def draw_centered_map(center_state='TX', n=10): """Draw the n states closest to center_state.""" center = us_centers[center_state.upper()] dist_from_center = lambda name: geo_distance(center, us_centers[name]) for name in sorted(us_states.keys(), key=dist_from_center)[:int(n)]: draw_state(us_states[name]) draw_name(name, us_centers[name]) draw_dot(center, 1, 10) # Mark the center state with a red dot wait()
def draw_centered_map(center_state='TX', n=10): """Draw the n states closest to center_state.""" us_centers = {n: find_state_center(s) for n, s in us_states.items()} center = us_centers[center_state.upper()] dist_from_center = lambda name: geo_distance(center, us_centers[name]) for name in sorted(us_states.keys(), key=dist_from_center)[:int(n)]: draw_state(us_states[name]) draw_name(name, us_centers[name]) draw_dot(center, 1, 10) # Mark the center state with a red dot wait()
def draw_centered_map(center_state='TX', n=10): """Draw the n states closest to center_state.""" centers = {name: find_state_center(us_states[name]) for name in us_states} center = centers[center_state.upper()] distance = lambda name: geo_distance(center, centers[name]) for name in sorted(centers, key=distance)[:int(n)]: draw_state(us_states[name]) draw_name(name, centers[name]) draw_dot(center, 1, 10) # Mark the center state with a red dot wait()
def draw_centered_map(center_state='TX', n=10, canvas=None): """Draw the n states closest to center_state.""" us_centers = {n: find_center(s) for n, s in us_states.items()} center = us_centers[center_state.upper()] dist_from_center = lambda name: geo_distance(center, us_centers[name]) for name in sorted(us_states.keys(), key=dist_from_center)[:int(n)]: draw_state(us_states[name], canvas=canvas) draw_name(name, us_centers[name], canvas=canvas) draw_dot(center, 1, 10, canvas=canvas) # Mark the center state with a red dot wait(canvas=canvas)
def draw_centered_map(center_state='TX', n=10): """Draw the n states closest to center_state.""" us_centers = make_database() for state, s in get_items(us_states): us_centers = add_value(us_centers, state, find_state_center(s)) center = get_value_from_key(us_centers, center_state.upper()) dist_from_center = lambda name: geo_distance(center, get_value_from_key(us_centers, name)) for name in sorted(get_keys(us_centers), key=dist_from_center)[:int(n)]: draw_state(get_value_from_key(us_states, name)) draw_name(name, get_value_from_key(us_centers, name)) draw_dot(center, 1, 10) # Mark the center state with a red dot wait()
def draw_map_for_term(term='my job'): """Draw the sentiment map corresponding to the tweets that contain term. Some term suggestions: New York, Texas, sandwich, my life, justinbieber """ tweets = load_tweets(make_tweet, term) tweets_by_state = group_tweets_by_state(tweets) state_sentiments = average_sentiments(tweets_by_state) draw_state_sentiments(state_sentiments) for tweet in tweets: draw_dot(tweet_location(tweet), analyze_tweet_sentiment(tweet)) wait()
def draw_centered_map(center_state='TX', n=10): """Draw the n states closest to center_state.""" us_centers = make_database() for state, s in get_items(us_states): us_centers = add_value(us_centers, state, find_state_center(s)) center = get_value_from_key(us_centers, center_state.upper()) dist_from_center = lambda name: geo_distance( center, get_value_from_key(us_centers, name)) for name in sorted(get_keys(us_centers), key=dist_from_center)[:int(n)]: draw_state(get_value_from_key(us_states, name)) draw_name(name, get_value_from_key(us_centers, name)) draw_dot(center, 1, 10) # Mark the center state with a red dot wait()
def draw_map_for_query(tweets, term='my job'): """ Draw the sentiment map corresponding to the tweets that contain term. """ relevant_tweets = filter_tweets(tweets, term) tweets_by_state = group_tweets_by_state(relevant_tweets) state_sentiments = average_sentiments(tweets_by_state) draw_state_sentiments(state_sentiments) for tweet in relevant_tweets: s = analyze_tweet_sentiment(tweet) if has_sentiment(s): display_tweet(tweet) draw_dot(tweet_location(tweet), sentiment_value(s)) wait()
