Exemple #1
0
    def evaluate_neighborhood_tabu(self, solution: Solution, mask_list1,
                                   value_list1, weight_list1,
                                   tabu_list) -> bool:
        solution_binary = "".join([str(item) for item in solution.item_list])
        solution_number = int(solution_binary, 2)

        mask_list = deepcopy(mask_list1)
        mask_list.reverse()

        for mask in mask_list:
            # mask representa o movimento: quais bits serão flipados da solução
            if int(mask, 2) in tabu_list.keys():
                continue  # sem considerar aspiration

            masked_number = solution_number ^ int(mask, 2)
            masked_binary = bin(masked_number)[2:].zfill(solution.n)
            neighbor = [int(digit) for digit in masked_binary]
            neighbor_weight_list = [
                a * b for a, b in zip(neighbor, weight_list1)
            ]

            if sum(neighbor_weight_list) <= solution.capacity:
                neighbor_value_list = [
                    a * b for a, b in zip(neighbor, value_list1)
                ]
                if sum(neighbor_value_list) > solution.value:
                    solution.value = sum(neighbor_value_list)
                    solution.weight = sum(neighbor_weight_list)
                    solution.item_list = deepcopy(neighbor)
                    return True

        return False
Exemple #2
0
    def random_neighbor(self, solution: Solution, distance: int, value_list1,
                        weight_list1):
        mask_list1 = General.get_mask_list(solution.n, distance, climb=False)

        solution_binary = "".join([str(item) for item in solution.item_list])
        solution_number = int(solution_binary, 2)

        mask_list = deepcopy(mask_list1)
        random.shuffle(mask_list)

        for mask in mask_list:
            masked_number = solution_number ^ int(mask, 2)
            masked_binary = bin(masked_number)[2:].zfill(solution.n)
            neighbor = [int(digit) for digit in masked_binary]
            neighbor_weight_list = [
                a * b for a, b in zip(neighbor, weight_list1)
            ]

            if sum(neighbor_weight_list) <= solution.capacity:
                neighbor_value_list = [
                    a * b for a, b in zip(neighbor, value_list1)
                ]
                solution.value = sum(neighbor_value_list)
                solution.weight = sum(neighbor_weight_list)
                solution.item_list = deepcopy(neighbor)
                return solution

        return None
    def evaluate_neighborhood(self, solution: Solution, mask_list1,
                              value_list1, weight_list1) -> bool:
        solution_binary = "".join([str(item) for item in solution.item_list])
        solution_number = int(solution_binary, 2)

        mask_list = deepcopy(mask_list1)
        mask_list.reverse()

        for mask in mask_list:
            masked_number = solution_number ^ int(mask, 2)
            masked_binary = bin(masked_number)[2:].zfill(solution.n)

            neighbor = [int(digit) for digit in masked_binary]
            neighbor_weight_list = [
                a * b for a, b in zip(neighbor, weight_list1)
            ]

            if sum(neighbor_weight_list) <= solution.capacity:
                neighbor_value_list = [
                    a * b for a, b in zip(neighbor, value_list1)
                ]
                if sum(neighbor_value_list) > solution.value:
                    solution.value = sum(neighbor_value_list)
                    solution.weight = sum(neighbor_weight_list)
                    solution.item_list = deepcopy(neighbor)
                    return True

        return False
 def __init__(self, name, config_src, job_id ):
     Solution.__init__(self,name=name)
     
     self.config_src = config_src        
     self.config_params = []
     self.sampling = "lin"
     self.kill_timeout = 10 #seconds
     
     self.job_id = job_id
     self.sobol = None
Exemple #5
0
    def get(self, project_id, solution_id):
        project = Project.find_project_with_id(project_id)
        user_id = get_jwt_identity()
        if not project or not project.belongs_to_user(user_id):
            return self.project_does_not_exist_response()

        solution = Solution.find_solution_with_id(project.type, solution_id)
        if not solution or not solution.if_belongs_to(project.id):
            return self.solution_does_not_exist_response()

        analytics = Analytics(solution)
        status = analytics.get_status()
        main_stats, secondary_stats = status["main_status"], status["secondary_status"]
        parameters = status["hyperparameters"]

        if not solution.analytics_filled():
            if analytics.solution_has_completed(main_stats):
                solution.update_analytics(analytics.get_solution_metrics())

