def __findContour(self, filename): #find the contour of images, and save all points in self.vKeyPoints self.img = highgui.cvLoadImage (filename) self.grayimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,1) self.drawimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,3) cv.cvCvtColor (self.img, self.grayimg, cv.CV_BGR2GRAY) cv.cvSmooth(self.grayimg, self.grayimg, cv.CV_BLUR, 9) cv.cvSmooth(self.grayimg, self.grayimg, cv.CV_BLUR, 9) cv.cvSmooth(self.grayimg, self.grayimg, cv.CV_BLUR, 9) cv.cvThreshold( self.grayimg, self.grayimg, self.threshold, self.threshold +100, cv.CV_THRESH_BINARY ) cv.cvZero(self.drawimg) storage = cv.cvCreateMemStorage(0) nb_contours, cont = cv.cvFindContours (self.grayimg, storage, cv.sizeof_CvContour, cv.CV_RETR_LIST, cv.CV_CHAIN_APPROX_NONE, cv.cvPoint (0,0)) cv.cvDrawContours (self.drawimg, cont, cv.cvScalar(255,255,255,0), cv.cvScalar(255,255,255,0), 1, 1, cv.CV_AA, cv.cvPoint (0, 0)) self.allcurve = [] idx = 0 for c in cont.hrange(): PointArray = cv.cvCreateMat(1, c.total , cv.CV_32SC2) PointArray2D32f= cv.cvCreateMat( 1, c.total , cv.CV_32FC2) cv.cvCvtSeqToArray(c, PointArray, cv.cvSlice(0, cv.CV_WHOLE_SEQ_END_INDEX)) fpoints = [] for i in range(c.total): kp = myPoint() kp.x = cv.cvGet2D(PointArray,0, i)[0] kp.y = cv.cvGet2D(PointArray,0, i)[1] kp.index = idx idx += 1 fpoints.append(kp) self.allcurve.append(fpoints) self.curvelength = idx
def sync(self): """ Synchronizes the Capture image with the Camera image Arguments: - self: The main object pointer. """ self.__camera.query_image() if not self.__image: self.__images_cn = { 1 : cv.cvCreateImage ( self.__camera.imgSize, 8, 1 ), 3 : cv.cvCreateImage ( self.__camera.imgSize, 8, 3 ), 4 : cv.cvCreateImage ( self.__camera.imgSize, 8, 4 ) } self.__color = "bgr" self.__image_orig = self.__image = self.__camera.img if self.__color != self.__color_set: self.__image = self.color("rgb") # TODO: Workaround, I've to fix it if len(self.__camera.img_lkpoints["last"]) > 0: self.__camera.show_lkpoints() self.__camera.swap_lkpoints() self.show_rectangles(self.rectangles()) self.__image = self.resize(200, 160) return self.async
def evalCurrentImageGradient(self): key = {} try: self._cnt.emit(qt.PYSIGNAL("getImage"), (key, )) qimage = key['image'] except KeyError: return ##EVAL IMAGE GRADIENT x, y = self._cnt.focusPointSelected rectangleSize = self._cnt.focusRectangleSize im = qimage.copy(x, y, x + rectangleSize, y + rectangleSize) srcColorImage = qtTools.getImageOpencvFromQImage(im) if srcColorImage.nChannels > 1: srcImage = cv.cvCreateImage( cv.cvSize(srcColorImage.width, srcColorImage.height), srcColorImage.depth, 1) cv.cvCvtColor(srcColorImage, srcImage, cv.CV_RGB2GRAY) else: # In Fact It's a grey image srcImage = srcColorImage destImage = cv.cvCreateImage( cv.cvSize(srcImage.width, srcImage.height), cv.IPL_DEPTH_16S, 1) cv.cvSobel(srcImage, destImage, 1, 0, 3) array = numpy.fromstring(destImage.imageData_get(), dtype=numpy.int16) focusQuality = array.std() return focusQuality
def depthmatrix(leftimage, rightimage, precision=4, mask=0): """Returns a 3-channel 32bit floating-point distance matrix. Channels 1,2,3 = x,y,z coordinates of that point. Precision is the number of times to downsample mask. Downsample is the number of loops to go through with successively smaller match areas. If mask is set, only pixels in the mask are set.""" info = cv.cvGetSize(leftimage) width = info.width height = info.height precision_pixels = (2**precision) downsampled_size = cv.cvSize(width/precision_pixels, height/precision_pixels) print "Precision of", downsampled_size.width, downsampled_size.height, "px" if mask: downsampled_mask = cv.cvCreateImage(downsampled_size, 8, 1) cv.cvResize(mask, downsampled_mask) matx = cv.cvCreateImage(downsampled_size, 8, 1) maty = cv.cvCreateImage(downsampled_size, 8, 1) matz = cv.cvCreateImage(downsampled_size, 8, 1) for i in xrange(width/precision_pixels): for j in xrange(height/precision_pixels): if mask: if (not cv.cvGetReal2D(downsampled_mask, j, i)): continue x = i*precision y = j*precision depth = depthmatch(x+precision_pixels/2, y+precision_pixels/2, leftimage, rightimage, roi=precision_pixels, buf=precision_pixels*2) #print i, j # fill in result matrix if mask wasn't 0 at this point (X,Y,Z) cv.cvSetReal2D(matx, j, i, int(depth[0][0])) cv.cvSetReal2D(maty, j, i, int(depth[0][1])) cv.cvSetReal2D(matz, j, i, int(depth[0][2])) return matz
