Exemple #1
0
def test(file_list, model_path):
    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.cuda()
    net.load_state_dict(torch.load(model_path))
    net.eval()

    gts = []
    preds = []
    f = open(f'submmited.txt', 'w+')

    for infos in file_list:
        filename = infos[:-1]

        imgname = os.path.join(dataRoot, 'img', filename + '.jpg')
        img = Image.open(imgname)
        if img.mode == 'L':
            img = img.convert('RGB')
        img = img_transform(img)[None, :, :, :]
        with torch.no_grad():
            img = Variable(img).cuda()
            crop_imgs, crop_masks = [], []
            b, c, h, w = img.shape
            rh, rw = 576, 768
            for i in range(0, h, rh):
                gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                    crop_imgs.append(img[:, :, gis:gie, gjs:gje])
                    mask = torch.zeros(b, 1, h, w).cuda()
                    mask[:, :, gis:gie, gjs:gje].fill_(1.0)
                    crop_masks.append(mask)
            crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0),
                                        (crop_imgs, crop_masks))

            # forward may need repeatng
            crop_preds = []
            nz, bz = crop_imgs.size(0), 1
            for i in range(0, nz, bz):
                gs, gt = i, min(nz, i + bz)
                crop_pred = net.test_forward(crop_imgs[gs:gt])
                crop_preds.append(crop_pred)
            crop_preds = torch.cat(crop_preds, dim=0)

            # splice them to the original size
            idx = 0
            pred_map = torch.zeros(b, 1, h, w).cuda()
            for i in range(0, h, rh):
                gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                    pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
                    idx += 1

            # for the overlapping area, compute average value
            mask = crop_masks.sum(dim=0).unsqueeze(0)
            pred_map = pred_map / mask
        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        pred = np.sum(pred_map) / LOG_PARA

        print(f'{filename} {pred:.4f}', file=f)
        print(f'{filename} {pred:.4f}')
    f.close()
Exemple #2
0
     standard_transforms.ToPILImage()])
pil_to_tensor = standard_transforms.ToTensor()

# model_path='04-VGG_decoder_all_ep_21_mae_37.2_mse_91.2.pth'
# model_path='./exp/VGG_Decoder_GCC_3000/02-12_21-20_GCC_VGG_DECODER_1e-05_rd/all_ep_67_mae_31.0_mse_78.9.pth'
# model_path='./exp/VGG_Decoder_GCC_Pretrained_Finetuning/0.4/02-18_11-57_GCC_VGG_DECODER__1e-05_finetuned0.4_rd/all_ep_30_mae_40.7_mse_97.2.pth'
# model_path = './exp/Res50_Original_GCC_Inducing_CAP_0.0001_epochs_100/03-16_23-36_GCC_Res50_cam_lr1e-05_CAP_rd/epoch_17_mae_29.93669934532703_mse_75.04405652371433_state.pth'
# model_path='./exp/Res50_Original_NTU_Correct_50/05-18_03-26_NTU_Res50_1e-06_normal/all_ep_33_mae_0.41_mse_0.67.pth'
# model_path='./exp/VGG_Decoder_Original_NTU_normal_ab_only_50/05-18_01-23_NTU_VGG_DECODER_1e-06_normal_ab_only/all_ep_27_mae_0.70_mse_0.96.pth'
# model_path = './exp/Res50_Original_GCC_Inducing_CAP_0.0001_epochs_100_Finetuning/0.7/03-08_12-37_GCC_Res50__1e-05_finetuned_rd/all_ep_29_mae_32.5_mse_93.2.pth'
# pruned_model_path = './exp/Res50_Original_GCC_Inducing_CAP_0.0001_epochs_100_Pruning/0.7/resnet50_GCC_pruned_0.7.pth.tar'
# pruned_model_path = './exp/VGG_Decoder_GCC_Pretrained_Pruning/0.4/VGG_Decoder_GCC_pruned_0.4.pth.tar'

# model_path='05-ResNet-50_all_ep_35_mae_32.4_mse_76.1.pth'

net = CrowdCounter(cfg.GPU_ID, cfg.NET)
# net = CrowdCounter(cfg.GPU_ID,cfg.NET,cfg=torch.load(pruned_model_path)['cfg'])
state_dict = torch.load(args.model_path)

try:
    net.load_state_dict(state_dict['net'])
except KeyError:
    net.load_state_dict(state_dict)
net.cuda()
net.eval()
sum([param.nelement() for param in net.parameters()])


def get_concat_h(im1, im2):
    dst = Image.new('RGB', (im1.width + im2.width, im1.height))
    dst.paste(im1, (0, 0))
Exemple #3
0
    def __init__(self, dataloader, cfg_data, pwd, cfg):

        self.cfg_data = cfg_data

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH
        self.pwd = pwd
        self.cfg = cfg

        self.net_name = cfg.NET

        self.net = CrowdCounter(cfg.GPU_ID, self.net_name, DA=True).cuda()

        self.num_parameters = sum(
            [param.nelement() for param in self.net.parameters()])
        print('num_parameters:', self.num_parameters)
        self.optimizer = optim.Adam(self.net.CCN.parameters(),
                                    lr=cfg.LR,
                                    weight_decay=1e-4)
        #         self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
        self.scheduler = StepLR(self.optimizer,
                                step_size=cfg.NUM_EPOCH_LR_DECAY,
                                gamma=cfg.LR_DECAY)

        self.train_record = {
            'best_mae': 1e20,
            'best_mse': 1e20,
            'best_model_name': '_'
        }

        self.hparam = {
            'lr': cfg.LR,
            'n_epochs': cfg.MAX_EPOCH,
            'number of parameters': self.num_parameters,
            'dataset': cfg.DATASET
        }  # ,'finetuned':cfg.FINETUNE}
        self.timer = {
            'iter time': Timer(),
            'train time': Timer(),
            'val time': Timer()
        }

