Exemple #1
0
def dotplot(anchorfile, qbed, sbed, fig, root, ax, vmin=0, vmax=1,
        is_self=False, synteny=False, cmap_text=None, cmap="copper",
        genomenames=None, sample_number=10000, minfont=5, palette=None,
        chrlw=.1, title=None, sep=True, sepcolor="g", stdpf=True):

    fp = open(anchorfile)
    # add genome names
    if genomenames:
        gx, gy = genomenames.split("_")
    else:
        to_ax_label = lambda fname: op.basename(fname).split(".")[0]
        gx, gy = [to_ax_label(x.filename) for x in (qbed, sbed)]
    gx, gy = markup(gx), markup(gy)

    qorder = qbed.order
    sorder = sbed.order

    data = []
    if cmap_text:
        logging.debug("Capping values within [{0:.1f}, {1:.1f}]"\
                        .format(vmin, vmax))

    block_id = 0
    for row in fp:
        atoms = row.split()
        block_color = None
        if row[0] == "#":
            block_id += 1
            if palette:
                block_color = palette.get(block_id, "k")
            continue

        # first two columns are query and subject, and an optional third column
        if len(atoms) < 2:
            continue

        query, subject = atoms[:2]
        value = atoms[-1]

        if cmap_text:
            try:
                value = float(value)
            except ValueError:
                value = vmax

            if value < vmin:
                continue
            if value > vmax:
                continue
        else:
            value = 0

        if query not in qorder:
            continue
        if subject not in sorder:
            continue

        qi, q = qorder[query]
        si, s = sorder[subject]

        nv = value if block_color is None else block_color
        data.append((qi, si, nv))
        if is_self:  # Mirror image
            data.append((si, qi, nv))

    npairs = downsample(data, sample_number=sample_number)
    x, y, c = zip(*data)

    if palette:
        ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0)
    else:
        ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0, cmap=cmap,
                vmin=vmin, vmax=vmax)

    if synteny:
        clusters = batch_scan(data, qbed, sbed)
        draw_box(clusters, ax)

    if cmap_text:
        draw_cmap(root, cmap_text, vmin, vmax, cmap=cmap)

    xsize, ysize = len(qbed), len(sbed)
    logging.debug("xsize=%d ysize=%d" % (xsize, ysize))
    qbreaks = qbed.get_breaks()
    sbreaks = sbed.get_breaks()
    xlim, ylim = plot_breaks_and_labels(fig, root, ax, gx, gy, xsize, ysize,
                           qbreaks, sbreaks, sep=sep, chrlw=chrlw,
                           sepcolor=sepcolor, minfont=minfont, stdpf=stdpf)

    # create a diagonal to separate mirror image for self comparison
    if is_self:
        ax.plot(xlim, (0, ysize), 'm-', alpha=.5, lw=2)

    if palette:  # bottom-left has the palette, if available
        colors = palette.colors
        xstart, ystart = .1, .05
        for category, c in sorted(colors.items()):
            root.add_patch(Rectangle((xstart, ystart), .03, .02, lw=0, fc=c))
            root.text(xstart + .04, ystart, category, color=c)
            xstart += .1

    if title is None:
        title = "Inter-genomic comparison: {0} vs {1}".format(gx, gy)
        if is_self:
            title = "Intra-genomic comparison within {0}".format(gx)
            npairs /= 2
        title += " ({0} gene pairs)".format(thousands(npairs))
    root.set_title(title, x=.5, y=.96, color="k")
    if title:
        logging.debug("Dot plot title: {}".format(title))
    normalize_axes(root)
Exemple #2
0
def dotplot(anchorfile,
            qbed,
            sbed,
            fig,
            root,
            ax,
            vmin=0,
            vmax=1,
            is_self=False,
            synteny=False,
            cmap_text=None,
            genomenames=None,
            sample_number=10000,
            minfont=5,
            palette=None,
            chrlw=.01,
            title=None,
            sepcolor="gainsboro"):

    fp = open(anchorfile)

    qorder = qbed.order
    sorder = sbed.order

    data = []
    if cmap_text:
        logging.debug("Normalize values to [%.1f, %.1f]" % (vmin, vmax))

    block_id = 0
    for row in fp:
        atoms = row.split()
        block_color = None
        if row[0] == "#":
            block_id += 1
            if palette:
                block_color = palette.get(block_id, "k")
            continue

