Exemple #1
0
 def future(self, i):  #到底需不需要考虑拓扑顺序呢???
     if type(self.node_list[i]) != Varnode or self.node_list[i].I == None:
         return  #第一次future是提前做的,因此现在I还可能是空呢
     for item in self.node_list[i].next_dashed_list:
         if self.node_list[item].lval != None:  #lval != -inf
             #e.g. 原来是[j_3, a),现在有[, 99]
             #把lval换成-inf,变成[-inf, a),然后把这个字符串代入Interval进行初始化
             tmp = copy.deepcopy(self.node_list[item])
             tmp.lval = str(self.node_list[i].I.lower)
             s = str(tmp).replace('-inf', '').replace('inf', '')
             if tmp._type == 'int':
                 e = IntInterval.from_string(s)
             else:
                 e = FloatInterval.from_string(s)
         else:  #rval != inf
             #e.g. 原来是(a,j_3),现在有[, 99]
             #把rval=j_3换成99,变成(a, 99),然后把这个字符串代入Interval进行初始化
             tmp = copy.deepcopy(self.node_list[item])
             tmp.rval = str(self.node_list[i].I.upper)
             s = str(tmp).replace('-inf',
                                  '').replace('inf',
                                              '')  #用字符串来初始化不能有inf,而要留空
             if tmp._type == 'int':
                 e = IntInterval.from_string(s)
             else:
                 e = FloatInterval.from_string(s)
         self.node_list[item].I = e
Exemple #2
0
    def load_chosen_path(self):
        path = []
        all_msg_tree_view = self._view.all_msg_scrolled_win.get_child()
        focus_segment = all_msg_tree_view.get_selection()
        model, _iter = focus_segment.get_selected()
        depth = model.iter_depth(_iter)

        current__id = model.get_value(_iter, 0)
        current_segment_lower_num = model.get_value(_iter, 1)
        current_segment_upper_num = model.get_value(_iter, 2)
        current_segment = FloatInterval.closed(current_segment_lower_num,
                                               current_segment_upper_num)
        path.insert(0, [current__id, current_segment])
        parent_iter = _iter
        for i in range(depth):
            parent_iter = model.iter_parent(parent_iter)
            parent_id = model.get_value(parent_iter, 0)
            parent_segment_lower_num = model.get_value(parent_iter, 1)
            parent_segment_upper_num = model.get_value(parent_iter, 2)
            parent_segment = FloatInterval.closed(parent_segment_lower_num,
                                                  parent_segment_upper_num)
            path.insert(0, [parent_id, parent_segment])
        calibrate_parameter = self.load_chosen_parameter()
        path.insert(0, [calibrate_parameter, None])
        return path
Exemple #3
0
 def __init__(self, var_type, interval=None):
     super(Var, self).__init__()
     self.var_type = var_type
     self.interval = {}
     if var_type == 'int':
         if interval == None:
             self.interval['int'] = IntInterval.all()
         else:
             self.interval['int'] = IntInterval(interval)
     elif var_type == 'float':
         if interval == None:
             self.interval['float'] = FloatInterval.all()
         else:
             self.interval['float'] = FloatInterval(interval)
Exemple #4
0
 def calculate_beta_0_interval(self, alpha=0.05, precision=5):
     x_mean = self.x.mean()
     delta = x_mean ** 2 / ((self.x - x_mean) ** 2).sum()
     delta = math.sqrt(delta + self.x.count() ** -1)
     delta = self.calculate_t_distribute().isf(alpha / 2) * delta * self.calculate_std_e()
     b0 = self.calculate_Beta0()
     return FloatInterval.closed(round(b0 - delta, precision), round(b0 + delta, precision))
Exemple #5
0
def calculate_mean_confidence_interval_large(series, confidence_interval=0.90):
    mean = series.mean()
    s = math.sqrt(series.var())
    count = series.count()
    z = norm.isf((1 - confidence_interval) / 2)
    delta = round(z * (s / math.sqrt(count)), 1)
    return FloatInterval.closed(mean - delta, mean + delta)
Exemple #6
0
def roleta(populacao, start, target):
    #Calcula um vetor de fitness dos individuos da populacao
    fitPop = []
    porcFitness = []
    sumFitness = 0
    for individuo in populacao:
        fitIndividuo = fitness(individuo, start, target)
        fitPop.append(fitIndividuo)
        sumFitness += fitIndividuo

    #Calcula a soma total das fitness
    #sumFitness = sum(fitPop)