        return {
            "type": project.type,
            "status": main_stats,
            "secondary_status": secondary_stats,
            "parameters": parameters,
            "solution": solution.json()
        }
Exemple #6
0
def simulated_annealing(optimum_value: float, instance_dict: dict, output_filename: str):
    config = settings.EVALUATE_METHODS_SETTINGS
    max_iterations = config.get('sa', {}).get('max_iterations')
    distance = config.get('sa', {}).get('distance')
    initial_temperature = config.get('sa', {}).get('initial_temperature')
    
    best_solution = Solution(
        n=instance_dict.get('n'),
        capacity=instance_dict.get('capacity'),
        optimum=optimum_value
    )
    best_solution.generate_starter_solution(
        item_list=instance_dict.get('item_list'),
        random_seed=RANDOM_SEED
    )
    best_solution.print_solution()

    sa = SimulatedAnnealing(
        solution=deepcopy(best_solution),
        item_list=instance_dict.get('item_list'),
        distance=2,
        output_filename=f"{output_filename}_temp"
    )

    current_solution = deepcopy(sa.solution)
    writer = FileWriter(file_name=f"{output_filename}_temp")

    for i in range(max_iterations):

        if i == 0:
            writer.write_line(output_filename.replace('TEMP-', ''))
            writer.write_line(str(current_solution.optimum))
            writer.write_line(f"{i} {current_solution.value}")

        sa.solution = deepcopy(current_solution)

        # random neighbor
        test = sa.random_neighbor(distance=distance)

        if not test:
            print(f"ERROR ! Could not find a random neighbor")

        # if better set as best_solution
        if sa.solution.value > best_solution.value:
            best_solution = deepcopy(sa.solution)
            writer.write_line(f"{i} {best_solution.value}")
        # calculate diff
        diff = current_solution.value - sa.solution.value
        # calculate temp
        t = initial_temperature / float(i + 1)
        if diff < 0 or random() < exp(-diff / t):
            current_solution = deepcopy(sa.solution)

    print(f"ic| SA Optimum Solution")
    best_solution.print_solution(item_list=instance_dict.get('item_list'))
    return best_solution
Exemple #7
0
    def get(self, project_id):
        project = Project.find_project_with_id(project_id)
        user_id = get_jwt_identity()
        if not project or not project.belongs_to_user(user_id):
            return self.project_does_not_exist_response()

        return {
            "solution_ids": Solution.find_solutions_of_projects(project.type, project.id)
        }
Exemple #8
0
    def post(self, project_id):
        project = Project.find_project_with_id(project_id)
        user_id = get_jwt_identity()
        if not project or not project.belongs_to_user(user_id):
            return self.project_does_not_exist_response()

        # Check if user have enough tokens
        user = UserModel.find_user_with_id(user_id);
        if user.tokens == 0:
            return self.not_enough_tokens()

        algorithm_name, hyperparameters = self.parse_arguments()

        if not ModelCreator.if_algorithm_belongs_to_problem_type(project.type, algorithm_name):
            return self.wrong_class_of_algorithm()

        project_data = Dataset.find_data_by_id(project.id)

        ml_model = ModelCreator.create_model(
            algorithm_name,
            data_path=project_data.get_data_path(),
            hyperparameters=hyperparameters
        )
        ml_model.fit()

        training_job_name = ml_model.get_training_name()

        ml_database_model = Solution(
            training_job_name=training_job_name,
            algorithm_name=algorithm_name,
            project_id=project_id,
            type=project.type
        )
        ml_database_model.save()

        # One model trained -> Decrease user tokens by 1
        user.increase_tokens(-1);
        
        return {
            "solution": ml_database_model.json()
        }, 201
Exemple #9
0
def vns(optimum_value: float, instance_dict: dict, output_filename: str) -> Solution:
    config = settings.EVALUATE_METHODS_SETTINGS
    max_iterations = config.get('vns', {}).get('max_iterations')
    neighborhood_size = config.get('vns', {}).get('neighborhood_size')
    
    solution = Solution(
        n=instance_dict.get('n'),
        capacity=instance_dict.get('capacity'),
        optimum=optimum_value
    )
    solution.generate_starter_solution(
        item_list=instance_dict.get('item_list'),
        random_seed=RANDOM_SEED
    )
    #solution.print_solution()

    vns_method = Vns(
        item_list=instance_dict.get('item_list'),
        neighborhood_size=neighborhood_size
    )
    