        # first two columns are query and subject, and an optional third column
        if len(atoms) < 2:
            continue

        query, subject = atoms[:2]
        value = atoms[-1]

        try:
            value = float(value)
        except ValueError:
            value = vmax

        if value < vmin:
            value = vmin
        if value > vmax:
            value = vmax

        if query not in qorder:
            continue
        if subject not in sorder:
            continue

        qi, q = qorder[query]
        si, s = sorder[subject]

        nv = vmax - value if block_color is None else block_color
        data.append((qi, si, nv))
        if is_self:  # Mirror image
            data.append((si, qi, nv))

    npairs = len(data)
    # Only show random subset
    if npairs > sample_number:
        logging.debug("Showing a random subset of {0} data points (total {1}) " \
                      "for clarity.".format(sample_number, npairs))
        data = sample(data, sample_number)

    # the data are plotted in this order, the least value are plotted
    # last for aesthetics
    if not palette:
        data.sort(key=lambda x: -x[2])

    default_cm = cm.copper
    x, y, c = zip(*data)

    if palette:
        ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0)

    else:
        ax.scatter(x,
                   y,
                   c=c,
                   edgecolors="none",
                   s=2,
                   lw=0,
                   cmap=default_cm,
                   vmin=vmin,
                   vmax=vmax)

    if synteny:
        clusters = batch_scan(data, qbed, sbed)
        draw_box(clusters, ax)

    if cmap_text:
        draw_cmap(root, cmap_text, vmin, vmax, cmap=default_cm, reverse=True)

    xsize, ysize = len(qbed), len(sbed)
    logging.debug("xsize=%d ysize=%d" % (xsize, ysize))
    xlim = (0, xsize)
    ylim = (ysize, 0)  # invert the y-axis

    # Tag to mark whether to plot chr name (skip small ones)
    xchr_labels, ychr_labels = [], []
    th = TextHandler(fig)

    # plot the chromosome breaks
    for (seqid, beg, end) in qbed.get_breaks():
        xsize_ratio = abs(end - beg) * .8 / xsize
        fontsize = th.select_fontsize(xsize_ratio)
        seqid = "".join(seqid_parse(seqid)[:2])

        xchr_labels.append((seqid, (beg + end) / 2, fontsize))
        ax.plot([beg, beg], ylim, "-", lw=chrlw, color=sepcolor)

    for (seqid, beg, end) in sbed.get_breaks():
        ysize_ratio = abs(end - beg) * .8 / ysize
        fontsize = th.select_fontsize(ysize_ratio)
        seqid = "".join(seqid_parse(seqid)[:2])

        ychr_labels.append((seqid, (beg + end) / 2, fontsize))
        ax.plot(xlim, [beg, beg], "-", lw=chrlw, color=sepcolor)

    # plot the chromosome labels
    for label, pos, fontsize in xchr_labels:
        pos = .1 + pos * .8 / xsize
        if fontsize >= minfont:
            root.text(pos,
                      .91,
                      latex(label),
                      size=fontsize,
                      ha="center",
                      va="bottom",
                      rotation=45,
                      color="grey")

    # remember y labels are inverted
    for label, pos, fontsize in ychr_labels:
        pos = .9 - pos * .8 / ysize
        if fontsize >= minfont:
            root.text(.91,
                      pos,
                      latex(label),
                      size=fontsize,
                      va="center",
                      color="grey")

    # create a diagonal to separate mirror image for self comparison
    if is_self:
        ax.plot(xlim, (0, ysize), 'm-', alpha=.5, lw=2)

    ax.set_xlim(xlim)
    ax.set_ylim(ylim)