    #Calcula a porcentagem de cada fitness individual em relacao a fitness total
    for fit in fitPop:
        porcFitness.append(round(fit / sumFitness, 2))

    # Calcula a posicao da agulha da roleta - numero entre 0 e 1 randomico
    agulha = np.random.uniform(0, max(porcFitness), 1) / sumFitness

    #Cria os intervalos da roleta e faz o giro
    resultado = 0
    a = 0
    for porc in porcFitness:
        b = a + porc
        if float(agulha) in fInterval.closed(a, b):
            break
        else:
            resultado += 1
        a = b

    return populacao[resultado]
    def update_calibrate_parameter_interval_combobox(self, widget):
        self.clear_factors_scrolled_win()
        self.calibrate_parameter_interval_choose_combobox.clear()

        last_segment = self._presenter.load_last_dependency_segment()
        default_segment = FloatInterval.closed(2020, 2020)
        if last_segment == default_segment:
            self.clear_calibrate_parameter_interval_combobox()
        else:
            try:
                parameter_segments = self._presenter.get_calibrate_parameter_segments()
            except ValueError:
                dialog = Gtk.MessageDialog(parent=self.main_window, flags=0, message_type=Gtk.MessageType.INFO,
                                           buttons=Gtk.ButtonsType.OK, text="提示")
                dialog.format_secondary_text("请先选择好各个依赖分段")
                dialog.run()
                dialog.destroy()
            else:
                self._parameter_segments = parameter_segments
                interval_model = Gtk.ListStore(int, str)
                interval_model.append([2020, '--请先选择校正参数区间--'])
                count = 0
                for segment in parameter_segments:
                    interval = segment[0]
                    lower_num = interval.lower
                    upper_num = interval.upper
                    interval_model.append([count, '[{}, {}]'.format(lower_num, upper_num)])
                    count += 1
                self.calibrate_parameter_interval_choose_combobox.set_model(interval_model)
                cell = Gtk.CellRendererText()
                self.calibrate_parameter_interval_choose_combobox.pack_start(cell, True)
                self.calibrate_parameter_interval_choose_combobox.add_attribute(cell, 'text', 1)
                self.calibrate_parameter_interval_choose_combobox.set_active(0)
Exemple #8
0
 def test_floats_with_step(self):
     interval = FloatInterval((0, 0.5), step=0.5)
     assert interval.lower == 0
     assert interval.upper == 0.5
     assert not interval.lower_inc
     assert not interval.upper_inc
     assert interval.step
Exemple #9
0
def calculate_Var_confidence_interval_large(series, confidence_interval=0.95):
    count = series.count()
    var = series.var()
    upper = (count - 1) * var
    rv = chi2(count - 1)
    alpha = 1 - confidence_interval
    return FloatInterval.closed(round(upper / rv.isf(alpha / 2), 2), round(upper / rv.isf(1 - alpha / 2), 2))
Exemple #10
0
def calculate_mean_confidence_interval_small(series, confidence_interval=0.95):
    mean = series.mean()
    s = math.sqrt(series.var())
    count = series.count()
    rv = t(count - 1)
    z = rv.isf((1 - confidence_interval) / 2)
    delta = round(z * (s / math.sqrt(count)), 2)
    return FloatInterval.closed(mean - delta, mean + delta)
Exemple #11
0
 def calculate_prediction_interval(self, x, alpha=0.05, precision=5):
     x_mean = self.x.mean()
     n = self.x.count()
     delta = (x - x_mean) ** 2 / ((self.x - x_mean) ** 2).sum()
     delta = math.sqrt(1 + delta + n ** -1)
     delta = self.calculate_t_distribute().isf(alpha / 2) * delta * self.calculate_std_e()
     y = x * self.calculate_Beta1() + self.calculate_Beta0()
     return FloatInterval.closed(round(y - delta, precision), round(y + delta, precision))
Exemple #12
0
 def __init__(self, _type, const):
     super(Constnode, self).__init__(_type)
     self.const = const
     val = float(const)
     if val == int(val) and not const.endswith('.0'):
         self.I = IntInterval([int(val), int(val)])  #TODO: float
     else:
         self.I = FloatInterval([val, val])  #TODO: float
Exemple #13
0
 def test_string_as_constructor_param(self):
     with raises(TypeError) as e:
         FloatInterval('(0.2, 0.5)')
     assert str(e.value) == (
         'First argument should be a list or tuple. If you wish to '
         'initialize an interval from string, use from_string factory '
         'method.'
     )
Exemple #14
0
 def link_parameter_nodes_factors(self, repeat_read):
     all_factors = self._current_calibrate_msg[6]
     for node in self._parameter_nodes:
         for segment in node.parameter_segments:
             left_num = segment[0][0]
             right_num = segment[0][1]
             if not repeat_read:
                 interval = FloatInterval.closed(left_num, right_num)
             else:
                 try:
                     interval = FloatInterval.closed(left_num, right_num)
                 except RangeBoundsException:
                     interval = FloatInterval.closed(left_num, left_num + 2)
             segment[0] = interval
             transfer_num = segment[1]
             factors = all_factors[transfer_num]
             segment[1] = factors
Exemple #15
0
 def show_two_curves_in_senior(self):
     _id, lower_num, upper_num = self.load_chosen_segment()
     current_interval = FloatInterval.closed(lower_num, upper_num)