    vns_method.run_vns(
        solution=solution,
        item_list=instance_dict.get('item_list'),
        max_iterations=max_iterations,
        neighborhood_size=neighborhood_size,
        output_filename=output_filename
    )
    print(f"ic| VNS Optimum Solution")
    solution.print_solution(item_list=instance_dict.get('item_list'))
    return solution
def multi_start_local_search(optimum_value: float, instance_dict: dict,
                             output_filename: str) -> Solution:
    config = settings.EVALUATE_METHODS_SETTINGS
    max_iterations = config.get('msl', {}).get('max_iterations')

    best_solution = None
    counter = 0
    msl = None

    for i in range(max_iterations):

        print(f"Iteration {i}")

        random_solution = Solution(n=instance_dict.get('n'),
                                   capacity=instance_dict.get('capacity'),
                                   optimum=optimum_value)
        random_solution.generate_starter_solution(
            item_list=instance_dict.get('item_list'),
            random_seed=(RANDOM_SEED + i))
        #random_solution.print_solution()

        if i == 0:
            msl = MultiStartLocalSearch(
                solution=random_solution,
                item_list=instance_dict.get('item_list'),
                distance=2,
                output_filename=f"{output_filename}_temp")
        else:
            msl.solution = deepcopy(random_solution)

        msl.run(counter=counter)

        if best_solution is None or msl.solution.value > best_solution.value:
            counter += 1
            msl.output_file.write_line(f"{counter} {msl.solution.value}")
            best_solution = deepcopy(msl.solution)

    print(f"ic| MSL Optimum Solution")
    best_solution.print_solution(item_list=instance_dict.get('item_list'))
    return best_solution
Exemple #11
0
    def nahrat_data_clicked(self, widget):

        file_chooser_dialog = gtk.FileChooserDialog(
            title="Zvolte soubor, ktery chcete otevrit",
            parent=None,
            buttons=(gtk.STOCK_OK, gtk.RESPONSE_OK, gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL),
        )

        # Vytvoreni a pridani filtru do filechooserdialogu
        def dialog_filtr(dialog, nazev, predloha):
            filtr = gtk.FileFilter()
            filtr.set_name(nazev)
            filtr.add_pattern(predloha)
            dialog.add_filter(filtr)
            dialog.set_filter(filtr)

        dialog_filtr(file_chooser_dialog, "Zdrojove kody v pythonu", "*.py")
        dialog_filtr(file_chooser_dialog, "Vsechny soubory", "*")
        dialog_filtr(file_chooser_dialog, "Textove soubory", "*.txt")

        # file_chooser_dialog.set_current_folder(solution)
        reakce_dialogu = file_chooser_dialog.run()
        nazev_souboru = file_chooser_dialog.get_filename()
        file_chooser_dialog.destroy()

        if reakce_dialogu == gtk.RESPONSE_OK:
            solution = Solution(name=nazev_souboru)
            solution.load()
            page = self.settings["notebook"].pridat_stranku_from_load(solution)
            page.settings["initdatapanel"].set_data(solution.get_init_data())
            page.settings["matdatapanel"].set_data()

            page.settings["description"].nastav_init_data(solution.init_data.filepath)
            page.settings["description"].nastav_mat_data(solution.mat_data.filepath)
            page.settings["description"].nastav_opac_data(solution.opac_data)

            self.settings["notebook"].set_current_page(self.settings["notebook"].get_n_pages() - 1)
    def assign_solutions(solutions):
        '''
        Create list of Solution objs.

        Parameters:
            solutions : list of lists of str

            solutions_list : list of Solution objs.
        '''
        solutions_list = []
        for solution in solutions:
            new_solution = Solution.from_list(solution)
            solutions_list.append(new_solution)

        return solutions_list
def iterated_local_search(optimum_value: float, instance_dict: dict,
                          output_filename: str) -> Solution:
    config = settings.EVALUATE_METHODS_SETTINGS
    max_iterations = config.get('ils', {}).get('max_iterations')

    best_solution = Solution(n=instance_dict.get('n'),
                             capacity=instance_dict.get('capacity'),
                             optimum=optimum_value)
    best_solution.generate_starter_solution(
        item_list=instance_dict.get('item_list'), random_seed=RANDOM_SEED)

    counter = 0

    for i in range(max_iterations):
        perturbed_solution = deepcopy(best_solution)
        perturbed_solution.perturb_solution(
            item_list=instance_dict.get('item_list'))

        print(f"Iteration {i}")