    # add genome names
    if genomenames:
        gx, gy = genomenames.split("_")
    else:
        to_ax_label = lambda fname: op.basename(fname).split(".")[0]
        gx, gy = [to_ax_label(x.filename) for x in (qbed, sbed)]
    ax.set_xlabel(gx, size=16)
    ax.set_ylabel(gy, size=16)

    # beautify the numeric axis
    for tick in ax.get_xticklines() + ax.get_yticklines():
        tick.set_visible(False)

    set_human_axis(ax)

    plt.setp(ax.get_xticklabels() + ax.get_yticklabels(),
             color='gray',
             size=10)

    if palette:  # bottom-left has the palette, if available
        colors = palette.colors
        xstart, ystart = .1, .05
        for category, c in sorted(colors.items()):
            root.add_patch(Rectangle((xstart, ystart), .03, .02, lw=0, fc=c))
            root.text(xstart + .04, ystart, category, color=c)
            xstart += .1

    if not title:
        title = "Inter-genomic comparison: {0} vs {1}".format(gx, gy)
        if is_self:
            title = "Intra-genomic comparison within {0}".format(gx)
            npairs /= 2
        title += " ({0} gene pairs)".format(thousands(npairs))
    root.set_title(title, x=.5, y=.96, color="k")
    logging.debug(title)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
Exemple #3
0
def dotplot(anchorfile, qbed, sbed, fig, root, ax, vmin=0, vmax=1,
        is_self=False, synteny=False, cmap_text=None, genomenames=None,
        sample_number=10000, ignore=.005, palette=None, chrlw=.01, title=None):

    fp = open(anchorfile)

    qorder = qbed.order
    sorder = sbed.order

    data = []
    if cmap_text:
        logging.debug("Normalize values to [%.1f, %.1f]" % (vmin, vmax))

    block_id = 0
    for row in fp:
        atoms = row.split()
        block_color = None
        if row[0] == "#":
            block_id += 1
            if palette:
                block_color = palette.get(block_id, "k")
            continue

        # first two columns are query and subject, and an optional third column
        if len(atoms) < 2:
            continue

        query, subject = atoms[:2]
        value = atoms[-1]

        try:
            value = float(value)
        except ValueError:
            value = vmax

        if value < vmin:
            value = vmin
        if value > vmax:
            value = vmax

        if query not in qorder:
            #logging.warning("ignore %s" % query)
            continue
        if subject not in sorder:
            #logging.warning("ignore %s" % subject)
            continue

        qi, q = qorder[query]
        si, s = sorder[subject]

        nv = vmax - value if block_color is None else block_color
        data.append((qi, si, nv))
        if is_self:  # Mirror image
            data.append((si, qi, nv))

    # only show random subset, default to sample_number = 5000
    if len(data) > sample_number:
        logging.debug("Showing a random subset of %s data points (total %s) " \
                      "for clarity." % (sample_number, len(data)))
        data = sample(data, sample_number)

    # the data are plotted in this order, the least value are plotted
    # last for aesthetics
    if not palette:
        data.sort(key=lambda x: -x[2])

    default_cm = cm.copper
    x, y, c = zip(*data)

    if palette:
        ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0)

    else:
        ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0, cmap=default_cm,
                vmin=vmin, vmax=vmax)

    if synteny:
        clusters = batch_scan(data, qbed, sbed)
        draw_box(clusters, ax)

    if cmap_text:
        draw_cmap(root, cmap_text, vmin, vmax, cmap=default_cm, reverse=True)

    xsize, ysize = len(qbed), len(sbed)
    logging.debug("xsize=%d ysize=%d" % (xsize, ysize))
    xlim = (0, xsize)
    ylim = (ysize, 0)  # invert the y-axis

    xchr_labels, ychr_labels = [], []
    # Tag to mark whether to plot chr name (skip small ones)
    ignore_size_x = ignore_size_y = 0
    if ignore:
        ignore_size_x = xsize * ignore
        ignore_size_y = ysize * ignore