     current_factors_str = self.load_chosen_factors()
     current_factors = eval(current_factors_str)
     modified_factors = self.load_factors_entry()
     modified_segment = [current_interval, modified_factors]
     current_segment = [current_interval, current_factors]
     self._editor.show_two_factors_curve(modified_segment, current_segment)
 def load_current_entry(self):
     interval_list = []
     for entry in self._view.entries:
         num = float(entry.get_text())
         interval_list.append(num)
     lower_num = interval_list[0]
     upper_num = interval_list[1]
     interval = FloatInterval.closed(lower_num, upper_num)
     return interval
Exemple #17
0
 def create_dependency_node(segment, dependency_id):
     dependency_node = entity.CalibrateFile.CalibrateDependencyNode()
     segment_upper = segment[0][1]
     segment_lower = segment[0][0]
     transfer_num = segment[1]
     dependency_node.parameter_id = dependency_id
     dependency_node.transfer_num = transfer_num
     dependency_node.parameter_segment = FloatInterval.closed(
         segment_lower, segment_upper)
     return dependency_node
 def add_depend_segment_node(self,
                             parent_node,
                             child_id,
                             segment=FloatInterval.closed(
                                 float('-inf'), float('inf'))):
     # 当父节点在分支中的位置不是参数节点的前一级时,需考虑添加多级的分段
     child_node = CalibrateDependencyNode()
     child_node.parameter_segment = segment
     child_node.parameter_id = child_id
     child_node.parent = parent_node
     self._child_node = child_node
 def modify_depend_segment(lower_num, upper_num, depend_node):
     if not isinstance(depend_node, CalibrateDependencyNode):
         raise TypeError
     check_lower = isinstance(lower_num, int) or isinstance(
         lower_num, float)
     check_upper = isinstance(upper_num, int) or isinstance(
         upper_num, float)
     if not check_upper and not check_lower:
         raise ValueError('upper bound or lower bound type error')
     new_segment = FloatInterval.closed(lower_num, upper_num)
     depend_node.parameter_segment = new_segment
Exemple #20
0
 def load_last_dependency_segment(self):
     viewport = self._view.dependencies_segment_choose_scrolled_win.get_child()
     main_box = viewport.get_child()
     boxes = main_box.get_children()
     last_box = boxes[-1]
     last_combobox = last_box.get_children()[1]
     segment_activated = last_combobox.get_active()
     model = last_combobox.get_model()
     _iter = model.get_iter_from_string('{}'.format(segment_activated))
     segment_str = model.get_value(_iter, 0)
     last_segment = FloatInterval.from_string(segment_str)
     return last_segment
 def add_depend_behind(self, depend_in, new_dependency):
     for node in self._root_node.descendants:
         if depend_in == node.parameter_id:
             children_nodes = node.children
             node.children = []
             depend_node = CalibrateDependencyNode()
             depend_node.parameter_id = new_dependency
             default_segment = FloatInterval.closed(float('-inf'),
                                                    float('inf'))
             depend_node.parameter_segment = default_segment
             depend_node.parent = node
             depend_node.children = children_nodes
Exemple #22
0
 def link_dependency_roots(root_node, entry_dependency):
     for segment in entry_dependency[1]:
         dependency_segment_node = entity.CalibrateFile.CalibrateDependencyNode(
         )
         parameter_id = entry_dependency[0]
         dependency_segment_node.parameter_id = parameter_id
         segment_upper = segment[0][1]
         segment_lower = segment[0][0]
         transfer_num = segment[1]
         interval = FloatInterval.closed(segment_lower, segment_upper)
         dependency_segment_node.parameter_segment = interval
         dependency_segment_node.transfer_num = transfer_num
         dependency_segment_node.parent = root_node
Exemple #23
0
 def modify_factors_in_senior(self):
     path = self.load_chosen_path()
     path = path[:-1]
     calibrate_parameter_id, lower_num, upper_num = self.load_chosen_segment(
     )
     current_factors_str = self.load_chosen_factors()
     current_factors = eval(current_factors_str)
     current_interval = FloatInterval.closed(lower_num, upper_num)
     segment = [current_interval, current_factors]
     modified_factors = self.load_factors_entry()
     self._editor.modify_parameter_factors_in_senior(
         self._channel, calibrate_parameter_id, path, segment,
         modified_factors)
Exemple #24
0
def parse_resistivity(model):
    """
    Given a Boteler resitivity specification *model* (list of depth
    [m] / resistivity [Ohm/m] tuples), return a conductivity map
    suitable for func:`conductivity.surface_impedance_1D`.
    """
    conductivity_model = OrderedDict()
    last_depth = 0
    for depth_i, r in model:
        bound = FloatInterval.closed_open(last_depth,
                                          last_depth + depth_i)
        conductivity_model[bound] = 1 / r
        last_depth += depth_i
    return conductivity_model
Exemple #25
0
    def load_focus_depend(self):
        dependencies_segment_choose_scrolled_win = self._view.dependencies_segment_choose_scrolled_win
        viewport = dependencies_segment_choose_scrolled_win.get_child()
        main_box = viewport.get_child()