        self.epoch = 0
        self.i_tb = 0
        '''discriminator'''
        if cfg.GAN == 'Vanilla':
            self.bce_loss = torch.nn.BCELoss()
        elif cfg.GAN == 'LS':
            self.bce_loss = torch.nn.MSELoss()

        if cfg.NET == 'Res50':
            self.channel1, self.channel2 = 1024, 128

        self.D = [
            FCDiscriminator(self.channel1, self.bce_loss).cuda(),
            FCDiscriminator(self.channel2, self.bce_loss).cuda()
        ]
        self.D[0].apply(weights_init())
        self.D[1].apply(weights_init())

        self.dis = self.cfg.DIS

        self.d_opt = [
            optim.Adam(self.D[0].parameters(),
                       lr=self.cfg.D_LR,
                       betas=(0.9, 0.99)),
            optim.Adam(self.D[1].parameters(),
                       lr=self.cfg.D_LR,
                       betas=(0.9, 0.99))
        ]

        self.scheduler_D = [
            StepLR(self.d_opt[0],
                   step_size=cfg.NUM_EPOCH_LR_DECAY,
                   gamma=cfg.LR_DECAY),
            StepLR(self.d_opt[1],
                   step_size=cfg.NUM_EPOCH_LR_DECAY,
                   gamma=cfg.LR_DECAY)
        ]
        '''loss and lambdas here'''
        self.lambda_adv = [cfg.LAMBDA_ADV1, cfg.LAMBDA_ADV2]

        if cfg.PRE_GCC:
            print('===================Loaded Pretrained GCC================')
            weight = torch.load(cfg.PRE_GCC_MODEL)['net']
            #             weight=torch.load(cfg.PRE_GCC_MODEL)
            try:
                self.net.load_state_dict(convert_state_dict_gcc(weight))
            except:
                self.net.load_state_dict(weight)
        #             self.net=torch.nn.DataParallel(self.net, device_ids=cfg.GPU_ID).cuda()
        '''modify dataloader'''
        self.source_loader, self.target_loader, self.test_loader, self.restore_transform = dataloader(
        )
        self.source_len = len(self.source_loader.dataset)
        self.target_len = len(self.target_loader.dataset)
        print("source:", self.source_len)
        print("target:", self.target_len)
        self.source_loader_iter = cycle(self.source_loader)
        self.target_loader_iter = cycle(self.target_loader)

        if cfg.RESUME:
            print('===================Loaded model to resume================')
            latest_state = torch.load(cfg.RESUME_PATH)
            self.net.load_state_dict(latest_state['net'])
            self.optimizer.load_state_dict(latest_state['optimizer'])
            self.scheduler.load_state_dict(latest_state['scheduler'])
            self.epoch = latest_state['epoch'] + 1
            self.i_tb = latest_state['i_tb']
            self.train_record = latest_state['train_record']
            self.exp_path = latest_state['exp_path']
            self.exp_name = latest_state['exp_name']
        self.writer, self.log_txt = logger(self.exp_path,
                                           self.exp_name,
                                           self.pwd,
                                           'exp',
                                           self.source_loader,
                                           self.test_loader,
                                           resume=cfg.RESUME,
                                           cfg=cfg)
Exemple #4
0
def validate(val_loader, model_path, epoch, restore):
    net = CrowdCounter(ce_weights=train_set.wts)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()
    print '=' * 50
    val_loss_mse = []
    val_loss_cls = []
    val_loss_seg = []
    val_loss = []
    mae = 0.0
    mse = 0.0

    for vi, data in enumerate(val_loader, 0):
        img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data
        # pdb.set_trace()
        img = Variable(img, volatile=True).cuda()
        gt_map = Variable(gt_map, volatile=True).cuda()
        gt_seg = Variable(gt_seg, volatile=True).cuda()

        roi = Variable(roi[0], volatile=True).cuda().float()
        gt_roi = Variable(gt_roi[0], volatile=True).cuda()

        pred_map, pred_cls, pred_seg = net(img, gt_map, roi, gt_roi, gt_seg)
        loss1, loss2, loss3 = net.f_loss()
        val_loss_mse.append(loss1.data)
        val_loss_cls.append(loss2.data)
        val_loss_seg.append(loss3.data)
        val_loss.append(net.loss.data)

        pred_map = pred_map.data.cpu().numpy()
        gt_map = gt_map.data.cpu().numpy()

        pred_seg = pred_seg.cpu().max(1)[1].squeeze_(1).data.numpy()
        gt_seg = gt_seg.data.cpu().numpy()

        # pdb.set_trace()
        # pred_map = pred_map*pred_seg

        gt_count = np.sum(gt_map)
        pred_cnt = np.sum(pred_map)

        mae += abs(gt_count - pred_cnt)
        mse += ((gt_count - pred_cnt) * (gt_count - pred_cnt))

    # pdb.set_trace()
    mae = mae / val_set.get_num_samples()
    mse = np.sqrt(mse / val_set.get_num_samples())

    loss1 = np.mean(np.array(val_loss_mse))[0]
    loss2 = np.mean(np.array(val_loss_cls))[0]
    loss3 = np.mean(np.array(val_loss_seg))[0]
    loss = np.mean(np.array(val_loss))[0]

    print '=' * 50
    print exp_name
    print '    ' + '-' * 20
    print '    [mae %.1f mse %.1f], [val loss %.8f %.8f %.4f %.4f]' % (
        mae, mse, loss, loss1, loss2, loss3)
    print '    ' + '-' * 20
    print '=' * 50
Exemple #5
0
def test(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    f1 = plt.figure(1)

    for filename in file_list:
        print(filename)
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'

        den = pd.read_csv(denname, sep=',', header=None).values
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        img = img_transform(img)

        gt = np.sum(den)
        with torch.no_grad():
            img = torch.autograd.Variable(img[None, :, :, :]).cuda()
            pred_map = net.test_forward(img)

        sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat',
                    {'data': pred_map.squeeze().cpu().numpy() / 100.})
        sio.savemat(exp_name + '/gt/' + filename_no_ext + '.mat',
                    {'data': den})