    # plot the chromosome breaks
    for (seqid, beg, end) in qbed.get_breaks():
        ignore = abs(end - beg) < ignore_size_x
        seqid = seqid.split("_")[-1]
        try:
            seqid = int(seqid)
            seqid = "c%d" % seqid
        except:
            pass

        xchr_labels.append((seqid, (beg + end) / 2, ignore))
        ax.plot([beg, beg], ylim, "g-", lw=chrlw)

    for (seqid, beg, end) in sbed.get_breaks():
        ignore = abs(end - beg) < ignore_size_y
        seqid = seqid.split("_")[-1]
        try:
            seqid = int(seqid)
            seqid = "c%d" % seqid
        except:
            pass

        ychr_labels.append((seqid, (beg + end) / 2, ignore))
        ax.plot(xlim, [beg, beg], "g-", lw=chrlw)

    # plot the chromosome labels
    for label, pos, ignore in xchr_labels:
        pos = .1 + pos * .8 / xsize
        if not ignore:
            root.text(pos, .91, label,
                ha="center", va="bottom", rotation=45, color="grey")

    # remember y labels are inverted
    for label, pos, ignore in ychr_labels:
        pos = .9 - pos * .8 / ysize
        if not ignore:
            root.text(.91, pos, label,
                va="center", color="grey")

    # create a diagonal to separate mirror image for self comparison
    if is_self:
        ax.plot(xlim, (0, ysize), 'm-', alpha=.5, lw=2)

    ax.set_xlim(xlim)
    ax.set_ylim(ylim)

    # add genome names
    if genomenames:
        gx, gy = genomenames.split("_")
    else:
        to_ax_label = lambda fname: op.basename(fname).split(".")[0]
        gx, gy = [to_ax_label(x.filename) for x in (qbed, sbed)]
    ax.set_xlabel(gx, size=16)
    ax.set_ylabel(gy, size=16)

    # beautify the numeric axis
    for tick in ax.get_xticklines() + ax.get_yticklines():
        tick.set_visible(False)

    set_human_axis(ax)

    plt.setp(ax.get_xticklabels() + ax.get_yticklabels(),
            color='gray', size=10)

    if palette:  # bottom-left has the palette, if available
        colors = palette.colors
        xstart, ystart = .1, .05
        for category, c in sorted(colors.items()):
            root.add_patch(Rectangle((xstart, ystart), .03, .02, lw=0, fc=c))
            root.text(xstart + .04, ystart, category, color=c)
            xstart += .1

    if title:
        fig.suptitle(title, x=.05, y=.98, color="k")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()
Exemple #4
0
def ld(args):
    """
    %prog ld map

    Calculate pairwise linkage disequilibrium given MSTmap.
    """
    import numpy as np
    from random import sample

    from jcvi.algorithms.matrix import symmetrize

    p = OptionParser(ld.__doc__)
    p.add_option("--subsample", default=500, type="int",
                 help="Subsample markers to speed up [default: %default]")
    opts, args, iopts = p.set_image_options(args, figsize="8x8")

    if len(args) != 1:
        sys.exit(not p.print_help())

    mstmap, = args
    subsample = opts.subsample
    data = MSTMap(mstmap)
    # Take random subsample while keeping marker order
    if subsample < data.nmarkers:
        data = [data[x] for x in \
                sorted(sample(xrange(len(data)), subsample))]

    markerbedfile = mstmap + ".subsample.bed"
    ldmatrix = mstmap + ".subsample.matrix"

    if need_update(mstmap, (markerbedfile, ldmatrix)):
        nmarkers = len(data)
        fw = open(markerbedfile, "w")
        print >> fw, "\n".join(x.bedline for x in data)
        logging.debug("Write marker set of size {0} to file `{1}`."\
                        .format(nmarkers, markerbedfile))

