def __init__(self): self.new_tool = Tools() self.matrix_play = [] self.row = 0 self.column = 0 self.value = 0 self.new_menu = Menus() self.return_game = "" self.boards = integrator.integrator()
def some_func(bot, update): pass if not update.effective_message.photo: update.effective_message.reply_text( text="This bot is only capable of Computer Vision Tasks!") else: msg = update.effective_message file_id = msg.photo[-1].file_id photo = bot.get_file(file_id) download_image(photo["file_path"], 'wassup') update.effective_message.reply_text( text=i.beautify(i.integrator('wassup.jpeg')))
def __init__(self): """ Constructs the SIS response function class """ self.Igap = 1.0 self.Vgap = 1.0 self.Rn = 1.0 self.yIntercept = 0.0 self.noPoints = 201 self.__bias__ = 0.0 # used in calculating the KK transform self.__ikk__ = range(self.noPoints) self.__idc__ = range(self.noPoints) self.__vdc__ = range(self.noPoints) self.__Int__ = integrator.integrator() self.__Int__.__jMax__ = 12 self.__KK_vMax__ = 10.0 self.separator = "\t" # data value separator in idc and ikk files
def test_failsdifferenttend(self): int_c = integrator(self.int_coarse.tstart, 1e-10+self.int_coarse.tend, self.int_coarse.nsteps) with self.assertRaises(AssertionError): ts = timeslice(self.int_fine, int_c, 1e-10, 5)
generate_x_vs_t = False generate_x_vs_h = False generate_x_vs_a = False generate_x_vs_x0 = False generate_ibar = False generate_xyz_vs_t = False # Get a simulator, an integrator, and a analytic simulator = sim.Simulator(n=n, x0=x0, El=El, Eh=Eh, a=a, alpha=alpha, num_groups=num_groups) integrator = integ.integrator(n=n, x0=x0, Eh=Eh, El=El, a=a, alpha=alpha, h=h) analytic = an.analytic(n=n, x0=x0, Eh=Eh, El=El, a=a, alpha=alpha, h=h) simulator_cont = sim_cont.Simulator(n=n, x0=x0, min_effort=El, max_effort=Eh, a=a, alpha=alpha, num_groups=num_groups) simulator_tri = sim_tri.Simulator(n=n, x0=x0, y0=y0, El=El, Em=Em, Eh=Eh, a=a,
import sys sys.setrecursionlimit(10000) a = 0 b = 1 nevals = 0 def f1(x): global nevals nevals += 1 return np.sqrt(x) integral1 = integrator(f1) Q = integral1.adaptive_trapz(a, b) print('Function:\t\t f(x) = sqrt(x)') print('Absolute accuracy:\t', 1e-4) print('Relative accuracy:\t', 1e-4) print('Integral bounds:\t', a, 4) print('Integrand evaluations: \t', nevals) print('Numeric integral:\t', Q) print('Analytic integral: \t', 2 / 3) print('') nevals = 0 def f2(x): global nevals
def test_integrate_x_squared(self): f = lambda x: x ** 2 integrated = integrator(f, 0, 1, n_steps=10 ** 5) npt.assert_allclose(integrated, 1 / 3, rtol=1e-4)
def test_integrate_planck(self): T = 300 integrated = integrator(B_nu, 1e6, 1e16, T, n_steps=10 ** 5) analytic = B(T) npt.assert_allclose(integrated, analytic, rtol=1e-4)
def test_integrate_planck(self): T = 300 integrated = integrator(B_nu, 1e6, 1e16, T, n_steps=10**5) analytic = B(T) npt.assert_allclose(integrated, analytic, rtol=1e-4)
def test_failgenericrun(self): integ = integrator(self.t[0], self.t[1], self.nsteps) sol = solution(np.array([-1])) with self.assertRaises(NotImplementedError): integ.run(sol)
def test_nstepfloatfail(self): with self.assertRaises(AssertionError): integ = integrator(0.0, 1.0, 1.15)
def test_nstepnegativefail(self): with self.assertRaises(AssertionError): integ = integrator(0.0, 1.0, -10)
def test_wrongboundsfail(self): with self.assertRaises(AssertionError): integ = integrator(0.0, -1.0, 10)
def test_caninstantiate(self): integ = integrator(self.t[0], self.t[1], self.nsteps)
def test_integrate_x_squared(self): f = lambda x: x**2 integrated = integrator(f, 0, 1, n_steps=10**5) npt.assert_allclose(integrated, 1 / 3, rtol=1e-4)
def test_failwrongu0(self): integ = integrator(self.t[0], self.t[1], self.nsteps) with self.assertRaises(AssertionError): integ.run(-1)
import integrator from MAV import MAV import state_viewer import matplotlib.pyplot as plt my_mav = MAV('hw1_1') my_mav.state0 my_mav.FMeq [t, s] = integrator.integrator(my_mav) state_viewer.open_GUI(t, s)