        if i == 0:
            ils = IteratedLocalSearch(
                solution=perturbed_solution,
                item_list=instance_dict.get('item_list'),
                distance=2,
                output_filename=f"{output_filename}_temp")
        else:
            ils.solution = deepcopy(perturbed_solution)

        ils.run(counter)

        while not ils.check_acceptance_criteria(best_solution):
            ils.solution.perturb_solution(
                item_list=instance_dict.get('item_list'))
            ils.run(counter)

        if ils.solution.value > best_solution.value:
            counter += 1
            best_solution = deepcopy(ils.solution)
            best_solution.print_solution()
            ils.output_file.write_line(f"{counter} {ils.solution.value}")

    print(f"ic| ILS Optimum Solution")
    best_solution.print_solution(item_list=instance_dict.get('item_list'))
    return best_solution
Exemple #14
0
    def __solve_lp__(self, __solver__=None):
        if self.current_iteration >= self.max_iterations:
            raise TimeoutError("Phase1 has reached the maximum number of {0} iterations".format(self.max_iterations))

        # Trick to speed things up and avoid calculating A, and b over and over again
        if __solver__ is None:
            solver = SimplexSolver(linear_model=self.model, base_variables=self.base_indexes,non_base_variables=self.non_base_variables)
        else:
            solver = __solver__

        # Who should join the base?
        relative_costs = [self.model.fo.coefficients[i] - np.dot(solver.simplex_multiplierT, solver.N[:, index]) for index, i in enumerate(solver.N_variables)]
        negative_relative_costs = [i for i in relative_costs if i < 0]
        variable_join_N_index = None
        if len(negative_relative_costs) > 0:
            variable_join_N_index = relative_costs.index(min(negative_relative_costs))

        # Is my base optimal?
        if variable_join_N_index is None:
            self.solution = Solution(solver=solver)
            return

        # Who should I take out from base?
        simplex_direction = np.dot(solver.B_inv, solver.N[:, [variable_join_N_index]])
        y = [i for i in simplex_direction]

        # Unlimited solutions check
        y_sanity_check = [i for i in simplex_direction if i > 0]
        if not y_sanity_check or len(y_sanity_check) <= 0:
            raise InterruptedError("The model is unbounded and has unlimited solutions")

        steps = [item / y[index] if y[index] != 0 else -1 for index, item in enumerate(solver.xb)]
        steps_excluding_negative = [i for i in steps if i >= 0]
        if len(steps_excluding_negative) <= 0:
            raise InterruptedError("Only negative steps...")
        min_step = min(steps_excluding_negative)
        variable_leave_B_index = steps.index(min_step)

        # Updating Base and Non Base
        variable_leave_B = solver.B_variables[variable_leave_B_index]
        variable_join_N = solver.N_variables[variable_join_N_index]

        solver.B_variables[variable_leave_B_index] = variable_join_N
        solver.N_variables[variable_join_N_index] = variable_leave_B
        self.current_iteration = self.current_iteration + 1

        self.__solve_lp__(__solver__=solver)
def assign_assignments_to_new_student():
    '''
    Fallows adding student. Creates Solution objs. for all assignemts stored in system

    Paramaters:
        None

    Returns:
        None

    Updates:
        Solution, Assignment class data
    '''
    for assignment in Assignment.list_of_assignments:
        assignment.solutions.append(Solution(0, '0', '0'))

    Assignment.save_assignments_to_file('assignments.csv')
Exemple #16
0
def tabu_search(optimum_value: float, instance_dict: dict, output_filename: str):
    config = settings.EVALUATE_METHODS_SETTINGS
    max_iterations = config.get('tabu', {}).get('max_iterations')
    
    best_solution = Solution(
        n=instance_dict.get('n'),
        capacity=instance_dict.get('capacity'),
        optimum=optimum_value
    )
    best_solution.generate_starter_solution(
        item_list=instance_dict.get('item_list'),
        random_seed=RANDOM_SEED
    )
    best_solution.print_solution()

    tabu_list = {}
    tabu_tenure = config.get('tabu', {}).get('tenure')

    tabu_search = TabuSearch(
        solution=deepcopy(best_solution),
        item_list=instance_dict.get('item_list'),
        distance=2,
        output_filename=f"{output_filename}_temp"
    )

    for _ in range(max_iterations):
        tabu_search.run(tabu_list=tabu_list)
        if tabu_search.solution.value > best_solution.value:
            best_solution = deepcopy(tabu_search.solution)

