def test(docs, allpairs, kernelpairs, classifiers=[SLK_PRED, SST_PRED], dditype=type, tag="", backup=False, printstd=False): #expects: ddi_sentences.md #data = ddi_train_slk.model, ddi_train_sst.model tempfiles = [] excludesentences = [] if SLK_PRED in classifiers: logging.info("**Testing SLK classifier %s ..." % (tag,)) #testpairdic = ddi_kernels.fromddiDic(testdocs) kernelmodels.generatejSREdata(kernelpairs, docs, tag + "ddi_test_jsre.txt", dditype=dditype, excludesentences=excludesentences) kernelmodels.testjSRE(tag + "ddi_test_jsre.txt", tag + "ddi_test_result.txt", model=tag + "ddi_train_slk.model") allpairs = kernelmodels.getjSREPredicitons(tag + "ddi_test_jsre.txt", tag + "ddi_test_result.txt", allpairs, kernelpairs, dditype=dditype) tempfiles.append(kernelmodels.basedir + tag + "ddi_test_jsre.txt") tempfiles.append(kernelmodels.basedir + tag + "ddi_test_result.txt") if SST_PRED in classifiers: logging.info("****Testing SST classifier %s ..." % (tag,)) allpairs = kernelmodels.testSVMTK(docs, kernelpairs, allpairs, dditype=dditype, model=tag + "ddi_train_sst.model", tag=tag, excludesentences=excludesentences) return tempfiles, allpairs
def train(docs, kernelpairs, classifiers, dditype="all", tag="", backup=False): tempfiles = [] excludesentences = [] #data = ddi_sentences.build_data_frame(docs) #logging.info("excluding %s/%s sentences from the train data", # len(excludesentences), len(docs)) if SLK_PRED in classifiers: logging.info("**Training SLK classifier %s ..." % (tag,)) #trainpairdic = ddi_kernels.fromddiDic(traindocs) kernelmodels.generatejSREdata(kernelpairs, docs, tag + "ddi_train_jsre.txt", dditype=dditype, excludesentences=excludesentences, train=True) kernelmodels.trainjSRE(tag + "ddi_train_jsre.txt", tag + "ddi_train_slk.model") logging.info("done.") #logging.info("pred: %s \ntest_y: %s", labels, test_y) #tempfiles.append(ddi_kernels.basedir + tag + "ddi_train_jsre.txt") #tempfiles.append(ddi_kernels.basedir + tag + "ddi_train_slk.model") if SST_PRED in classifiers: logging.info("****Training SST classifier %s ..." % (tag,)) kernelmodels.trainSVMTK(docs, kernelpairs, model=tag + "ddi_train_sst.model", dditype=dditype, excludesentences=excludesentences) tempfiles.append("ddi_models/" + tag + "ddi_train_sst.model") logging.info("done.") print tag + " training complete" if backup: print "backing up these files:", tempfiles backupFiles("train_results_", tempfiles) return tempfiles
def test(docs, allpairs, kernelpairs, classifiers=[SLK_PRED, SST_PRED], dditype=type, tag="", backup=False, printstd=False): #expects: ddi_sentences.md #data = ddi_train_slk.model, ddi_train_sst.model tempfiles = [] excludesentences = [] if SLK_PRED in classifiers: logging.info("**Testing SLK classifier %s ..." % (tag, )) #testpairdic = ddi_kernels.fromddiDic(testdocs) kernelmodels.generatejSREdata(kernelpairs, docs, tag + "ddi_test_jsre.txt", dditype=dditype, excludesentences=excludesentences) kernelmodels.testjSRE(tag + "ddi_test_jsre.txt", tag + "ddi_test_result.txt", model=tag + "ddi_train_slk.model") allpairs = kernelmodels.getjSREPredicitons(tag + "ddi_test_jsre.txt", tag + "ddi_test_result.txt", allpairs, kernelpairs, dditype=dditype) tempfiles.append(kernelmodels.basedir + tag + "ddi_test_jsre.txt") tempfiles.append(kernelmodels.basedir + tag + "ddi_test_result.txt") if SST_PRED in classifiers: logging.info("****Testing SST classifier %s ..." % (tag, )) allpairs = kernelmodels.testSVMTK(docs, kernelpairs, allpairs, dditype=dditype, model=tag + "ddi_train_sst.model", tag=tag, excludesentences=excludesentences) return tempfiles, allpairs
def train(docs, kernelpairs, classifiers, dditype="all", tag="", backup=False): tempfiles = [] excludesentences = [] #data = ddi_sentences.build_data_frame(docs) #logging.info("excluding %s/%s sentences from the train data", # len(excludesentences), len(docs)) if SLK_PRED in classifiers: logging.info("**Training SLK classifier %s ..." % (tag, )) #trainpairdic = ddi_kernels.fromddiDic(traindocs) kernelmodels.generatejSREdata(kernelpairs, docs, tag + "ddi_train_jsre.txt", dditype=dditype, excludesentences=excludesentences, train=True) kernelmodels.trainjSRE(tag + "ddi_train_jsre.txt", tag + "ddi_train_slk.model") logging.info("done.") #logging.info("pred: %s \ntest_y: %s", labels, test_y) #tempfiles.append(ddi_kernels.basedir + tag + "ddi_train_jsre.txt") #tempfiles.append(ddi_kernels.basedir + tag + "ddi_train_slk.model") if SST_PRED in classifiers: logging.info("****Training SST classifier %s ..." % (tag, )) kernelmodels.trainSVMTK(docs, kernelpairs, model=tag + "ddi_train_sst.model", dditype=dditype, excludesentences=excludesentences) tempfiles.append("ddi_models/" + tag + "ddi_train_sst.model") logging.info("done.") print tag + " training complete" if backup: print "backing up these files:", tempfiles backupFiles("train_results_", tempfiles) return tempfiles