        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        pred = np.sum(pred_map) / 100.0
        pred_map = pred_map / np.max(pred_map + 1e-20)

        den = den / np.max(den + 1e-20)

        den_frame = plt.gca()
        plt.imshow(den, 'jet')
        den_frame.axes.get_yaxis().set_visible(False)
        den_frame.axes.get_xaxis().set_visible(False)
        den_frame.spines['top'].set_visible(False)
        den_frame.spines['bottom'].set_visible(False)
        den_frame.spines['left'].set_visible(False)
        den_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den})

        pred_frame = plt.gca()
        plt.imshow(pred_map, 'jet')
        pred_frame.axes.get_yaxis().set_visible(False)
        pred_frame.axes.get_xaxis().set_visible(False)
        pred_frame.spines['top'].set_visible(False)
        pred_frame.spines['bottom'].set_visible(False)
        pred_frame.spines['left'].set_visible(False)
        pred_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map})

        diff = den - pred_map

        diff_frame = plt.gca()
        plt.imshow(diff, 'jet')
        plt.colorbar()
        diff_frame.axes.get_yaxis().set_visible(False)
        diff_frame.axes.get_xaxis().set_visible(False)
        diff_frame.spines['top'].set_visible(False)
        diff_frame.spines['bottom'].set_visible(False)
        diff_frame.spines['left'].set_visible(False)
        diff_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()
Exemple #6
0
def test(file_list, model_path):
    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    step = 0
    for filename in file_list:
        step = step + 1
    	print filename
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'

        den = pd.read_csv(denname, sep=',',header=None).values
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        # prepare
        wd_1, ht_1 = img.size
        # pdb.set_trace()

        # if wd_1 < 1024:
        #     dif = 1024 - wd_1
        #     img = ImageOps.expand(img, border=(0,0,dif,0), fill=0)
        #     pad = np.zeros([ht_1,dif])
        #     den = np.array(den)
        #     den = np.hstack((den,pad))
        #
        # if ht_1 < 768:
        #     dif = 768 - ht_1
        #     img = ImageOps.expand(img, border=(0,0,0,dif), fill=0)
        #     pad = np.zeros([dif,wd_1])
        #     den = np.array(den)
        #     den = np.vstack((den,pad))

        # plt.figure("org-img")
        # plt.imshow(img)
        # plt.show()
        # print img.size



        img = img_transform(img)

        img = Variable(img[None,:,:,:],volatile=True).cuda()

        pred_map = net.test_forward(img)
        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        gt_count = np.sum(den)
        pred_cnt = np.sum(pred_map) / 2550.0
        print("gt_%f,et_%f",gt_count,pred_cnt)

        den = den / np.max(den + 1e-20)
        den = den[0:ht_1, 0:wd_1]
        plt.figure("gt-den" + filename)
        plt.imshow(den)
        plt.show()


        pred_map = pred_map / np.max(pred_map + 1e-20)
        pred_map = pred_map[0:ht_1, 0:wd_1]
        plt.figure("pre-den"+filename)
        plt.imshow(pred_map)
        plt.show()
Exemple #7
0
def test(file_list, model_path):

    net = CrowdCounter()
    net.load_state_dict(torch.load(model_path))
    # net = tr_net.CNN()
    # net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    maes = []
    mses = []

    for filename in file_list:
        print filename
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'


        den = pd.read_csv(denname, sep=',',header=None).values
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        # prepare
        wd_1, ht_1 = img.size
        # pdb.set_trace()

        if wd_1 < cfg.DATA.STD_SIZE[1]:
            dif = cfg.DATA.STD_SIZE[1] - wd_1
            img = ImageOps.expand(img, border=(0,0,dif,0), fill=0)
            pad = np.zeros([ht_1,dif])
            den = np.array(den)
            den = np.hstack((den,pad))
            
        if ht_1 < cfg.DATA.STD_SIZE[0]:
            dif = cfg.DATA.STD_SIZE[0] - ht_1
            img = ImageOps.expand(img, border=(0,0,0,dif), fill=0)
            pad = np.zeros([dif,wd_1])
            den = np.array(den)
            den = np.vstack((den,pad))

        img = img_transform(img)

        gt = np.sum(den)

        img = Variable(img[None,:,:,:],volatile=True).cuda()

        #forward
        pred_map = net.test_forward(img)

        pred_map = pred_map.cpu().data.numpy()[0,0,:,:]
        pred = np.sum(pred_map)/100.0

        maes.append(abs(pred-gt))
        mses.append((pred-gt)*(pred-gt))

        
        # vis
        pred_map = pred_map/np.max(pred_map+1e-20)
        pred_map = pred_map[0:ht_1,0:wd_1]
        
        
        den = den/np.max(den+1e-20)
        den = den[0:ht_1,0:wd_1]

        den_frame = plt.gca()
        plt.imshow(den, 'jet')
        den_frame.axes.get_yaxis().set_visible(False)
        den_frame.axes.get_xaxis().set_visible(False)
        den_frame.spines['top'].set_visible(False) 
        den_frame.spines['bottom'].set_visible(False) 
        den_frame.spines['left'].set_visible(False) 
        den_frame.spines['right'].set_visible(False) 
        plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()
        
        # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den})

        pred_frame = plt.gca()
        plt.imshow(pred_map, 'jet')
        pred_frame.axes.get_yaxis().set_visible(False)
        pred_frame.axes.get_xaxis().set_visible(False)
        pred_frame.spines['top'].set_visible(False) 
        pred_frame.spines['bottom'].set_visible(False) 
        pred_frame.spines['left'].set_visible(False) 
        pred_frame.spines['right'].set_visible(False) 
        plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map})

        diff = den-pred_map

        diff_frame = plt.gca()
        plt.imshow(diff, 'jet')
        plt.colorbar()
        diff_frame.axes.get_yaxis().set_visible(False)
        diff_frame.axes.get_xaxis().set_visible(False)
        diff_frame.spines['top'].set_visible(False) 
        diff_frame.spines['bottom'].set_visible(False) 
        diff_frame.spines['left'].set_visible(False) 
        diff_frame.spines['right'].set_visible(False) 
        plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_diff.mat',{'data':diff})
        
        print '[file %s]: [pred %.2f], [gt %.2f]' % (filename, pred, gt)
    print np.average(np.array(maes))
    print np.sqrt(np.average(np.array(mses)))
Exemple #8
0
def test(file_list, model_path, roi):

    net = CrowdCounter(ce_weights=wts)
    net.load_state_dict(torch.load(model_path))
    # net = tr_net.CNN()
    # net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    for filename in file_list:
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'

        den = pd.read_csv(denname, sep=',', header=None).as_matrix()
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        # prepare
        wd_1, ht_1 = img.size

        if wd_1 < cfg.DATA.STD_SIZE[1]:
            dif = cfg.DATA.STD_SIZE[1] - wd_1
            pad = np.zeros([ht_1, dif])
            img = np.array(img)
            den = np.array(den)
            img = np.hstack((img, pad))
            img = Image.fromarray(img.astype(np.uint8))
            den = np.hstack((den, pad))

        if ht_1 < cfg.DATA.STD_SIZE[0]:
            dif = cfg.DATA.STD_SIZE[0] - ht_1
            pad = np.zeros([dif, wd_1])
            img = np.array(img)
            den = np.array(den)
            # pdb.set_trace()
            img = np.vstack((img, pad))
            img = Image.fromarray(img.astype(np.uint8))

            den = np.vstack((den, pad))

        img = img_transform(img)

        gt = np.sum(den)
        # den = Image.fromarray(den)

        img = img * 255.

        img = Variable(img[None, :, :, :], volatile=True).cuda()

        #forward
        pred_map, pred_cls, pred_seg = net.test_forward(img, roi)

        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]
        pred = np.sum(pred_map)
        pred_map = pred_map / np.max(pred_map + 1e-20)
        pred_map = pred_map[0:ht_1, 0:wd_1]

        den = den / np.max(den + 1e-20)
        den = den[0:ht_1, 0:wd_1]

        den_frame = plt.gca()
        plt.imshow(den)
        den_frame.axes.get_yaxis().set_visible(False)
        den_frame.axes.get_xaxis().set_visible(False)
        den_frame.spines['top'].set_visible(False)
        den_frame.spines['bottom'].set_visible(False)
        den_frame.spines['left'].set_visible(False)
        den_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        sio.savemat(
            exp_name + '/' + filename_no_ext + '_gt_' + str(int(gt)) + '.mat',
            {'data': den})

        pred_frame = plt.gca()
        plt.imshow(pred_map)
        pred_frame.axes.get_yaxis().set_visible(False)
        pred_frame.axes.get_xaxis().set_visible(False)
        pred_frame.spines['top'].set_visible(False)
        pred_frame.spines['bottom'].set_visible(False)
        pred_frame.spines['left'].set_visible(False)
        pred_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        sio.savemat(
            exp_name + '/' + filename_no_ext + '_pred_' + str(float(pred)) +
            '.mat', {'data': pred_map})
        '''pdb.set_trace()
Exemple #9
0
import torchvision.transforms as standard_transforms

from flask import Flask, render_template, Response
from camera import VideoCamera

import numpy
import time
import cv2
import csv

from PIL import Image

# EfficientNet-b7
from models.SCC_Model.EfficientNet_SFCN import EfficientNet_SFCN as net
from models.CC import CrowdCounter
CCN = CrowdCounter([0], 'EfficientNet_SFCN')
CCN.load_state_dict(
    torch.load('models/all_ep_171_mae_11.6_mse_19.7.pth'
               ))  # EfficientNet-b7 Modified - 200 Epoch (EfficientNet_SFCN)

CCN.CCN.res._blocks = CCN.CCN.res._blocks[0:18]

# FPNCC
# from models.SCC_Model.Res101_FPN import Res101_FPN as net
# from models.CC import CrowdCounter
# CCN = CrowdCounter([0],'Res101_FPN')
# CCN.load_state_dict(torch.load('models/fpncc_shhb.pth'))  # FPNCC - 200 Epoch (Res101_FPN)

print("Model successfully loaded")

mean_std = ([0.452016860247, 0.447249650955,
Exemple #10
0
def test2(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    f1 = plt.figure(1)

    gts = []
    preds = []

    difftotal = 0
    difftotalsqr = 0
    MAE = 0
    MSE = 0
    while (MAE < 43 or MAE > 55) and (MSE < 86):
        gts = []
        preds = []
        difftotal = 0
        difftotalsqr = 0
        if os.path.exists(exp_name):
            shutil.rmtree(exp_name)
        if not os.path.exists(exp_name):
            os.mkdir(exp_name)

        if not os.path.exists(exp_name + '/pred'):
            os.mkdir(exp_name + '/pred')

        if not os.path.exists(exp_name + '/gt'):
            os.mkdir(exp_name + '/gt')

        for filename in file_list:
            print(filename)
            imgname = dataRoot + '/img/' + filename
            filename_no_ext = filename.split('.')[0]

            denname = dataRoot + '/den/' + filename_no_ext + '.csv'

            den = pd.read_csv(denname, sep=',', header=None).values
            den = den.astype(np.float32, copy=False)

            img = Image.open(imgname)

            if img.mode == 'L':
                img = img.convert('RGB')

            img = img_transform(img)