def draw_centered_map(center_state='TX', n=10): """Draw the n states closest to center_state. For example, to draw the 20 states closest to California (including California): # python3 trends.py CA 20 """ us_centers = {n: find_center(s) for n, s in us_states.items()} center = us_centers[center_state.upper()] dist_from_center = lambda name: geo_distance(center, us_centers[name]) for name in sorted(us_states.keys(), key=dist_from_center)[:int(n)]: draw_state(us_states[name]) draw_name(name, us_centers[name]) draw_dot(center, 1, 10) # Mark the center state with a red dot wait()
def draw_map_for_query(term='my job', file_name='tweets2014.txt'): """Draw the sentiment map corresponding to the tweets that contain term. Some term suggestions: New York, Texas, sandwich, my life, justinbieber """ tweets = load_tweets(make_tweet, term, file_name) tweets_by_state = group_tweets_by_state(tweets) state_sentiments = average_sentiments(tweets_by_state) draw_state_sentiments(state_sentiments) for tweet in tweets: s = analyze_tweet_sentiment(tweet) if has_sentiment(s): draw_dot(tweet_location(tweet), sentiment_value(s)) wait()
def draw_map_for_term(find_state, term='my job', canvas=None): """Draw the sentiment map corresponding to the tweets that contain term. Some term suggestions: New York, Texas, sandwich, my life, justinbieber """ word_sentiments = load_sentiments() tweets = load_tweets(term) tweets_by_state = group_tweets_by_state(tweets, find_state) state_sentiments = average_sentiments(tweets_by_state,word_sentiments) draw_state_sentiments(state_sentiments, canvas=canvas) for tweet in tweets: s = tweet.get_sentiment(word_sentiments) if s != None: draw_dot(tweet.get_location(), s, canvas=canvas) wait(canvas=canvas)
def draw_centered_map(center_state='TX', n=10): """Draw the n states closest to center_state. For example, to draw the 20 states closest to California (including California), enter in the terminal: # python3 trends.py CA 20 """ us_centers = make_idict() for i, s in idict_items(us_states): us_centers = idict_insert(us_centers, i, find_center(s)) center = idict_select(us_centers, center_state.upper()) dist_from_center = lambda name: geo_distance(center, idict_select(us_centers, name)) for name in sorted(idict_keys(us_states), key=dist_from_center)[:int(n)]: draw_state(idict_select(us_states, name)) draw_name(name, idict_select(us_centers, name)) draw_dot(center, 1, 10) # Mark the center state with a red dot wait()
def draw_map_for_term(term='Berkeley'): """ Draw the sentiment map corresponding to the tweets that match term. term -- a word or phrase to filter the tweets by. To visualize tweets containing the word "obama": # python3 trends.py obama Some term suggestions: New York, Texas, sandwich, my life, justinbieber """ tweets = load_tweets(make_tweet, term) tweets_by_state = group_tweets_by_state(tweets) state_sentiments = calculate_average_sentiments(tweets_by_state) draw_state_sentiments(state_sentiments) for tweet in tweets: draw_dot(tweet_location(tweet), analyze_tweet_sentiment(tweet)) wait()
def draw_map_for_term(term='my job'): """Draw the sentiment map corresponding to the tweets that contain term. Some term suggestions: New York, Texas, sandwich, my life, justinbieber """ tweets = load_tweets(make_tweet, term) tweets_by_state = group_tweets_by_state(tweets) state_sentiments = average_sentiments(tweets_by_state) draw_state_sentiments(state_sentiments) for tweet in tweets: s = analyze_tweet_sentiment(tweet) if has_sentiment(s): draw_dot(tweet_location(tweet), sentiment_value(s)) if len(tweets) != 0: draw_top_states(most_talkative_states(term)) else: draw_top_states(None) wait()