        focus_box = main_box.get_focus_child()
        focus_box_children = focus_box.get_children()
        focus_label = focus_box_children[0]
        focus_depend_id = int(focus_label.get_text())
        focus_combobox = focus_box_children[1]
        segment_activated = focus_combobox.get_active()
        model = focus_combobox.get_model()
        _iter = model.get_iter_from_string('{}'.format(segment_activated))
        segment_str = model.get_value(_iter, 0)
        focus_segment = FloatInterval.from_string(segment_str)
        return focus_depend_id, focus_segment
Exemple #26
0
 def load_chosen_dependency_segment(self, dependency_id):
     viewport = self._view.dependencies_segment_choose_scrolled_win.get_child()
     main_box = viewport.get_child()
     boxes = main_box.get_children()
     for box in boxes:
         children = box.get_children()
         label = children[0]
         depend = int(label.get_text())
         if dependency_id == depend:
             combobox = children[1]
             segment_activated = combobox.get_active()
             model = combobox.get_model()
             _iter = model.get_iter_from_string('{}'.format(segment_activated))
             segment_str = model.get_value(_iter, 0)
             segment = FloatInterval.from_string(segment_str)
             return segment
 def add_depend_before(self, depend_in, new_dependency):
     parent_nodes = []
     for node in self._root_node.descendants:
         if depend_in == node.parameter_id:
             parent_node = node.parent
             if parent_node not in parent_nodes:
                 parent_nodes.append(parent_node)
     for node_p in parent_nodes:
         parent_children = list(node_p.children)
         node_p.children = []
         depend_node = CalibrateDependencyNode()
         depend_node.parameter_id = new_dependency
         default_segment = FloatInterval.closed(float('-inf'), float('inf'))
         depend_node.parameter_segment = default_segment
         depend_node.parent = node_p
         depend_node.children = parent_children
Exemple #28
0
 def load_parameter_node_path(self):
     viewport = self._view.dependencies_segment_choose_scrolled_win.get_child()
     main_box = viewport.get_child()
     boxes = main_box.get_children()
     calibrate_parameter = self.load_chosen_calibrate_parameter()
     parameter_path = [[calibrate_parameter, None]]
     for box in boxes:
         children = box.get_children()
         label = children[0]
         depend_id = int(label.get_text())
         combobox = children[1]
         segment_activated = combobox.get_active()
         model = combobox.get_model()
         _iter = model.get_iter_from_string('{}'.format(segment_activated))
         segment_str = model.get_value(_iter, 0)
         focus_segment = FloatInterval.from_string(segment_str)
         parameter_path.append([depend_id, focus_segment])
     return parameter_path
    def update_next_depend_segment(self, widget):
        self.clear_calibrate_parameter_interval_combobox()
        self.clear_factors_scrolled_win()

        viewport = self.dependencies_segment_choose_scrolled_win.get_child()
        main_box = viewport.get_child()
        boxes = main_box.get_children()