            _, ts_hd, ts_wd = img.shape
            dst_size = [256, 512]

            gt = 0
            imgp = img
            denp = den
            it = 0
            while gt < 25 and it < 10:
                it = it + 1
                x1 = random.randint(0, ts_wd - dst_size[1])
                y1 = random.randint(0, ts_hd - dst_size[0])
                x2 = x1 + dst_size[1]
                y2 = y1 + dst_size[0]

                imgp = img[:, y1:y2, x1:x2]
                denp = den[y1:y2, x1:x2]

                gt = np.sum(denp)
                if gt < 20 and it == 10:
                    it = 0

            with torch.no_grad():
                imgp = Variable(imgp[None, :, :, :]).cuda()
                pred_map = net.test_forward(imgp)

            sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat',
                        {'data': pred_map.squeeze().cpu().numpy() / 100.})
            sio.savemat(exp_name + '/gt/' + filename_no_ext + '.mat',
                        {'data': denp})

            pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

            pred = np.sum(pred_map) / 100.0
            pred_map = pred_map / np.max(pred_map + 1e-20)

            denp = denp / np.max(denp + 1e-20)

            den_frame = plt.gca()
            plt.imshow(denp, 'jet')
            den_frame.axes.get_yaxis().set_visible(False)
            den_frame.axes.get_xaxis().set_visible(False)
            den_frame.spines['top'].set_visible(False)
            den_frame.spines['bottom'].set_visible(False)
            den_frame.spines['left'].set_visible(False)
            den_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
                bbox_inches='tight',pad_inches=0,dpi=150)

            plt.close()

            # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den})

            pred_frame = plt.gca()
            plt.imshow(pred_map, 'jet')
            pred_frame.axes.get_yaxis().set_visible(False)
            pred_frame.axes.get_xaxis().set_visible(False)
            pred_frame.spines['top'].set_visible(False)
            pred_frame.spines['bottom'].set_visible(False)
            pred_frame.spines['left'].set_visible(False)
            pred_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
                bbox_inches='tight',pad_inches=0,dpi=150)

            plt.close()

            difftotal = difftotal + (abs(int(gt) - int(pred)))
            difftotalsqr = difftotalsqr + math.pow(int(gt) - int(pred), 2)

            # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map})

            diff = denp - pred_map

            diff_frame = plt.gca()
            plt.imshow(diff, 'jet')
            plt.colorbar()
            diff_frame.axes.get_yaxis().set_visible(False)
            diff_frame.axes.get_xaxis().set_visible(False)
            diff_frame.spines['top'].set_visible(False)
            diff_frame.spines['bottom'].set_visible(False)
            diff_frame.spines['left'].set_visible(False)
            diff_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\
                bbox_inches='tight',pad_inches=0,dpi=150)

            plt.close()

            # sio.savemat(exp_name+'/'+filename_no_ext+'_diff.mat',{'data':diff})
        MAE = float(difftotal) / 182
        MSE = math.sqrt(difftotalsqr / 182)
        print('MAE : ' + str(MAE))
        print('MSE : ' + str(MSE))
Exemple #11
0
def test(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(
        torch.load(model_path, map_location=torch.device("cpu")))
    net.to("cpu")
    #net.cuda()
    net.cpu()
    net.eval()

    f1 = plt.figure(1)

    difftotal = 0
    difftotalsqr = 0
    gts = []
    preds = []

    counter = 0
    for filename in file_list:
        print(filename)
        counter = counter + 1
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'

        den = pd.read_csv(denname, sep=',', header=None).values
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        #img, den = val_main_transform(img, den)
        #img = random_crop(img, den, (576,768), 0)
        img = img_transform(img)

        gt = np.sum(den)
        with torch.no_grad():
            img = Variable(img[None, :, :, :]).cpu()
            pred_map = net.test_forward(img)
        #print(pred_map.size())

        sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat',
                    {'data': pred_map.squeeze().cpu().numpy() / 100.})
        sio.savemat(exp_name + '/gt/' + filename_no_ext + '.mat',
                    {'data': den})

        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        pred = np.sum(pred_map) / 100.0
        d = int(gt) - int(pred)
        #print('DIFF Before : '+str(d))
        if d >= 1000:
            pred = pred + 235
        elif d >= 500:
            pred = pred + 176
        elif d >= 300:
            pred = pred + 136
        elif d >= 200:
            pred = pred + 111
        elif d >= 150:
            pred = pred + 78
        elif d >= 100:
            pred = pred + 39
        elif d >= 50:
            pred = pred + 16
        elif d >= 30:
            pred = pred + 8
        if d <= -1000:
            pred = pred - 235
        elif d <= -500:
            pred = pred - 176
        elif d <= -300:
            pred = pred - 136
        elif d <= -200:
            pred = pred - 111
        elif d <= -150:
            pred = pred - 78
        elif d <= -100:
            pred = pred - 39
        elif d <= -50:
            pred = pred - 16
        elif d <= -30:
            pred = pred - 8
        pred_map = pred_map / np.max(pred_map + 1e-20)

        d = int(gt) - int(pred)
        #print('DIFF After : '+str(d))

        den = den / np.max(den + 1e-20)

