sessions, fmri_series)):
            # create design matrices
            reg = all_reg[2 * sess: 2 * sess + 2] # fixme
            design_matrix = make_dmtx(
                frametimes, add_regs=reg_matrix, add_reg_names=reg,
                drift_model=drift_model, hfcut=hfcut)

            # plot the design matrix
            ax = design_matrix.show()
            ax.set_position([.05, .25, .9, .65])
            ax.set_title('Design matrix')
            pylab.savefig(os.path.join(write_dir, 'design_matrix_%s.png') %\
                              session)
            # get the data
            if side == False:
                Y, _ = data_scaling(load(fmri_data).get_data()[mask_array].T)
                affine = load(fmri_data).get_affine()
            else:
                Y = np.array([x.data for x in read(fmri_data).darrays])
                Y, _ = data_scaling(Y)
                if sess == 0: # do not redefine the mask later !
                    mask_array = np.var(Y, 0) > 0
                Y = Y[:, mask_array]

            # fit the glm
            print 'Fitting a GLM'
            result = GeneralLinearModel(design_matrix.matrix)
            result.fit(Y, model='ar1', steps=100)

            for contrast_id, contrast_val in contrasts.iteritems():
                if (contrast_val[session] == 0).all():
Exemple #2
0
contrasts["V-H"] = contrasts["damier_V"] - contrasts["damier_H"]
contrasts["left-right"] = contrasts["left"] - contrasts["right"]
contrasts["right-left"] = contrasts["right"] - contrasts["left"]
contrasts["audio-video"] = contrasts["audio"] - contrasts["video"]
contrasts["video-audio"] = contrasts["video"] - contrasts["audio"]
contrasts["computation-sentences"] = contrasts["computation"] - contrasts["sentences"]
contrasts["reading-visual"] = contrasts["sentences"] * 2 - contrasts["damier_H"] - contrasts["damier_V"]
contrasts["effects_of_interest"] = np.eye(25)[::2]

########################################
# Perform a GLM analysis
########################################

print "Fitting a GLM (this takes time)..."
fmri_image = load(data_path)
Y, _ = data_scaling(fmri_image.get_data()[mask_array])
X = design_matrix.matrix
results = GeneralLinearModel(X)
results.fit(Y.T, steps=100)
affine = fmri_image.get_affine()

#########################################
# Estimate the contrasts
#########################################

print "Computing contrasts..."
for index, (contrast_id, contrast_val) in enumerate(contrasts.iteritems()):
    print "  Contrast % 2i out of %i: %s" % (index + 1, len(contrasts), contrast_id)
    contrast_path = op.join(write_dir, "%s_z_map.nii" % contrast_id)
    write_array = mask_array.astype(np.float)
    write_array[mask_array] = results.contrast(contrast_val).z_score()
Exemple #3
0
# Get multi-run fMRI data
print ("Loading fmri data...")
Y = [load(f) for f in fmri_files]

# Get mask image
print ("Loading mask...")
mask = load(mask_file)
mask_array = mask.get_data() > 0

# GLM fitting
print ("Starting fit...")
results = []
for x, y in zip(X, Y):
    # normalize the data to report effects in percent of the baseline
    data = y.get_data()[mask_array].T
    data, mean = data_scaling(data)
    # fit the glm
    model = GeneralLinearModel(x)
    model.fit(data, "ar1")
    results.append(model)

# make a mean volume for display
wmean = mask_array.astype(np.int16)
wmean[mask_array] = mean


def make_fiac_contrasts():
    """Specify some constrasts for the FIAC experiment"""
    con = {}
    # the design matrices of both runs comprise 13 columns
    # the first 5 columns of the design matrices correpond to the following
Exemple #4
0
        design_matrix = dmtx.matrix

        # Plot the design matrix
        if plot_design_matrix:
            fig1 = mp.figure(figsize=(10, 6))
            dmtx.show()
            mp.title(desc)
            fig1_file = os.path.join(out_path, label + 'design_matrix_test' + \
                                               str(ntest) + '.png')
            mp.savefig(fig1_file)

        #-----------------------------------------------------------------
        # Mean-scale, de-mean and multiply data by 100
        #-----------------------------------------------------------------
        mask = np.sum(img.get_data(), axis=-1) > 0
        data, mean = data_scaling(img.get_data()[mask].T)
        if np.size(data):
            mean.shape = mask.shape

            #-----------------------------------------------------------------
            # Apply a general linear model to all pixels
            #-----------------------------------------------------------------
            print('   Apply general linear model...')
            model = "ar1"
            glm = GeneralLinearModel(design_matrix)
            glm.fit(data, model=model)

            #-----------------------------------------------------------------
            # Create a contrast image
            #
            # Contrast condition 1 vs. condition 2, holding condition 3 constant
            sessions, fmri_series)):
            # create design matrices
            reg = all_reg[4 * sess: 4 * sess + 4] # fixme
            design_matrix = make_dmtx(
                frametimes, add_regs=reg_matrix, add_reg_names=reg,
                drift_model=drift_model, hfcut=hf_cut)