        focus_depend_id, focus_segment = self._presenter.load_focus_depend()
        default_segment = FloatInterval.closed(2020, 2020)
        focus_depend_id_index = self._depends_id.index(focus_depend_id)
        if focus_depend_id_index+1 < len(self._depends_id):
            next_parameter_id = self._depends_id[focus_depend_id_index+1]
            next_model = Gtk.ListStore(str, str)
            if focus_segment != default_segment:
                depend_path = self._presenter.load_depend_path(focus_depend_id)
                next_segments = self._presenter.get_depend_segments(depend_path, next_parameter_id)
                next_model.append(['[2020, 2020]', '--请先选择依赖区间--'])
                for segment in next_segments:
                    lower_num = segment.lower
                    upper_num = segment.upper
                    next_model.append(['[{}, {}]'.format(lower_num, upper_num), '[{}, {}]'.format(lower_num, upper_num)])
                next_box = boxes[focus_depend_id_index+1]
                next_label = next_box.get_children()[0]
                next_depend_id = int(next_label.get_text())
                next_combobox = next_box.get_children()[1]
                next_combobox.clear()
                next_combobox.set_model(next_model)
                current_cell = Gtk.CellRendererText()
                next_combobox.pack_start(current_cell, True)
                next_combobox.add_attribute(current_cell, 'text', 1)
                # next_combobox.set_active(0)   # 这里的set_active又会跳回去,陷入无限循环,有毒..
                if self._is_update_all_dependencies_segment_choose:
                    if next_depend_id == self._depends_id[-1]:
                        next_combobox.connect('changed', self.update_calibrate_parameter_interval_combobox)
                        self._is_update_all_dependencies_segment_choose = False
                    else:
                        next_combobox.connect('changed', self.update_next_depend_segment)
            else:
                for box in boxes[focus_depend_id_index+1:]:
                    combobox = box.get_children()[1]
                    combobox.clear()
                    empty_model = Gtk.ListStore()
                    combobox.set_model(empty_model)
Exemple #30
0
def parse_conductivity(fid):
    """
    Parse a USGS model conductivity file-like object *fid*. Return an
    ordered mapping between layer depth interval, [upper depth,
    lower_depth) in [m], and the conductivity [(Ohm-m)^{-1}]
    """
    for line in fid:
        if line.startswith('*/'):
            if 'thicknesses' in line.split('!')[1].lower():
                thicknesses = map(float, line[1:].split('/')[1].split(',')[:-1])
            elif 'resistivities' in line.split('!')[1].lower():
                resistivites = map(float, line[1:].split('/')[1].split(',')[:-1])
            else:
                break
    last_depth = 0
    bounds = []
    for depth in thicknesses:
        bounds.append(FloatInterval.closed_open(last_depth, last_depth + depth))
        last_depth += depth
    return OrderedDict(zip(bounds,
                           1 / NP.array(resistivites)))
Exemple #31
0
def parse_conductivity(fid):
    """
    Parse a USGS model conductivity file-like object *fid*. Return an
    ordered mapping between layer depth interval, [upper depth,
    lower_depth) in [m], and the conductivity [(Ohm-m)^{-1}]
    """
    for line in fid:
        if line.startswith('*/'):
            if 'thicknesses' in line.split('!')[1].lower():
                thicknesses = map(float,
                                  line[1:].split('/')[1].split(',')[:-1])
            elif 'resistivities' in line.split('!')[1].lower():
                resistivites = map(float,
                                   line[1:].split('/')[1].split(',')[:-1])
            else:
                break
    last_depth = 0
    bounds = []
    for depth in thicknesses:
        bounds.append(FloatInterval.closed_open(last_depth,
                                                last_depth + depth))
        last_depth += depth
    return OrderedDict(zip(bounds, 1 / NP.array(resistivites)))
Exemple #32
0
def spectrogram_by_eeg_bandwidth(sig, sample_rate=125, timeIntervalSec=30):
    slow = FloatInterval.from_string('[0.5, 2.0)')