        # decrement tenure, removes if 0
        for solution in tabu_list.copy():
            tabu_list[solution] -= 1
            if tabu_list[solution] == 0:
                del tabu_list[solution]

        # add new solution to list
        number = int(''.join([str(x) for x in tabu_search.solution.item_list]), 2)
        tabu_list[number] = tabu_tenure

    print(f"ic| Tabu Optimum Solution")
    best_solution.print_solution(item_list=instance_dict.get('item_list'))
    return best_solution
Exemple #17
0
    def get(self, project_id, solution_id):
        # Check if project belongs to correct user
        project = Project.find_project_with_id(project_id)
        user_id = get_jwt_identity()
        if not project or not project.belongs_to_user(user_id):
            return self.project_does_not_exist_response()

        # Check if solution belongs to project
        solution = Solution.find_solution_with_id(project.type, solution_id)
        if not solution or not solution.if_belongs_to(project.id):
            return self.solution_does_not_exist_response()

        # Get download link
        downloader = SolutionDownloader(solution)
        download_url = downloader.get_solution_url()

        # Return 
        return {
            "url": download_url
        }, 201 # Created URL
def get_assignment_data():
    '''
    Gets valid data for all data necessery to create new Assignment obj.

    Parameters:
        None

    Returns:
        name      : str
        add_date  : str
        deadline  : str
        max_grade : int
        solutions : str
    '''
    add_date = get_today_date()
    name, deadline, max_grade = get_valid_inputs()
    deadline = format_date(deadline)

    solutions = []
    for index in range(len(Student.list_of_students)):
        solutions.append(Solution(0, '0', '0'))

    return name, add_date, deadline, max_grade, solutions
def single_start_local_search(optimum_value: float, instance_dict: dict,
                              output_filename: str) -> Solution:
    solution = Solution(n=instance_dict.get('n'),
                        capacity=instance_dict.get('capacity'),
                        optimum=optimum_value)
    solution.generate_starter_solution(
        item_list=instance_dict.get('item_list'), random_seed=RANDOM_SEED)
    #solution.print_solution()

    local_search = LocalSearch(solution=solution,
                               item_list=instance_dict.get('item_list'),
                               distance=2,
                               output_filename=output_filename,
                               improved=True)
    local_search.run()

    print(f"ic| SSL Optimum Solution")
    solution.print_solution(item_list=instance_dict.get('item_list'))
    return solution
    def evaluate_neighborhood(self, solution: Solution, item_list: list,
                              distance: int) -> bool:
        optimum_value = solution.value
        optimum_weight = solution.weight
        pos1 = -1
        pos2 = -1
        posd1 = -1
        has_improved = False

        if distance == 1:
            for i in range(solution.n):
                if solution.item_list[i] == 0:
                    aux_weight = solution.weight + item_list[i].weight
                    aux_value = solution.value + item_list[i].value
                else:
                    aux_weight = solution.weight - item_list[i].weight
                    aux_value = solution.value - item_list[i].value

                if aux_weight <= solution.capacity and aux_value > optimum_value:
                    pos1 = i
                    optimum_value = aux_value
                    optimum_weight = aux_weight

            if pos1 != -1:
                solution.item_list[pos1] = (solution.item_list[pos1] + 1) % 2
                solution.value = optimum_value
                solution.weight = optimum_weight
                return True

            return False

        elif distance == 2:
            for i in range(solution.n):
                if solution.item_list[i] == 0:
                    aux_weight = solution.weight + item_list[i].weight
                    aux_value = solution.value + item_list[i].value
                else:
                    aux_weight = solution.weight - item_list[i].weight
                    aux_value = solution.value - item_list[i].value

                if aux_weight <= solution.capacity and aux_value > optimum_value:
                    posd1 = i
                    optimum_value = aux_value
                    optimum_weight = aux_weight

            if posd1 != -1:
                has_improved = True

            for i in range(solution.n - 1):
                if solution.item_list[i] == 0:
                    aux_weight = solution.weight + item_list[i].weight
                    aux_value = solution.value + item_list[i].value
                else:
                    aux_weight = solution.weight - item_list[i].weight
                    aux_value = solution.value - item_list[i].value

