))
        rand_e = np.tile(2.*np.arccos(rand_q[0, :]), (3, 1)) \
          * mutil.unitVector(rand_q[1:, :])
        refl_per_grain = np.zeros(ngrains)
        num_seed_refls = np.zeros(ngrains)
        print('fo: hklids = ', hkl_ids)
        for i in range(ngrains):
            grain_params = np.hstack([rand_e[:, i],
                                      xf.zeroVec.flatten(),
                                      xf.vInv_ref.flatten()
                                      ])
            sim_results = simulateGVecs(pd,
                                        detector_params,
                                        grain_params,
                                        ome_range=(ome_range,),
                                        ome_period=(ome_range[0], ome_range[0]+2*np.pi),
                                        eta_range=np.radians(cfg.find_orientations.eta.range),
                                        panel_dims=panel_dims,
                                        pixel_pitch=cfg.instrument.detector.pixels.size,
                                        distortion=distortion,
                                        )
            refl_per_grain[i] = len(sim_results[0])
            # lines below fix bug when sim_results[0] is empty
            if refl_per_grain[i] > 0:
                num_seed_refls[i] = np.sum([sum(sim_results[0] == hkl_id) for hkl_id in hkl_ids])
            else:
                num_seed_refls[i] = 0
        #min_samples = 2
        min_samples = max(
            int(np.floor(0.5*min_compl*min(num_seed_refls))),
            2
            )
        mean_rpg = int(np.round(np.average(refl_per_grain)))
    else:
        min_samples = 1
        mean_rpg = 1

    logger.info("mean number of reflections per grain is %d", mean_rpg)
    logger.info("neighborhood size estimate is %d points", min_samples)

    # cluster analysis to identify orientation blobs, the final output:
    qbar, cl = run_cluster(compl, quats, pd.getQSym(), cfg, min_samples=min_samples)

    analysis_id = '%s_%s' %(
        cfg.analysis_name.strip().replace(' ', '-'),
        cfg.material.active.strip().replace(' ', '-'),
        )

    np.savetxt(
        os.path.join(
            cfg.working_dir,
            'accepted_orientations_%s.dat' %analysis_id
            ),
        qbar.T,
        fmt="%.18e",
        delimiter="\t")

    return
Exemple #10
0
def find_orientations(cfg, hkls=None, clean=False, profile=False):
    """
    Takes a config dict as input, generally a yml document

    NOTE: single cfg instance, not iterator!
    """

    # ...make this an attribute in cfg?
    analysis_id = '%s_%s' % (
        cfg.analysis_name.strip().replace(' ', '-'),
        cfg.material.active.strip().replace(' ', '-'),
    )

    # grab planeData object
    matl = cPickle.load(open('materials.cpl', 'r'))
    md = dict(zip([matl[i].name for i in range(len(matl))], matl))
    pd = md[cfg.material.active].planeData

    # make image_series
    image_series = cfg.image_series.omegaseries

    # need instrument cfg later on down...
    instr_cfg = get_instrument_parameters(cfg)
    detector_params = np.hstack([
        instr_cfg['detector']['transform']['tilt_angles'],
        instr_cfg['detector']['transform']['t_vec_d'],
        instr_cfg['oscillation_stage']['chi'],
        instr_cfg['oscillation_stage']['t_vec_s'],
    ])
    rdim = cfg.instrument.detector.pixels.size[
        0] * cfg.instrument.detector.pixels.rows
    cdim = cfg.instrument.detector.pixels.size[
        1] * cfg.instrument.detector.pixels.columns
    panel_dims = (
        (-0.5 * cdim, -0.5 * rdim),
        (0.5 * cdim, 0.5 * rdim),
    )
    # UGH! hard-coded distortion...
    if instr_cfg['detector']['distortion']['function_name'] == 'GE_41RT':
        distortion = (
            dFuncs.GE_41RT,
            instr_cfg['detector']['distortion']['parameters'],
        )
    else:
        distortion = None

    min_compl = cfg.find_orientations.clustering.completeness

    # start logger
    logger.info("beginning analysis '%s'", cfg.analysis_name)

    # load the eta_ome orientation maps
    eta_ome = load_eta_ome_maps(cfg, pd, image_series, hkls=hkls, clean=clean)

    ome_range = (np.min(eta_ome.omeEdges), np.max(eta_ome.omeEdges))
    try:
        # are we searching the full grid of orientation space?
        qgrid_f = cfg.find_orientations.use_quaternion_grid
        quats = np.load(qgrid_f)
        logger.info("Using %s for full quaternion search", qgrid_f)
        hkl_ids = None
    except (IOError, ValueError, AttributeError):
        # or doing a seeded search?
        logger.info("Defaulting to seeded search")
        hkl_seeds = cfg.find_orientations.seed_search.hkl_seeds
        hkl_ids = [
            eta_ome.planeData.hklDataList[i]['hklID'] for i in hkl_seeds
        ]
        hklseedstr = ', '.join(
            [str(i) for i in eta_ome.planeData.hkls.T[hkl_seeds]])
        logger.info("Seeding search using hkls from %s: %s",
                    cfg.find_orientations.orientation_maps.file, hklseedstr)
        quats = generate_orientation_fibers(
            eta_ome,
            detector_params[6],
            cfg.find_orientations.threshold,
            cfg.find_orientations.seed_search.hkl_seeds,
            cfg.find_orientations.seed_search.fiber_ndiv,
            ncpus=cfg.multiprocessing,
        )
        if save_as_ascii:
            np.savetxt(os.path.join(cfg.working_dir, 'trial_orientations.dat'),
                       quats.T,
                       fmt="%.18e",
                       delimiter="\t")
            pass
        pass  # close conditional on grid search