    delta = FloatInterval.from_string('[2, 4.0)')
    theta = FloatInterval.from_string('[4.0, 8.0)')
    alpha = FloatInterval.from_string('[8.0, 16.0)')
    beta = FloatInterval.from_string('[16.0, 32.0)')
    gamma = FloatInterval.from_string('[32.0, 100.0)')
    ##above100Hz = FloatInterval.from_string('[100.0,)')
    # no signal above100Hz
    nperseg = int(sample_rate * timeIntervalSec)
    noverlap = None #will take default value
    freqs, times, spec = signal.spectrogram(sig,
                                    fs=sample_rate,
                                    window='hann',
                                    nperseg=sample_rate*timeIntervalSec,
                                    noverlap=noverlap,
                                    detrend=False)
    #Edelta, Etheta, Ealpha, Ebeta, Egamma, Eabove100Hz = np.zeros(6)
    result = pd.DataFrame(np.zeros(spec.shape[1]*6).reshape((6, spec.shape[1])), index=['Slow', 'Delta', 'Theta', 'Alpha', 'Beta', 'Gamma'])
    #
    for i in range(0, spec.shape[0]):
        for j in range(0, spec.shape[1]):
            if freqs[i] in slow:
                result.loc["Slow", j]= result.loc["Slow", j] + spec[i, j]
            if freqs[i] in delta:
                result.loc["Delta", j]= result.loc["Delta", j] + spec[i, j]
            elif freqs[i] in theta:
                result.loc["Theta", j]= result.loc["Theta", j] + spec[i, j]
            elif freqs[i] in alpha:
                result.loc["Alpha", j]= result.loc["Alpha", j] + spec[i, j]
            elif freqs[i] in beta:
                result.loc["Beta", j]= result.loc["Beta", j] + spec[i, j]
            elif freqs[i] in gamma:
                result.loc["Gamma", j]= result.loc["Gamma", j] + spec[i, j]
#            else: we are filtering out frequencies lower than 0.5 Hz
#               print("error at cell " + str((i, j)))
    return result
def spectrogram_by_eeg_bandwidth(sig, sample_rate=125, timeIntervalSec=2):
    delta = FloatInterval.from_string('[0, 4.0)')
    theta = FloatInterval.from_string('[4.0, 8.0)')
    alpha = FloatInterval.from_string('[8.0, 16.0)')
    beta = FloatInterval.from_string('[16.0, 32.0)')
    gamma = FloatInterval.from_string('[32.0, 100.0)')
    above100Hz = FloatInterval.from_string('[100.0,)')
    #
    nperseg = int(sample_rate * timeIntervalSec)
    noverlap = 0
    freqs, times, spec = signal.spectrogram(sig,
                                    fs=sample_rate,
                                    window='hann',
                                    nperseg=sample_rate*timeIntervalSec,
                                    noverlap=noverlap,
                                    detrend=False)
    #Edelta, Etheta, Ealpha, Ebeta, Egamma, Eabove100Hz = np.zeros(6)
    result = pd.DataFrame(np.zeros(spec.shape[1]*6).reshape((6, spec.shape[1])), index=['Delta', 'Theta', 'Alpha', 'Beta', 'Gamma', 'Above100Hz'])
    #
    for i in range(0, spec.shape[0]):
        for j in range(0, spec.shape[1]):
            if freqs[i] in delta:
                result.loc["Delta", j]= result.loc["Delta", j] + spec[i, j]
            elif freqs[i] in theta:
                result.loc["Theta", j]= result.loc["Theta", j] + spec[i, j]
            elif freqs[i] in alpha:
                result.loc["Alpha", j]= result.loc["Alpha", j] + spec[i, j]
            elif freqs[i] in beta:
                result.loc["Beta", j]= result.loc["Beta", j] + spec[i, j]
            elif freqs[i] in gamma:
                result.loc["Gamma", j]= result.loc["Gamma", j] + spec[i, j]
            elif freqs[i] in above100Hz:
                print(str((i, j)) + "added tp above100Hz")
                result.loc["Above100Hz", j]= result.loc["Above100Hz", j] + spec[i, j]
            else:
                print("error at cell " + str((i, j)))
    return result
Exemple #34
0
class TestComparisonOperators(object):
    @mark.parametrize(('comparison', 'result'), (
        (IntInterval([1, 3]) == IntInterval([1, 3]), True),
        (IntInterval([1, 3]) == IntInterval([1, 4]), False),
        (IntInterval([inf, inf]) == inf, True),
        (IntInterval([3, 3]) == 3, True),
        (IntInterval([3, 3]) == 5, False),
        (IntInterval('(,)') == None, False)
    ))
    def test_eq_operator(self, comparison, result):
        assert comparison is result