                for j in range(i + 1, solution.n):
                    if solution.item_list[j] == 0:
                        aux_weight2 = aux_weight + item_list[j].weight
                        aux_value2 = aux_value + item_list[j].value
                    else:
                        aux_weight2 = aux_weight - item_list[j].weight
                        aux_value2 = aux_value - item_list[j].value

                    if aux_weight2 <= solution.capacity and aux_value2 > optimum_value:
                        pos1 = i
                        pos2 = j
                        optimum_value = aux_value2
                        optimum_weight = aux_weight2

            if pos1 != -1:
                solution.item_list[pos1] = (solution.item_list[pos1] + 1) % 2
                solution.item_list[pos2] = (solution.item_list[pos2] + 1) % 2
                solution.value = optimum_value
                solution.weight = optimum_weight
                return True

            if has_improved:
                solution.item_list[posd1] = (solution.item_list[posd1] + 1) % 2
                solution.value = optimum_value
                solution.weight = optimum_weight
                return True

            return False

        return False
 def _find_calculated_solutions(self):
     database_solutions = Solution.find_by_n(self.n)
     if database_solutions:
         return True
     return False
 def _save_solutions(self, solutions):
     for sol in solutions:
         s = Solution(self.n, str(sol).strip('[]'))
         s.save()
Exemple #23
0
class AblatorPage(gtk.VBox):
    def __init__(self, parent_notebook, solution=None):

        gtk.VBox.__init__(self, False, 0)

        self.notebook = parent_notebook

        if solution == None:
            self.solution = Solution()
        else:
            self.solution = solution

        self.settings = {}
        self.settings["initdatapanel"] = AblatorInitdataPanel(self.solution, self.settings)
        self.settings["matdatapanel"] = AblatorMatdataPanel(self.solution, self.settings)
        self.settings["opacdatacesta"] = ""
        self.settings["solution"] = self.solution
        self.settings["description"] = AblatorSolutionDescription(self.settings)

        self.Init_tlacitko = gtk.Button("Init Data..")
        self.Init_tlacitko.connect("clicked", self.cteni_initdat_clicked)

        self.tlacitko_smazat_page = gtk.Button("Zavřít záložku", stock=gtk.STOCK_CLOSE)
        self.tlacitko_smazat_page.connect("clicked", self.smazat_page_clicked)

        self.Mat_tlacitko = gtk.Button("Mat Data..")
        self.Mat_tlacitko.connect("clicked", self.cteni_matdata_clicked)

        self.Opac_tlacitko = gtk.Button("Opac Data..")
        self.Opac_tlacitko.connect("clicked", self.cteni_opacdata_clicked)

        self.tlacitko_vypocet = gtk.Button("Vypocet", stock=gtk.STOCK_EXECUTE)
        self.tlacitko_vypocet.connect("clicked", self.spustit_vypocet_clicked)

        self.tlacitko_otevrit_slozku = gtk.Button("Otevřít složku s řešením")
        self.tlacitko_otevrit_slozku.connect("clicked", self.otevrit_slozku_clicked)

        self.tlacitko_ulozit_data = gtk.Button("Ulozit data..", stock=gtk.STOCK_SAVE)
        self.tlacitko_ulozit_data.connect("clicked", self.ulozit_data_clicked)

        self.combobox = gtk.combo_box_new_text()
        self.combobox.append_text("Ablator - 1.0")
        self.combobox.append_text("Ablator - 2.0")
        self.combobox.set_active(0)

        # spojeni tlacitek do hboxu
        self.hbox_zalozka_tlacitka = gtk.HBox()
        self.hbox_zalozka_tlacitka.pack_start(self.Init_tlacitko, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.Mat_tlacitko, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.Opac_tlacitko, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_otevrit_slozku, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_ulozit_data, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_smazat_page, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_vypocet, False, True, 0)
        # self.hbox_zalozka_tlacitka.pack_start(self.combobox, False, True,0)

        # spojeni initdata a matdata do hboxu

        self.hbox_initdata_matdata_opacdata = gtk.HBox()
        self.hbox_initdata_matdata_opacdata.pack_start(self.settings["initdatapanel"], True, True, 0)
        self.hbox_initdata_matdata_opacdata.pack_start(self.settings["matdatapanel"], True, True, 0)
        # self.hbox_initdata_matdata_opacdata.pack_start(self.settings["opacdatapanel"], True, True,0)

        self.pack_start(self.hbox_zalozka_tlacitka, False, False, 0)
        self.pack_start(self.hbox_initdata_matdata_opacdata, False, False, 0)
        self.pack_end(self.settings["description"], False, True, 0)

    def cteni_initdat_clicked(self, widget):

        file_chooser_dialog = gtk.FileChooserDialog(
            title="Zvolte soubor, který chcete otevřít",
            parent=None,
            buttons=(gtk.STOCK_OK, gtk.RESPONSE_OK, gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL),
        )