    # generate the completion maps
    logger.info("Running paintgrid on %d trial orientations", quats.shape[1])
    if profile:
        logger.info("Profiling mode active, forcing ncpus to 1")
        ncpus = 1
    else:
        ncpus = cfg.multiprocessing
        logger.info("%d of %d available processors requested", ncpus,
                    mp.cpu_count())
    compl = idx.paintGrid(
        quats,
        eta_ome,
        etaRange=np.radians(cfg.find_orientations.eta.range),
        omeTol=np.radians(cfg.find_orientations.omega.tolerance),
        etaTol=np.radians(cfg.find_orientations.eta.tolerance),
        omePeriod=np.radians(cfg.find_orientations.omega.period),
        threshold=cfg.find_orientations.threshold,
        doMultiProc=ncpus > 1,
        nCPUs=ncpus)

    if save_as_ascii:
        np.savetxt(os.path.join(cfg.working_dir, 'completeness.dat'), compl)
    else:
        np.save(
            os.path.join(cfg.working_dir,
                         'scored_orientations_%s.npy' % analysis_id),
            np.vstack([quats, compl]))

    ##########################################################
    ##   Simulate N random grains to get neighborhood size  ##
    ##########################################################
    if hkl_ids is not None:
        ngrains = 100
        rand_q = mutil.unitVector(np.random.randn(4, ngrains))
        rand_e = np.tile(2.*np.arccos(rand_q[0, :]), (3, 1)) \
          * mutil.unitVector(rand_q[1:, :])
        refl_per_grain = np.zeros(ngrains)
        num_seed_refls = np.zeros(ngrains)
        print('fo: hklids = ', hkl_ids)
        for i in range(ngrains):
            grain_params = np.hstack(
                [rand_e[:, i],
                 xf.zeroVec.flatten(),
                 xf.vInv_ref.flatten()])
            sim_results = simulateGVecs(
                pd,
                detector_params,
                grain_params,
                ome_range=(ome_range, ),
                ome_period=(ome_range[0], ome_range[0] + 2 * np.pi),
                eta_range=np.radians(cfg.find_orientations.eta.range),
                panel_dims=panel_dims,
                pixel_pitch=cfg.instrument.detector.pixels.size,
                distortion=distortion,
            )
            refl_per_grain[i] = len(sim_results[0])
            # lines below fix bug when sim_results[0] is empty
            if refl_per_grain[i] > 0:
                num_seed_refls[i] = np.sum(
                    [sum(sim_results[0] == hkl_id) for hkl_id in hkl_ids])
            else:
                num_seed_refls[i] = 0
        #min_samples = 2
        min_samples = max(int(np.floor(0.5 * min_compl * min(num_seed_refls))),
                          2)
        mean_rpg = int(np.round(np.average(refl_per_grain)))
    else:
        min_samples = 1
        mean_rpg = 1

    logger.info("mean number of reflections per grain is %d", mean_rpg)
    logger.info("neighborhood size estimate is %d points", min_samples)

    # cluster analysis to identify orientation blobs, the final output:
    qbar, cl = run_cluster(compl,
                           quats,
                           pd.getQSym(),
                           cfg,
                           min_samples=min_samples)

    analysis_id = '%s_%s' % (
        cfg.analysis_name.strip().replace(' ', '-'),
        cfg.material.active.strip().replace(' ', '-'),
    )

    np.savetxt(os.path.join(cfg.working_dir,
                            'accepted_orientations_%s.dat' % analysis_id),
               qbar.T,
               fmt="%.18e",
               delimiter="\t")

    return
    r=np.sqrt(xv**2.+yv**2.)
    lorentzianFilter=gamma**2 / ((r)**2 + gamma**2)
    lorentzianFilter=lorentzianFilter/lorentzianFilter.sum()


    return lorentzianFilter

#%%
#Calculate Intercepts for diffraction events from grains

pixel_data = []

for ii in np.arange(grain_params_list.shape[0]):
    print "processing grain %d..." %ii
    
    simg = simulateGVecs(plane_data, detector_params, grain_params_list[ii,3:15],distortion=None)
    
    valid_ids, valid_hkl, valid_ang, valid_xy, ang_ps = simg
    
    #ax.plot(valid_xy[:, 0], valid_xy[:, 1], 'b.', ms=2)
    this_frame = sp.sparse.coo_matrix((nrows, ncols), np.uint16)
    frame_indices = cellIndices(ome_edges, np.degrees(valid_ang[:, 2]))
    i_row = cellIndices(row_edges, valid_xy[:, 1])
    j_col = cellIndices(col_edges, valid_xy[:, 0])
    pixel_data.append(np.vstack([i_row, j_col, frame_indices]))
   

pixd = np.hstack(pixel_data)