            # plot the design matrix
            ax = design_matrix.show()
            ax.set_position([.05, .25, .9, .65])
            ax.set_title('Design matrix')
            pylab.savefig(os.path.join(write_dir, 'design_matrix_%s.png') %\
                              session)
            # get the data
            if side == False:
                Y, _ = data_scaling(np.array([load(f).get_data()[mask_array]
                                              for f in fmri_data]))
                affine = load(fmri_data[0]).get_affine()
            else:
                Y, _ = data_scaling(np.array(
                        [load_texture(f) for f in fmri_data]))
                mask_array = np.var(Y, 0) > 0
                Y = Y[:, mask_array]

            # fit the glm
            print 'Fitting a GLM (this takes time)...'
            result = GeneralLinearModel(design_matrix.matrix)
            result.fit(Y, model='ar1', steps=100)

            for contrast_id, contrast_val in contrasts.iteritems():
                if (contrast_val[session] == 0).all():
                    continue
# Get multi-session fMRI data
print('Loading fmri data...')
Y = [load_image(f) for f in fmri_files]

# Get mask image
print('Loading mask...')
mask = load_image(mask_file)
mask_array, affine = mask.get_data() > 0, mask.get_affine()

# GLM fitting
print('Starting fit...')
glms = []
for x, y in zip(X, Y):
    glm = GeneralLinearModel(x)
    data, mean = data_scaling(y.get_data()[mask_array].T)
    glm.fit(data, 'ar1')
    glms.append(glm)

# Compute the required contrast
print('Computing test contrast image...')
nregressors = X[0].shape[1]
## should check that all design matrices have the same
c = np.zeros(nregressors)
c[0:4] = cvect
z_vals = (glms[0].contrast(c) + glms[1].contrast(c)).z_score()

# Show Zmap image
z_map = mask_array.astype(np.float)
z_map[mask_array] = z_vals
mean_map = mask_array.astype(np.float)
# Get multi-session fMRI data
print('Loading fmri data...')
Y = [load_image(f) for f in fmri_files]

# Get mask image
print('Loading mask...')
mask = load_image(mask_file)
mask_array, affine = mask.get_data() > 0, mask.get_affine()

# GLM fitting
print('Starting fit...')
glms = []
for x, y in zip(X, Y):
    glm = GeneralLinearModel(x)
    data, mean = data_scaling(y.get_data()[mask_array].T)
    glm.fit(data, 'ar1')
    glms.append(glm)

# Compute the required contrast
print('Computing test contrast image...')
nregressors = X[0].shape[1]
## should check that all design matrices have the same
c = np.zeros(nregressors)
c[0:4] = cvect
z_vals = (glms[0].contrast(c) + glms[1].contrast(c)).z_score()

# Show Zmap image
z_map = mask_array.astype(np.float)
z_map[mask_array] = z_vals
mean_map = mask_array.astype(np.float)
            reg = all_reg[2 * sess:2 * sess + 2]  # fixme
            design_matrix = make_dmtx(frametimes,
                                      add_regs=reg_matrix,
                                      add_reg_names=reg,
                                      drift_model=drift_model,
                                      hfcut=hfcut)

            # plot the design matrix
            ax = design_matrix.show()
            ax.set_position([.05, .25, .9, .65])
            ax.set_title('Design matrix')
            pylab.savefig(os.path.join(write_dir, 'design_matrix_%s.png') %\
                              session)
            # get the data
            if side == False:
                Y, _ = data_scaling(load(fmri_data).get_data()[mask_array].T)
                affine = load(fmri_data).get_affine()
            else:
                Y = np.array([x.data for x in read(fmri_data).darrays])
                Y, _ = data_scaling(Y)
                if sess == 0:  # do not redefine the mask later !
                    mask_array = np.var(Y, 0) > 0
                Y = Y[:, mask_array]

            # fit the glm
            print 'Fitting a GLM (this takes time)...'
            result = GeneralLinearModel(design_matrix.matrix)
            result.fit(Y, model='ar1', steps=100)

            for contrast_id, contrast_val in contrasts.iteritems():
                if (contrast_val[session] == 0).all():
Exemple #9
0
# Get multi-run fMRI data
print('Loading fmri data...')
Y = [load(f) for f in fmri_files]

# Get mask image
print('Loading mask...')
mask = load(mask_file)
mask_array = mask.get_data() > 0

# GLM fitting
print('Starting fit...')
results = []
for x, y in zip(X, Y):
    # normalize the data to report effects in percent of the baseline
    data = y.get_data()[mask_array].T
    data, mean = data_scaling(data)
    # fit the glm
    model = GeneralLinearModel(x)
    model.fit(data, 'ar1')
    results.append(model)

# make a mean volume for display
wmean = mask_array.astype(np.int16)
wmean[mask_array] = mean


def make_fiac_contrasts():
    """Specify some contrasts for the FIAC experiment"""
    con = {}
    # the design matrices of both runs comprise 13 columns
    # the first 5 columns of the design matrices correspond to the following