        M = np.zeros((nmarkers, nmarkers), dtype=float)
        for i, j in combinations(range(nmarkers), 2):
            a = data[i]
            b = data[j]
            M[i, j] = calc_ldscore(a.genotype, b.genotype)

        M = symmetrize(M)

        logging.debug("Write LD matrix to file `{0}`.".format(ldmatrix))
        M.tofile(ldmatrix)
    else:
        nmarkers = len(Bed(markerbedfile))
        M = np.fromfile(ldmatrix, dtype="float").reshape(nmarkers, nmarkers)
        logging.debug("LD matrix `{0}` exists ({1}x{1})."\
                        .format(ldmatrix, nmarkers))

    from jcvi.graphics.base import plt, savefig, Rectangle, draw_cmap

    plt.rcParams["axes.linewidth"] = 0

    fig = plt.figure(1, (iopts.w, iopts.h))
    root = fig.add_axes([0, 0, 1, 1])
    ax = fig.add_axes([.1, .1, .8, .8])  # the heatmap

    ax.matshow(M, cmap=iopts.cmap)

    # Plot chromosomes breaks
    bed = Bed(markerbedfile)
    xsize = len(bed)
    extent = (0, nmarkers)
    chr_labels = []
    ignore_size = 20

    for (seqid, beg, end) in bed.get_breaks():
        ignore = abs(end - beg) < ignore_size
        pos = (beg + end) / 2
        chr_labels.append((seqid, pos, ignore))
        if ignore:
            continue
        ax.plot((end, end), extent, "w-", lw=1)
        ax.plot(extent, (end, end), "w-", lw=1)

    # Plot chromosome labels
    for label, pos, ignore in chr_labels:
        pos = .1 + pos * .8 / xsize
        if not ignore:
            root.text(pos, .91, label,
                ha="center", va="bottom", rotation=45, color="grey")
            root.text(.09, pos, label,
                ha="right", va="center", color="grey")

    ax.set_xlim(extent)
    ax.set_ylim(extent)
    ax.set_axis_off()

    draw_cmap(root, "Pairwise LD (r2)", 0, 1, cmap=default_cm)

    root.add_patch(Rectangle((.1, .1), .8, .8, fill=False, ec="k", lw=2))
    m = mstmap.split(".")[0]
    root.text(.5, .06, "Linkage Disequilibrium between {0} markers".format(m), ha="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    image_name = m + ".subsample" + "." + iopts.format
    savefig(image_name, dpi=iopts.dpi, iopts=iopts)
Exemple #5
0
def dotplot(anchorfile, qbed, sbed, fig, root, ax, vmin=0, vmax=1,
        is_self=False, synteny=False, cmap_text=None, cmap="copper",
        genomenames=None, sample_number=10000, minfont=5, palette=None,
        chrlw=.01, title=None, sepcolor="gainsboro"):

    fp = open(anchorfile)

    qorder = qbed.order
    sorder = sbed.order

    data = []
    if cmap_text:
        logging.debug("Capping values within [{0:.1f}, {1:.1f}]"\
                        .format(vmin, vmax))

    block_id = 0
    for row in fp:
        atoms = row.split()
        block_color = None
        if row[0] == "#":
            block_id += 1
            if palette:
                block_color = palette.get(block_id, "k")
            continue

        # first two columns are query and subject, and an optional third column
        if len(atoms) < 2:
            continue

        query, subject = atoms[:2]
        value = atoms[-1]

        if cmap_text:
            try:
                value = float(value)
            except ValueError:
                value = vmax

            if value < vmin:
                continue
            if value > vmax:
                continue
        else:
            value = 0

        if query not in qorder:
            continue
        if subject not in sorder:
            continue

        qi, q = qorder[query]
        si, s = sorder[subject]

        nv = value if block_color is None else block_color
        data.append((qi, si, nv))
        if is_self:  # Mirror image
            data.append((si, qi, nv))

    npairs = len(data)
    # Only show random subset
    if npairs > sample_number:
        logging.debug("Showing a random subset of {0} data points (total {1}) " \
                      "for clarity.".format(sample_number, npairs))
        data = sample(data, sample_number)