    @mark.parametrize(('comparison', 'result'), (
        (IntInterval([1, 3]) != IntInterval([1, 3]), False),
        (IntInterval([1, 3]) != IntInterval([1, 4]), True),
        (IntInterval([inf, inf]) != inf, False),
        (IntInterval([3, 3]) != 3, False),
        (IntInterval([3, 3]) != 5, True),
        (IntInterval('(,)') != None, True)
    ))
    def test_ne_operator(self, comparison, result):
        assert comparison is result

    @mark.parametrize(('comparison', 'result'), (
        (IntInterval([1, 3]) > IntInterval([0, 2]), True),
        (IntInterval((1, 4)) > 1, False),
        (IntInterval((1, 6)) > [1, 6], False),
        (IntInterval((1, 6)) > 0, True)
    ))
    def test_gt_operator(self, comparison, result):
        assert comparison is result

    @mark.parametrize(('comparison', 'result'), (
        (IntInterval([1, 3]) >= IntInterval([0, 2]), True),
        (IntInterval((1, 4)) >= 1, False),
        (IntInterval((1, 6)) >= [1, 6], False),
        (IntInterval((1, 6)) >= 0, True)
    ))
    def test_ge_operator(self, comparison, result):
        assert comparison is result

    @mark.parametrize(('comparison', 'result'), (
        (IntInterval([0, 2]) < IntInterval([1, 3]), True),
        (IntInterval([2, 3]) < IntInterval([2, 3]), False),
        (IntInterval([2, 5]) < 6, True),
        (IntInterval([2, 5]) < 5, False),
        (IntInterval([2, 5]) < inf, True)
    ))
    def test_lt_operator(self, comparison, result):
        assert comparison is result

    @mark.parametrize(('comparison', 'result'), (
        (IntInterval([0, 2]) <= IntInterval([1, 3]), True),
        (IntInterval([1, 3]) <= IntInterval([1, 3]), True),
        (IntInterval([1, 7]) <= 8, True),
        (IntInterval([1, 6]) <= 5, False),
        (IntInterval([1, 5]) <= inf, True)
    ))
    def test_le_operator(self, comparison, result):
        assert comparison is result

    def test_integer_comparison(self):
        assert IntInterval([2, 2]) <= 3
        assert IntInterval([1, 3]) >= 0
        assert IntInterval([2, 2]) == 2
        assert IntInterval([2, 2]) != 3

    @mark.parametrize('value', (
        IntInterval([0, 2]),
        1,
        (-1, 1),
    ))
    def test_contains_operator_for_inclusive_interval(self, value):
        assert value in IntInterval([-1, 2])

    @mark.parametrize('value', (
        IntInterval([0, 2]),
        2,
        '[-1, 1]',
    ))
    def test_contains_operator_for_non_inclusive_interval(self, value):
        assert value not in IntInterval((-1, 2))

    @mark.parametrize(('interval1', 'interval2', 'expected'), (
        (IntInterval((0, 2)), IntInterval((0, 2)), True),
        (IntInterval([0, 2]), IntInterval([0, 2]), True),
        (IntInterval('[0, 2)'), IntInterval('[0, 2)'), True),
        (IntInterval('(0, 2]'), IntInterval('(0, 2]'), True),
        (IntInterval((0, 2)), IntInterval((1, 2)), False),
        (IntInterval((0, 2)), IntInterval((0, 1)), False),
        (IntInterval((0, 2)), IntInterval([0, 1]), False),
        (IntInterval((0, 2)), FloatInterval((0, 1)), False),
    ))
    def test_hash_operator_with_interval_attributes(self, interval1, interval2, expected):
        actual = (interval1.__hash__() == interval2.__hash__())
        assert actual == expected

    @mark.parametrize(('contains_check', 'expected'), (
        (IntInterval([0, 2]) in {IntInterval([0, 2]): ''}, True),
        (IntInterval([0, 2]) in {IntInterval((0, 2)): ''}, False),
        (IntInterval([0, 2]) in set([IntInterval([0, 2])]), True),
    ))
    def test_hash_operator_with_collections(self, contains_check, expected):
        assert contains_check is expected
Exemple #35
0
 def calculate_beta_1_interval(self, alpha=0.05, precision=5):
     delta = math.sqrt(((self.x - self.x.mean()) ** 2).sum())
     delta = self.calculate_std_e() / delta
     delta = self.calculate_t_distribute().isf(alpha / 2) * delta
     b1 = self.calculate_Beta1()
     return FloatInterval.closed(round(b1 - delta, precision), round(b1 + delta, precision))
Exemple #36
0
class TestIntervalProperties(object):
    @mark.parametrize(('number_range', 'length'), (
        ([1, 4], 3),
        ([-1, 1], 2),
        ((-inf, inf), inf),
        ((1, inf), inf),
    ))
    def test_length(self, number_range, length):
        assert IntInterval(number_range).length == length