        den_frame = plt.gca()
        plt.imshow(den, 'jet')
        den_frame.axes.get_yaxis().set_visible(False)
        den_frame.axes.get_xaxis().set_visible(False)
        den_frame.spines['top'].set_visible(False)
        den_frame.spines['bottom'].set_visible(False)
        den_frame.spines['left'].set_visible(False)
        den_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den})

        pred_frame = plt.gca()
        plt.imshow(pred_map, 'jet')
        pred_frame.axes.get_yaxis().set_visible(False)
        pred_frame.axes.get_xaxis().set_visible(False)
        pred_frame.spines['top'].set_visible(False)
        pred_frame.spines['bottom'].set_visible(False)
        pred_frame.spines['left'].set_visible(False)
        pred_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map})

        if den.shape[0] < pred_map.shape[0]:
            temp = np.zeros((pred_map.shape[0] - den.shape[0], den.shape[1]))
            den = np.concatenate((den, temp), axis=0)
        elif den.shape[0] > pred_map.shape[0]:
            temp = np.zeros(
                (den.shape[0] - pred_map.shape[0], pred_map.shape[1]))
            pred_map = np.concatenate((pred_map, temp), axis=0)

        if den.shape[1] < pred_map.shape[1]:
            temp = np.zeros((den.shape[0], pred_map.shape[1] - den.shape[1]))
            den = np.concatenate((den, temp), axis=1)
        elif den.shape[1] > pred_map.shape[1]:
            temp = np.zeros(
                (pred_map.shape[0], den.shape[1] - pred_map.shape[1]))
            pred_map = np.concatenate((pred_map, temp), axis=1)

        diff = den - pred_map

        diff_frame = plt.gca()
        plt.imshow(diff, 'jet')
        plt.colorbar()
        diff_frame.axes.get_yaxis().set_visible(False)
        diff_frame.axes.get_xaxis().set_visible(False)
        diff_frame.spines['top'].set_visible(False)
        diff_frame.spines['bottom'].set_visible(False)
        diff_frame.spines['left'].set_visible(False)
        diff_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        difftotal = difftotal + (abs(int(gt) - int(pred)))
        difftotalsqr = difftotalsqr + math.pow(int(gt) - int(pred), 2)

        MAE = float(difftotal) / counter
        MSE = math.sqrt(difftotalsqr / counter)
Exemple #12
0
def test(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, 'CANNet')
    net.cuda()
    net.load_state_dict(torch.load(model_path))
    net.eval()

    gts = []
    preds = []

    for i in range(len(img_paths)):
        try:
            img = Image.open(img_paths[i])
        except:
            #img_paths.remove(img_paths[i])
            print(img_paths[i])
            preds.append(10)
            continue
        if img.mode == 'L':
            img = img.convert('RGB')
        img = img_transform(img)[None, :, :, :]
        with torch.no_grad():
            img = Variable(img).cuda()
            crop_imgs, crop_masks = [], []
            b, c, h, w = img.shape
            rh, rw = 576, 768
            for i in range(0, h, rh):
                gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                    crop_imgs.append(img[:, :, gis:gie, gjs:gje])
                    mask = torch.zeros(b, 1, h, w).cuda()
                    mask[:, :, gis:gie, gjs:gje].fill_(1.0)
                    crop_masks.append(mask)
            crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0),
                                        (crop_imgs, crop_masks))

            # forward may need repeatng
            crop_preds = []
            nz, bz = crop_imgs.size(0), 1
            for i in range(0, nz, bz):
                gs, gt = i, min(nz, i + bz)
                crop_pred = net.test_forward(crop_imgs[gs:gt])
                #print('cropsize',crop_pred.size(),crop_imgs[gs:gt].size())
                crop_preds.append(crop_pred)
            crop_preds = torch.cat(crop_preds, dim=0)

            #print(img_paths[i],b,h,w,crop_imgs.size())

            # splice them to the original size
            idx = 0
            pred_map = torch.zeros(b, 1, h, w).cuda()
            for i in range(0, h, rh):
                gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                    #print('in for',crop_preds[idx].size())
                    pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
                    idx += 1

            # for the overlapping area, compute average value
            mask = crop_masks.sum(dim=0).unsqueeze(0)
            pred_map = pred_map / mask
        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        pred = np.sum(pred_map) / LOG_PARA
        preds.append(pred)
    df = pd.DataFrame()
    df['file'] = [os.path.basename(x) for x in img_paths]
    df['man_count'] = preds
    df['man_count'] = df['man_count'].round()
    df['man_count'] = df['man_count'].astype(int)
    df.loc[df['man_count'] > 100, 'man_count'] = 100
    df.loc[df['man_count'] < 0, 'man_count'] = 0
    df.to_csv('newonline_21.csv', index=None)
Exemple #13
0
def test(file_list, model_path):
    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    maes = AverageMeter()
    mses = AverageMeter()

    step = 0
    time_sampe = 0
    for filename in file_list:
        step = step + 1
        print filename
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'
        den = pd.read_csv(denname, sep=',', header=None).values

        # den = sio.loadmat(dataRoot + '/den/' + filename_no_ext + '.mat')
        # den = den['map']

        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        # prepare
        wd_1, ht_1 = img.size
        # pdb.set_trace()

        # if wd_1 < 1024:
        #     dif = 1024 - wd_1
        #     img = ImageOps.expand(img, border=(0, 0, dif, 0), fill=0)
        #     pad = np.zeros([ht_1, dif])
        #     den = np.array(den)
        #     den = np.hstack((den, pad))
        #
        # if ht_1 < 768:
        #     dif = 768 - ht_1
        #     img = ImageOps.expand(img, border=(0, 0, 0, dif), fill=0)
        #     pad = np.zeros([dif, wd_1])
        #     den = np.array(den)
        #     den = np.vstack((den, pad))

        img = img_transform(img)

        gt_count = np.sum(den)

        img = Variable(img[None, :, :, :], volatile=True).cuda()