    # the data are plotted in this order, the least value are plotted
    # last for aesthetics
    #if not palette:
    #    data.sort(key=lambda x: -x[2])

    x, y, c = zip(*data)

    if palette:
        ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0)
    else:
        ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0, cmap=cmap,
                vmin=vmin, vmax=vmax)

    if synteny:
        clusters = batch_scan(data, qbed, sbed)
        draw_box(clusters, ax)

    if cmap_text:
        draw_cmap(root, cmap_text, vmin, vmax, cmap=cmap)

    xsize, ysize = len(qbed), len(sbed)
    logging.debug("xsize=%d ysize=%d" % (xsize, ysize))
    xlim = (0, xsize)
    ylim = (ysize, 0)  # invert the y-axis

    # Tag to mark whether to plot chr name (skip small ones)
    xchr_labels, ychr_labels = [], []
    th = TextHandler(fig)

    # plot the chromosome breaks
    for (seqid, beg, end) in qbed.get_breaks():
        xsize_ratio = abs(end - beg) * .8 / xsize
        fontsize = th.select_fontsize(xsize_ratio)
        seqid = "".join(seqid_parse(seqid)[:2])

        xchr_labels.append((seqid, (beg + end) / 2, fontsize))
        ax.plot([beg, beg], ylim, "-", lw=chrlw, color=sepcolor)

    for (seqid, beg, end) in sbed.get_breaks():
        ysize_ratio = abs(end - beg) * .8 / ysize
        fontsize = th.select_fontsize(ysize_ratio)
        seqid = "".join(seqid_parse(seqid)[:2])

        ychr_labels.append((seqid, (beg + end) / 2, fontsize))
        ax.plot(xlim, [beg, beg], "-", lw=chrlw, color=sepcolor)

    # plot the chromosome labels
    for label, pos, fontsize in xchr_labels:
        pos = .1 + pos * .8 / xsize
        if fontsize >= minfont:
            root.text(pos, .91, latex(label), size=fontsize,
                ha="center", va="bottom", rotation=45, color="grey")

    # remember y labels are inverted
    for label, pos, fontsize in ychr_labels:
        pos = .9 - pos * .8 / ysize
        if fontsize >= minfont:
            root.text(.91, pos, latex(label), size=fontsize,
                va="center", color="grey")

    # create a diagonal to separate mirror image for self comparison
    if is_self:
        ax.plot(xlim, (0, ysize), 'm-', alpha=.5, lw=2)

    ax.set_xlim(xlim)
    ax.set_ylim(ylim)

    # add genome names
    if genomenames:
        gx, gy = genomenames.split("_")
    else:
        to_ax_label = lambda fname: op.basename(fname).split(".")[0]
        gx, gy = [to_ax_label(x.filename) for x in (qbed, sbed)]
    ax.set_xlabel(markup(gx), size=16)
    ax.set_ylabel(markup(gy), size=16)

    # beautify the numeric axis
    for tick in ax.get_xticklines() + ax.get_yticklines():
        tick.set_visible(False)

    set_human_axis(ax)

    plt.setp(ax.get_xticklabels() + ax.get_yticklabels(),
            color='gray', size=10)

    if palette:  # bottom-left has the palette, if available
        colors = palette.colors
        xstart, ystart = .1, .05
        for category, c in sorted(colors.items()):
            root.add_patch(Rectangle((xstart, ystart), .03, .02, lw=0, fc=c))
            root.text(xstart + .04, ystart, category, color=c)
            xstart += .1

    if not title:
        title = "Inter-genomic comparison: {0} vs {1}".format(gx, gy)
        if is_self:
            title = "Intra-genomic comparison within {0}".format(gx)
            npairs /= 2
        title += " ({0} gene pairs)".format(thousands(npairs))
    root.set_title(markup(title), x=.5, y=.96, color="k")
    logging.debug(title)

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()