    @mark.parametrize(('number_range', 'radius'), (
        ([1, 4], 1.5),
        ([-1, 1], 1.0),
        ([-4, -1], 1.5),
        ((-inf, inf), inf),
        ((1, inf), inf),
    ))
    def test_radius(self, number_range, radius):
        assert IntInterval(number_range).radius == radius

    @mark.parametrize(('number_range', 'centre'), (
        ([1, 4], 2.5),
        ([-1, 1], 0),
        ([-4, -1], -2.5),
        ((1, inf), inf),
    ))
    def test_centre(self, number_range, centre):
        assert IntInterval(number_range).centre == centre

    @mark.parametrize(('number_range', 'is_open'),
                      (((2, 3), True), ('(2, 5)', True), ('[3, 4)', False),
                       ('(4, 5]', False), ('3 - 4', False), ([4, 5], False),
                       ('[4, 5]', False)))
    def test_open(self, number_range, is_open):
        assert IntInterval(number_range).open == is_open

    @mark.parametrize(
        ('number_range', 'is_closed'),
        (((2, 3), False), ('(2, 5)', False), ('[3, 4)', False),
         ('(4, 5]', False), ('3 - 4', True), ([4, 5], True), ('[4, 5]', True)))
    def test_closed(self, number_range, is_closed):
        assert IntInterval(number_range).closed == is_closed

    @mark.parametrize(('number_range', 'empty'), (
        ((2, 3), True),
        ([2, 3], False),
        ([2, 2], False),
        ((2, 2), True),
        ('[2, 2)', True),
        ('(2, 2]', True),
        ('[2, 3)', False),
        ((2, 10), False),
    ))
    def test_empty(self, number_range, empty):
        assert IntInterval(number_range).empty == empty

    @mark.parametrize(('number_range', 'degenerate'), (
        ((2, 4), False),
        ('(2, 2)', True),
        ('[0, 0)', True),
    ))
    def test_degenerate(self, number_range, degenerate):
        assert IntInterval(number_range).degenerate == degenerate

    @mark.parametrize(
        ('interval', 'discrete'),
        ((IntInterval((2, 3)), True), (IntInterval(5), True),
         (FloatInterval(3.5), False), (DecimalInterval(Decimal('2.4')), False),
         (DateTimeInterval(datetime(2002, 1, 1)), False),
         (DateInterval(date(2002, 1, 1)), True)))
    def test_discrete(self, interval, discrete):
        assert interval.discrete == discrete
Exemple #37
0
def calculate_percent_confidence_interval_large(p, n, confidence_interval=0.95):
    z = norm.isf((1 - confidence_interval) / 2)
    delta = round(z * math.sqrt(((p * (1 - p)) / n)), 4)
    return FloatInterval.closed(p - delta, p + delta)
Exemple #38
0
 def testCalculateMeanConfidenceIntervalSmall(self):
     data = pandas.read_excel('mean_smaller.xlsx').age
     expected = FloatInterval.closed(1476.8, 1503.2)
     self.assertEqual(expected, sampler.calculate_mean_confidence_interval_small(data))
Exemple #39
0
 def testCalculatePercentageConfidenceIntervalLarge(self):
     expected = FloatInterval.closed(0.5565, 0.7435)
     self.assertEqual(expected, sampler.calculate_percent_confidence_interval_large(0.65,100))
Exemple #40
0
 def testCalculatePercentageConfidenceIntervalLarge(self):
     data = pandas.read_excel('var_test.xlsx').weight
     expected = FloatInterval.closed(56.83, 180.39)
     self.assertEqual(expected, sampler.calculate_Var_confidence_interval_large(data))
Exemple #41
0
 def testCalculateMeanConfidenceIntervalLarge(self):
     data = pandas.read_excel('mean_large.xlsx').age
     expected = FloatInterval.closed(37.3689326757, 41.6310673243)
     self.assertEqual(expected, sampler.calculate_mean_confidence_interval_large(data))
Exemple #42
0
 def test_interval(self):
     self.assertEqual(FloatInterval.closed(4.1317,6.13001), self.target.calculate_beta_1_interval())
     self.assertEqual(FloatInterval.closed(-4.9130, 554.01347), self.target.calculate_beta_0_interval())
     self.assertEqual(FloatInterval.closed(260.13241, 750.745), self.target.calculate_confidence_interval(45))
     self.assertEqual(FloatInterval.closed(-293.41195,1304.28935), self.target.calculate_prediction_interval(45))
 def test_floats(self):
     interval = FloatInterval((0.2, 0.5))
     assert interval.lower == 0.2
     assert interval.upper == 0.5
     assert not interval.lower_inc
     assert not interval.upper_inc