        # Vytvoreni a pridani filtru do filechooserdialogu
        def dialog_filtr(dialog, nazev, predloha):
            filtr = gtk.FileFilter()
            filtr.set_name(nazev)
            filtr.add_pattern(predloha)
            dialog.add_filter(filtr)
            dialog.set_filter(filtr)

        dialog_filtr(file_chooser_dialog, "Zdrojové kódy v pythonu", "*.py")
        dialog_filtr(file_chooser_dialog, "Textové soubory", "*.txt")
        dialog_filtr(file_chooser_dialog, "Všechny soubory", "*")

        # file_chooser_dialog.set_current_folder(data)
        reakce_dialogu = file_chooser_dialog.run()
        nazev_souboru = file_chooser_dialog.get_filename()
        file_chooser_dialog.destroy()

        if reakce_dialogu == gtk.RESPONSE_OK:

            # try:
            # self.init_data = InitData(nazev_souboru)
            self.solution.set_init_data(nazev_souboru)
            self.settings["description"].nastav_init_data(nazev_souboru)

            if self.solution.ablator_exe == "Ablator.exe":
                self.settings["initdatapanel"].set_data(self.solution.init_data)
            else:
                self.settings["initdatapanel"].set_data2(self.solution.init_data)

            self.solution.set_init_data(nazev_souboru)

            # except:
            # self.settings["description"].nastav_init_data("Nepovedlo se nacist initdata")

    def cteni_matdata_clicked(self, widget):

        file_chooser_dialog = gtk.FileChooserDialog(
            title="Zvolte soubor, který chcete otevřít",
            parent=None,
            buttons=(gtk.STOCK_OK, gtk.RESPONSE_OK, gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL),
        )

        # Vytvoreni a pridani filtru do filechooserdialogu
        def dialog_filtr(dialog, nazev, predloha):
            filtr = gtk.FileFilter()
            filtr.set_name(nazev)
            filtr.add_pattern(predloha)
            dialog.add_filter(filtr)
            dialog.set_filter(filtr)

        dialog_filtr(file_chooser_dialog, "Zdrojové kódy v pythonu", "*.py")
        dialog_filtr(file_chooser_dialog, "Textové soubory", "*.txt")
        dialog_filtr(file_chooser_dialog, "Všechny soubory", "*")

        # file_chooser_dialog.set_current_folder(data)
        reakce_dialogu = file_chooser_dialog.run()
        nazev_souboru = file_chooser_dialog.get_filename()
        file_chooser_dialog.destroy()

        if reakce_dialogu == gtk.RESPONSE_OK:
            # try:
            self.solution.set_mat_data(nazev_souboru)
            self.settings["description"].nastav_mat_data(nazev_souboru)
            self.settings["matdatapanel"].set_data()

            # except:
            # self.settings["description"].nastav_mat_data("Nepovedlo se nacist matdata")

    def cteni_opacdata_clicked(self, widget):
        file_chooser_dialog = gtk.FileChooserDialog(
            title="Zvolte soubor, ktery chcete otevrit",
            parent=None,
            buttons=(gtk.STOCK_OK, gtk.RESPONSE_OK, gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL),
        )

        # Vytvoreni a pridani filtru do filechooserdialogu
        def dialog_filtr(dialog, nazev, predloha):
            filtr = gtk.FileFilter()
            filtr.set_name(nazev)
            filtr.add_pattern(predloha)
            dialog.add_filter(filtr)
            dialog.set_filter(filtr)

        dialog_filtr(file_chooser_dialog, "Zdrojové kódy v pythonu", "*.py")
        dialog_filtr(file_chooser_dialog, "Textové soubory", "*.txt")
        dialog_filtr(file_chooser_dialog, "Všechny soubory", "*")

        # file_chooser_dialog.set_current_folder(data)
        reakce_dialogu = file_chooser_dialog.run()
        nazev_souboru = file_chooser_dialog.get_filename()
        file_chooser_dialog.destroy()

        if reakce_dialogu == gtk.RESPONSE_OK:
            # try:
            self.solution.set_opac_data(nazev_souboru)
            self.settings["description"].nastav_opac_data(nazev_souboru)

