Exemple #1
0
    def __init__(
        self,
        huefile,
        saturationfile,
        valuefile,
        huemin,
        saturationmin,
        valuemin,
        huemax,
        saturationmax,
        valuemax,
        gamma=1.0,
        bb=[0, 0, -1, -1],
    ):
        self.hdata = FitsData(huefile, bb)
        self.sdata = FitsData(saturationfile, bb)
        self.vdata = FitsData(valuefile, bb)

        # use the original data to calculate the RGB values
        hue = (numarray.ravel(self.hue.hdata) - huemin) / (huemax - huemin)
        hue = (numarray.ravel(self.hue.hdata) - huemin) / (huemax - huemin)
        hue = (numarray.ravel(self.hue.hdata) - huemin) / (huemax - huemin)

        self.red = MyImage.__init__(self, "L", self.hdata.size)
        self.green = MyImage.__init__(self, "L", self.hdata.size)
        self.blue = MyImage.__init__(self, "L", self.hdata.size)

        MyImage.__init__(self, "RGB", self.hdata.size)
        self.im.putband(self.hue.im, 0)
        self.im.putband(self.saturation.im, 1)
        self.im.putband(self.value.im, 2)
def get_optic_flow(im0,im1,pix,wnd,dt):
    """
    Compute optic flow at pixel location

    Inputs:
        im0 -- image 0
        im1 -- image 1
        pix -- pixel locations
        wnd -- computation window
        dt  -- time step between images
    """
    # Get index location of pixel
    i0,i1 = pix[1], pix[0]

    # Get regions for optic flow calculation
    E1_w_bndry = im1[i0-wnd-2:i0+wnd+3,i1-wnd-2:i1+wnd+3]
    E0 = im0[i0-wnd:i0+wnd+1,i1-wnd:i1+wnd+1]

    # Cast to Float for computation
    E1_w_bndry = nx.asarray(E1_w_bndry, nx.Float32)
    E0 = nx.asarray(E0, nx.Float32)
    E1 = E1_w_bndry[2:-2,2:-2]

    # Gaussian Filter
    #std = 1.5
    #E1_w_bndry = gaussian_filter(E1_w_bndry,std)
    #E1 = E1_w_bndry[2:-2,2:-2]
    #E0 = gaussian_filter(E0, std)

    # Get time derivatives
    dE_dt = (E1-E0)/dt

    # Get spacial derivatives
    Ex_w_bndry, Ey_w_bndry = lsq_deriv(E1_w_bndry)
    Ex = Ex_w_bndry[2:-2,2:-2]
    Ey = Ey_w_bndry[2:-2,2:-2]


    # Create Problem matrices
    n = 2*wnd+1
    A = nx.concatenate((nx.ravel(Ex)[:,None], nx.ravel(Ey)[:,None]), axis=1)
    b = -nx.ravel(dE_dt)

    ## Solution method 1 (fastest?) ------------------------
    #At = nx.transpose(A)
    #AtA = nx.matrixmultiply(At,A)
    #Atb = nx.matrixmultiply(At,b)
    #try:
    #    x = solve(AtA,Atb)
    #except:
    #    x = nx.array([0.0,0.0])

    # Solution method 2 ------------------------------------
    # New method
    x,resids,rank,s = scipy.linalg.lstsq(A,b)

    return x[0], x[1]
def get_optic_flow(im0, im1, pix, wnd, dt):
    """
    Compute optic flow at pixel location

    Inputs:
        im0 -- image 0
        im1 -- image 1
        pix -- pixel locations
        wnd -- computation window
        dt  -- time step between images
    """
    # Get index location of pixel
    i0, i1 = pix[1], pix[0]

    # Get regions for optic flow calculation
    E1_w_bndry = im1[i0 - wnd - 2:i0 + wnd + 3, i1 - wnd - 2:i1 + wnd + 3]
    E0 = im0[i0 - wnd:i0 + wnd + 1, i1 - wnd:i1 + wnd + 1]

    # Cast to Float for computation
    E1_w_bndry = nx.asarray(E1_w_bndry, nx.Float32)
    E0 = nx.asarray(E0, nx.Float32)
    E1 = E1_w_bndry[2:-2, 2:-2]

    # Gaussian Filter
    #std = 1.5
    #E1_w_bndry = gaussian_filter(E1_w_bndry,std)
    #E1 = E1_w_bndry[2:-2,2:-2]
    #E0 = gaussian_filter(E0, std)

    # Get time derivatives
    dE_dt = (E1 - E0) / dt

    # Get spacial derivatives
    Ex_w_bndry, Ey_w_bndry = lsq_deriv(E1_w_bndry)
    Ex = Ex_w_bndry[2:-2, 2:-2]
    Ey = Ey_w_bndry[2:-2, 2:-2]