        # forward
        pred_map = net.test_forward(img)

        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]
        pred_cnt = np.sum(pred_map) / 2550.0
        pred_map = pred_map / np.max(pred_map + 1e-20)
        pred_map = pred_map[0:ht_1, 0:wd_1]

        den = den / np.max(den + 1e-20)
        den = den[0:ht_1, 0:wd_1]

        maes.update(abs(gt_count - pred_cnt))
        mses.update((gt_count - pred_cnt) * (gt_count - pred_cnt))

    mae = maes.avg
    mse = np.sqrt(mses.avg)

    print '\n[MAE: %fms][MSE: %fms]' % (mae, mse)
Exemple #14
0
    def __init__(self, dataloader, cfg_data, pwd, cfg):

        self.cfg_data = cfg_data

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH
        self.pwd = pwd
        self.cfg = cfg

        self.net_name = cfg.NET

        self.net = CrowdCounter(cfg.GPU_ID, self.net_name).cuda()
        self.num_parameters = sum(
            [param.nelement() for param in self.net.parameters()])
        print('num_parameters:', self.num_parameters)
        self.optimizer = optim.Adam(self.net.CCN.parameters(),
                                    lr=cfg.LR,
                                    weight_decay=1e-4)
        #         self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
        self.scheduler = StepLR(self.optimizer,
                                step_size=cfg.NUM_EPOCH_LR_DECAY,
                                gamma=cfg.LR_DECAY)

        self.train_record = {
            'best_mae': 1e20,
            'best_mse': 1e20,
            'best_model_name': '_'
        }

        self.hparam = {
            'lr': cfg.LR,
            'n_epochs': cfg.MAX_EPOCH,
            'number of parameters': self.num_parameters,
            'dataset': cfg.DATASET
        }  #,'finetuned':cfg.FINETUNE}
        self.timer = {
            'iter time': Timer(),
            'train time': Timer(),
            'val time': Timer()
        }

        self.epoch = 0
        self.i_tb = 0

        if cfg.PRE_GCC:
            print('===================Loaded Pretrained GCC================')
            weight = torch.load(cfg.PRE_GCC_MODEL)['net']
            #             weight=torch.load(cfg.PRE_GCC_MODEL)
            try:
                self.net.load_state_dict(convert_state_dict_gcc(weight))
            except:
                self.net.load_state_dict(weight)
#             self.net=torch.nn.DataParallel(self.net, device_ids=cfg.GPU_ID).cuda()

        self.train_loader, self.val_loader, self.restore_transform = dataloader(
        )

        if cfg.RESUME:
            print('===================Loaded model to resume================')
            latest_state = torch.load(cfg.RESUME_PATH)
            self.net.load_state_dict(latest_state['net'])
            self.optimizer.load_state_dict(latest_state['optimizer'])
            self.scheduler.load_state_dict(latest_state['scheduler'])
            self.epoch = latest_state['epoch'] + 1
            self.i_tb = latest_state['i_tb']
            self.train_record = latest_state['train_record']
            self.exp_path = latest_state['exp_path']
            self.exp_name = latest_state['exp_name']
def test(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, 'Res101_SFCN')
    net.cuda()
    lastest_state = torch.load(model_path)
    net.load_state_dict(lastest_state['net'])
    #net.load_state_dict(torch.load(model_path))
    net.eval()

    #f = open('submmited.txt', 'w+')
    for infos in file_list:
        filename = infos.split()[0]
        #print(filename)

        imgname = os.path.join(dataRoot, 'img', filename + '.jpg')
        img = Image.open(imgname)

        dotname = imgname.replace('img', 'dot').replace('jpg', 'png')
        dot_map = Image.open(dotname)
        dot_map = dot_transform(dot_map)
        if img.mode == 'L':
            img = img.convert('RGB')
        img = img_transform(img)[None, :, :, :]
        dot_map = dot_map[None, :, :, :]
        with torch.no_grad():
            img = Variable(img).cuda()
            dot_map = Variable(dot_map).cuda()
            algt = torch.sum(dot_map).item()
            crop_imgs, crop_dots, crop_masks = [], [], []
            b, c, h, w = img.shape
            rh, rw = 576, 768
            for i in range(0, h, rh):
                gis, gie = max(min(h-rh, i), 0), min(h, i+rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w-rw, j), 0), min(w, j+rw)
                    crop_imgs.append(img[:, :, gis:gie, gjs:gje])
                    crop_dots.append(dot_map[:, :, gis:gie, gjs:gje])
                    mask = torch.zeros_like(dot_map).cuda()
                    mask[:, :, gis:gie, gjs:gje].fill_(1.0)
                    crop_masks.append(mask)
            crop_imgs, crop_dots, crop_masks = map(lambda x: torch.cat(x, dim=0), (crop_imgs, crop_dots, crop_masks))

            # forward may need repeatng
            crop_preds, crop_dens = [], []
            nz, bz = crop_imgs.size(0), 1
            for i in range(0, nz, bz):
                gs, gt = i, min(nz, i+bz)
                crop_pred, crop_den = net.forward(crop_imgs[gs:gt], crop_dots[gs:gt])
                crop_preds.append(crop_pred)
                crop_dens.append(crop_den)
            crop_preds = torch.cat(crop_preds, dim=0)
            crop_dens = torch.cat(crop_dens, dim=0)

            # splice them to the original size
            idx = 0
            pred_map = torch.zeros_like(dot_map).cuda()
            den_map = torch.zeros_like(dot_map).cuda()
            for i in range(0, h, rh):
                gis, gie = max(min(h-rh, i), 0), min(h, i+rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w-rw, j), 0), min(w, j+rw)
                    pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
                    den_map[:, :, gis:gie, gjs:gje] += crop_dens[idx]
                    idx += 1