            # except:
            #    self.settings["description"].nastav_opac_data("Nepovedlo se nacist opacdata")

    def spustit_vypocet_clicked(self, widget):
        # s = Solution("Kremik","data/initdata","data/matdata-Si","data/opacdata-PMMA","Ablator2.exe")

        # model = self.combobox.get_model()
        # active = self.combobox.get_active()

        # item = model[active][0]
        # if(item == "Ablator - 1.0"):
        #    self.solution.set_ablator_exe("Ablator.exe")
        # else:
        #    self.solution.set_ablator_exe("Ablator2.exe")
        try:
            self.solution.run()
            self.solution.open_folder()
        except Exception, e:
            md = gtk.MessageDialog(
                None, gtk.DIALOG_DESTROY_WITH_PARENT, gtk.MESSAGE_INFO, gtk.BUTTONS_CLOSE, "Nejdříve řešení uložte."
            )
            md.run()
            md.destroy()
Exemple #24
0
    def __init__(self, parent_notebook, solution=None):

        gtk.VBox.__init__(self, False, 0)

        self.notebook = parent_notebook

        if solution == None:
            self.solution = Solution()
        else:
            self.solution = solution

        self.settings = {}
        self.settings["initdatapanel"] = AblatorInitdataPanel(self.solution, self.settings)
        self.settings["matdatapanel"] = AblatorMatdataPanel(self.solution, self.settings)
        self.settings["opacdatacesta"] = ""
        self.settings["solution"] = self.solution
        self.settings["description"] = AblatorSolutionDescription(self.settings)

        self.Init_tlacitko = gtk.Button("Init Data..")
        self.Init_tlacitko.connect("clicked", self.cteni_initdat_clicked)

        self.tlacitko_smazat_page = gtk.Button("Zavřít záložku", stock=gtk.STOCK_CLOSE)
        self.tlacitko_smazat_page.connect("clicked", self.smazat_page_clicked)

        self.Mat_tlacitko = gtk.Button("Mat Data..")
        self.Mat_tlacitko.connect("clicked", self.cteni_matdata_clicked)

        self.Opac_tlacitko = gtk.Button("Opac Data..")
        self.Opac_tlacitko.connect("clicked", self.cteni_opacdata_clicked)

        self.tlacitko_vypocet = gtk.Button("Vypocet", stock=gtk.STOCK_EXECUTE)
        self.tlacitko_vypocet.connect("clicked", self.spustit_vypocet_clicked)

        self.tlacitko_otevrit_slozku = gtk.Button("Otevřít složku s řešením")
        self.tlacitko_otevrit_slozku.connect("clicked", self.otevrit_slozku_clicked)

        self.tlacitko_ulozit_data = gtk.Button("Ulozit data..", stock=gtk.STOCK_SAVE)
        self.tlacitko_ulozit_data.connect("clicked", self.ulozit_data_clicked)

        self.combobox = gtk.combo_box_new_text()
        self.combobox.append_text("Ablator - 1.0")
        self.combobox.append_text("Ablator - 2.0")
        self.combobox.set_active(0)

        # spojeni tlacitek do hboxu
        self.hbox_zalozka_tlacitka = gtk.HBox()
        self.hbox_zalozka_tlacitka.pack_start(self.Init_tlacitko, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.Mat_tlacitko, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.Opac_tlacitko, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_otevrit_slozku, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_ulozit_data, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_smazat_page, False, True, 0)
        self.hbox_zalozka_tlacitka.pack_start(self.tlacitko_vypocet, False, True, 0)
        # self.hbox_zalozka_tlacitka.pack_start(self.combobox, False, True,0)

        # spojeni initdata a matdata do hboxu

        self.hbox_initdata_matdata_opacdata = gtk.HBox()
        self.hbox_initdata_matdata_opacdata.pack_start(self.settings["initdatapanel"], True, True, 0)
        self.hbox_initdata_matdata_opacdata.pack_start(self.settings["matdatapanel"], True, True, 0)
        # self.hbox_initdata_matdata_opacdata.pack_start(self.settings["opacdatapanel"], True, True,0)

        self.pack_start(self.hbox_zalozka_tlacitka, False, False, 0)
        self.pack_start(self.hbox_initdata_matdata_opacdata, False, False, 0)
        self.pack_end(self.settings["description"], False, True, 0)