Exemple #1
0
    def getTrainModel(self, data_x, data_y, data_sm):
        self.ngram_start_index = T.lscalar()
        self.ngram_end_index = T.lscalar()
        self.sm_start_index = T.lscalar()
        self.sm_end_index = T.lscalar()
        self.learning_rate = T.scalar()

        # TRAIN_MODEL
        self.train_outputs = [self.cost, self.grad_norm]
        self.train_set_x, self.train_set_y, self.train_set_sm = io_read_ngram.shared_dataset(
            [data_x, data_y, data_sm])
        self.int_train_set_y = T.cast(self.train_set_y, 'int32')
        self.train_model = theano.function(
            inputs=[
                self.ngram_start_index, self.ngram_end_index,
                self.sm_start_index, self.sm_end_index, self.learning_rate
            ],
            outputs=self.train_outputs,
            updates=self.updates,
            givens={
                self.x:
                self.train_set_x[self.ngram_start_index:self.ngram_end_index],
                self.y:
                self.int_train_set_y[self.ngram_start_index:self.
                                     ngram_end_index],
                self.sm:
                self.train_set_sm[self.sm_start_index:self.sm_end_index],
                self.lr:
                self.learning_rate
            })

        return self.train_model
    def getTrainModel(self, data_x, data_y, data_sm):
        self.ngram_start_index = T.lscalar()
        self.ngram_end_index = T.lscalar()
        self.sm_start_index = T.lscalar()
        self.sm_end_index = T.lscalar()
        self.learning_rate = T.scalar()

        # TRAIN_MODEL
        self.train_outputs = [self.cost, self.grad_norm]
        self.train_set_x, self.train_set_y, self.train_set_sm = io_read_ngram.shared_dataset([data_x, data_y, data_sm])
        self.int_train_set_y = T.cast(self.train_set_y, "int32")
        self.train_model = theano.function(
            inputs=[
                self.ngram_start_index,
                self.ngram_end_index,
                self.sm_start_index,
                self.sm_end_index,
                self.learning_rate,
            ],
            outputs=self.train_outputs,
            updates=self.updates,
            givens={
                self.x: self.train_set_x[self.ngram_start_index : self.ngram_end_index],
                self.y: self.int_train_set_y[self.ngram_start_index : self.ngram_end_index],
                self.sm: self.train_set_sm[self.sm_start_index : self.sm_end_index],
                self.lr: self.learning_rate,
            },
        )

        return self.train_model
 def loadTestSet(self, test_data_package):
     self.test_set_x, self.test_set_y, self.test_set_sm = test_data_package
     self.shared_test_set_x, self.shared_test_set_y, self.shared_test_set_sm = io_read_ngram.shared_dataset(test_data_package)
     self.shared_test_set_y = T.cast(self.shared_test_set_y, 'int32')
     self.test_set_loaded = True
 def loadValidSet(self, valid_data_package):
     self.valid_set_x, self.valid_set_y, self.valid_set_sm = valid_data_package
     self.shared_valid_set_x, self.shared_valid_set_y, self.shared_valid_set_sm = io_read_ngram.shared_dataset(valid_data_package)
     self.shared_valid_set_y = T.cast(self.shared_valid_set_y, 'int32')
     self.valid_set_loaded = True