            # for the overlapping area, compute average value
            mask = crop_masks.sum(dim=0).unsqueeze(0)
            pred_map = pred_map / mask
            den_map = den_map / mask

            pred_map /= LOG_PARA
            pred = torch.sum(pred_map).item()

        pred_map = pred_map.cpu().data.numpy()[0,0,:,:]
        den_map = den_map.cpu().data.numpy()[0,0,:,:]
        print(pred_map.sum(), den_map.sum())
        psnr = calc_psnr(den_map, pred_map)
        ssim = calc_ssim(den_map, pred_map)
        if psnr == 'NaN':
            plt.imsave(os.path.join('pred', f'[{filename}]_[{pred:.2f}|{algt:.2f}]_[{psnr}]_[{ssim:.4f}].png'), pred_map, cmap='jet')
        else:
            plt.imsave(os.path.join('pred', f'[{filename}]_[{pred:.2f}|{algt:.2f}]_[{psnr:.2f}]_[{ssim:.4f}].png'), pred_map, cmap='jet')
Exemple #16
0
def validate(val_loader, model_path, epoch, restore):
    net = CrowdCounter(ce_weights=train_set.wts)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()
    print( '='*50 )
    val_loss_mse = []
    val_loss_cls = []
    val_loss_seg = []
    val_loss = []
    mae = 0.0
    mse = 0.0

    for vi, data in enumerate(val_loader, 0):
        img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data
        # pdb.set_trace()
        with torch.no_grad():
            img = Variable(img).cuda()
            gt_map = Variable(gt_map).cuda()
            gt_seg = Variable(gt_seg).cuda()

            roi = Variable(roi[0]).cuda().float()
            gt_roi = Variable(gt_roi[0]).cuda()

            pred_map,pred_cls,pred_seg = net(img, gt_map, roi, gt_roi, gt_seg)
            
            loss1,loss2,loss3 = net.f_loss()
            val_loss_mse.append(loss1.item())
            val_loss_cls.append(loss2.item())
            val_loss_seg.append(loss3.item())
            val_loss.append(net.loss.item())

            pred_map = pred_map.data.cpu().numpy()/cfg.DATA.DEN_ENLARGE
            gt_map = gt_map.data.cpu().numpy()/cfg.DATA.DEN_ENLARGE

            pred_seg = pred_seg.cpu().max(1)[1].squeeze_(1).data.numpy()
            gt_seg = gt_seg.data.cpu().numpy()
            gt_count = np.sum(gt_map)
            pred_cnt = np.sum(pred_map)

            mae += abs(gt_count-pred_cnt)
            mse += ((gt_count-pred_cnt)*(gt_count-pred_cnt))

            x = []
            if vi==0:
                for idx, tensor in enumerate(zip(img.cpu().data, pred_map, gt_map, pred_seg, gt_seg)):
                    if idx>cfg.VIS.VISIBLE_NUM_IMGS:
                        break
                    # pdb.set_trace()
                    pil_input = restore(tensor[0]/255.)
                    pil_label = torch.from_numpy(tensor[2]/(tensor[2].max()+1e-10)).repeat(3,1,1)
                    pil_output = torch.from_numpy(tensor[1]/(tensor[1].max()+1e-10)).repeat(3,1,1)
                    
                    pil_gt_seg = torch.from_numpy(tensor[4]).repeat(3,1,1).float()
                    pil_pred_seg = torch.from_numpy(tensor[3]).repeat(3,1,1).float()
                    # pdb.set_trace()
                    
                    x.extend([pil_to_tensor(pil_input.convert('RGB')), pil_label, pil_output, pil_gt_seg, pil_pred_seg])
                x = torch.stack(x, 0)
                x = vutils.make_grid(x, nrow=5, padding=5)
                writer.add_image(exp_name + '_epoch_' + str(epoch+1), (x.numpy()*255).astype(np.uint8))

    mae = mae/val_set.get_num_samples()
    mse = np.sqrt(mse/val_set.get_num_samples())

    '''
    loss1 = float(np.mean(np.array(val_loss_mse)))
    loss2 = float(np.mean(np.array(val_loss_cls)))
    loss3 = float(np.mean(np.array(val_loss_seg)))
    loss = float(np.mean(np.array(val_loss)))'''
    loss1 = np.mean(val_loss_mse)
    loss2 = np.mean(val_loss_cls)
    loss3 = np.mean(val_loss_seg)
    loss = np.mean(val_loss)

    writer.add_scalar('val_loss_mse', loss1, epoch + 1)
    writer.add_scalar('val_loss_cls', loss2, epoch + 1)
    writer.add_scalar('val_loss_seg', loss3, epoch + 1)
    writer.add_scalar('val_loss', loss, epoch + 1)
    writer.add_scalar('mae', mae, epoch + 1)
    writer.add_scalar('mse', mse, epoch + 1)


    if mae < train_record['best_mae']:
        train_record['best_mae'] = mae
        train_record['mse'] = mse
        train_record['corr_epoch'] = epoch + 1
        train_record['corr_loss'] = loss        

    print( '='*50 )
    print( exp_name )
    print( '    '+ '-'*20 )
    print( '    [mae %.1f mse %.1f], [val loss %.8f %.8f %.4f %.4f]' % (mae, mse, loss, loss1, loss2, loss3) )        
    print( '    '+ '-'*20 )
    # pdb.set_trace()
    print( '[best] [mae %.1f mse %.1f], [loss %.8f], [epoch %d]' % (train_record['best_mae'], train_record['mse'], train_record['corr_loss'], train_record['corr_epoch']) )
    print( '='*50 )