    # Create Problem matrices
    n = 2 * wnd + 1
    A = nx.concatenate((nx.ravel(Ex)[:, None], nx.ravel(Ey)[:, None]), axis=1)
    b = -nx.ravel(dE_dt)

    ## Solution method 1 (fastest?) ------------------------
    #At = nx.transpose(A)
    #AtA = nx.matrixmultiply(At,A)
    #Atb = nx.matrixmultiply(At,b)
    #try:
    #    x = solve(AtA,Atb)
    #except:
    #    x = nx.array([0.0,0.0])

    # Solution method 2 ------------------------------------
    # New method
    x, resids, rank, s = scipy.linalg.lstsq(A, b)

    return x[0], x[1]
Exemple #4
0
 def __init__(self, file1, file2, fmin, fmax, gamma=1.0, bb=[0, 0, -1, -1], minquality=1.0):
     self.numerator = FitsData(file1, bb)
     self.denominator = FitsData(file2, bb)
     self.size = self.numerator.size
     if self.size != self.denominator.size:
         raise IndexError, "Incompatible sizes in RatioImage!"
     MyImage.__init__(self, "L", self.size)
     if self.ratiofunc == None:
         self.fitsdata = self.numerator.fitsdata / self.denominator.fitsdata
     else:
         self.fitsdata = self.ratiofunc(self.numerator.fitsdata, self.denominator.fitsdata)
     self.flatnormaldata = (numarray.ravel(self.fitsdata) - fmin) / (fmax - fmin)
     self.flatnormaldata = numarray.clip(self.flatnormaldata, 0.0, 1.0)
     if gamma != 1.0:
         self.flatnormaldata = self.flatnormaldata ** (1.0 / gamma)
     self.putdata(self.flatnormaldata, scale=255.0)
     self.quality = numarray.where(self.denominator.fitsdata > minquality, 1, 0)
     self.quality = numarray.where(self.numerator.fitsdata > minquality, self.quality, 0)
     self.alpha = Image.new("L", self.size)
     self.alpha.putdata(numarray.ravel(self.quality), scale=255)
     self.im = Image.composite(self, Image.new("L", self.size, 255), self.alpha).im
Exemple #5
0
    def __init__(self, fitsfile, fmin, fmax, gamma=1.0, bb=[0, 0, -1, -1], icut=None, cutaxis=1, takelog=0):
        FitsData.__init__(self, fitsfile, bb, icut, cutaxis)
        MyImage.__init__(self, "L", self.size)
        # 06 Dec 2010: add new attributes: min, max to allow outside inspection
        # 05 Dec 2010: If fmin or fmax is None, then the respective limit is found from the data
        self.min = fmin if not fmin is None else self.fitsdata.min()
        self.max = fmax if not fmax is None else self.fitsdata.max()
        if takelog:
            self.flatnormaldata = (numarray.ravel(numarray.log10(self.fitsdata)) - numarray.log10(self.min)) / (
                numarray.log10(self.max) - numarray.log10(self.min)
            )
        else:
            self.flatnormaldata = (numarray.ravel(self.fitsdata) - self.min) / (self.max - self.min)
        # 09 Sep 2005: How on earth did this ever work before? It is necessary
        # to clip fitsdata to [fmin,fmax] before applying gamma correction, or
        # else we get sqrt of negative numbers....
        # Aha, there is a smart way to do this!
        self.flatnormaldata = numarray.clip(self.flatnormaldata, 0.0, 1.0)

        if gamma != 1.0:
            self.flatnormaldata = self.flatnormaldata ** (1.0 / gamma)
        self.putdata(self.flatnormaldata, scale=255.0)
Exemple #6
0
def numarray_to_cvx(*args):
    """Returns CVX matrices from NumArray matrices

    Note that NumArray one-dimensional arrays are transformed as row vectors
    in CVX. See/Run test_numarray_cvx_conversions() for details.
    """
    matrices = []
    for a in args:
        a    = numarray_asmatrix(a)
        m, n = a.shape
        a    = numarray.ravel( numarray.transpose(a) )
        matrices.append( cvx.matrix(a, (m,n), 'd') )

    if len(matrices)==1:
        return matrices[0]
    return matrices
Exemple #7
0
def numarray_to_cvx(*args):
    """Returns CVX matrices from NumArray matrices

    Note that NumArray one-dimensional arrays are transformed as row vectors
    in CVX. See/Run test_numarray_cvx_conversions() for details.
    """
    matrices = []
    for a in args:
        a = numarray_asmatrix(a)
        m, n = a.shape
        a = numarray.ravel(numarray.transpose(a))
        matrices.append(cvx.matrix(a, (m, n), 'd'))

    if len(matrices) == 1:
        return matrices[0]
    return matrices