def analyzeImage(original): scaleImage = cv.cvCreateImage(cv.cvSize(int(original.width*scale), int(original.height*scale)), 8, 3) cv.cvResize(original, scaleImage) # Create 1-channel image for the egdes edgeImage = cv.cvCreateImage(cv.cvGetSize(scaleImage), 8, 1) # Retrieve edges edgeDetector.findBWEdges(scaleImage, edgeImage, edgeThreshold1, edgeThreshold2) # Get cuts cuts = lib.findGoldenMeans(cv.cvGetSize(scaleImage)) # Run along allComponents = [] for cut in cuts: cutComponents = analyzeCut(scaleImage, edgeImage, cut) allComponents.append(cutComponents) # Get the collected component_dictionaries for dict in allComponents: lib.drawBoundingBoxes(original, dict, scale) # Draw the margins for cut in cuts: lib.drawMargin(original, cut, margin, scale) #include if super margen is need to drawn #lib.drawMargin(original, cut, superMargin, scale) return (original, allComponents)
def findEdges(original, out, threshold1 = 100, threshold2 = None): """Return a new edge detected image with a specified threshold""" warnings.warn("Use findBWEdges instead unless you really need colored edges.", DeprecationWarning) #Define threshold2 if threshold2 == None: threshold2 = threshold1 * 3 # Create two pictures with only one channel for a b/w copy # and one for storring the edges found in the b/w picture gray = cv.cvCreateImage(cv.cvGetSize(original), 8, 1) edge = cv.cvCreateImage(cv.cvGetSize(original), 8, 1) # Create the b/w copy of the original cv.cvCvtColor(original, gray, cv.CV_BGR2GRAY) # Blur the b/w copy, but put the result into edge pic cv.cvSmooth(gray, edge, cv.CV_BLUR, 3, 3, 0) # Negate the b/w copy of original with newly blurred # b/w copy. This will make egdes stand out cv.cvNot(gray, edge) # Run an edge-finding algorithm called 'Canny' # It will analyse the first argument and store the # resulting picture in the second argument cv.cvCanny(gray, edge, threshold1, threshold2) # We initialize our out-image to black cv.cvSetZero(out) # Finally, we use the found edges, which are b/w, as # a mask for copying the colored edges from the original # to the out-image cv.cvCopy(original, out, edge)
def analyzeCut(scaleImage, edgeImage, cut): """Extract the interesting features respecting the cut""" # Set up constraints constraints = regionSelector.Constraints(cv.cvGetSize(scaleImage), cut, margin, superMargin, 0.002, 0.25) # Create temporary images blurImage = cv.cvCreateImage(cv.cvGetSize(scaleImage), 8, 3) workImage = cv.cvCreateImage(cv.cvGetSize(scaleImage), 8, 3) # Create a blurred copy of the original cv.cvSmooth(scaleImage, blurImage, cv.CV_BLUR, 3, 3, 0) # Superimpose the edges onto the blured image cv.cvNot(edgeImage, edgeImage) cv.cvCopy(blurImage, workImage, edgeImage) # Get the edges back to white cv.cvNot(edgeImage, edgeImage) # We're done with the blurred image now cv.cvReleaseImage(blurImage) # Retrive the regions touching the cut component_dictionary = featureDetector.ribbonFloodFill(scaleImage, edgeImage, workImage, cut, margin, lo, up) # Clean up cv.cvReleaseImage(workImage) # Prune components newComponents = regionSelector.pruneRegions(component_dictionary, constraints) # Return the dictionary of accepted components #transformer.translateBoundingBoxes(newComponents, 1) return newComponents
def detect_lines(self, img_grey, img_orig): """ Detect lines within the image. To switch between standard and probabilistic Hough transform, use cv.CV_HOUGH_STANDARD, or cv.CV_HOUGH_PROBABILISTIC. """ # Set transform method ('standard','probabilistic') transform_method = 'probabilistic' # Clear out our storage cv.cvClearMemStorage(self.lines_storage) sz = cv.cvSize(img_grey.width & -2, img_grey.height & -2) img_dst_color = cv.cvCreateImage(cv.cvGetSize(img_orig), 8, 3) tgrey = cv.cvCreateImage(sz, 8, 1) cv.cvCanny(tgrey, img_grey, 50, 200, 3) if transform_method == 'standard': lines = cv.cvHoughLines2(img_grey, self.lines_storage, cv.CV_HOUGH_STANDARD, 1, cv.CV_PI / 180, 100, 0, 0) else: lines = cv.cvHoughLines2(img_grey, self.lines_storage, cv.CV_HOUGH_PROBABILISTIC, 1, cv.CV_PI / 180, 50, 50, 10) return lines
def _cv_to_pygame(self,frame,channel=-1) : # scale the image to size of the window cvt_scale = cv.cvCreateImage(cv.cvSize(self.image_dims[0],self.image_dims[1]),frame.depth,frame.nChannels) #cv.cvResize(frame,cvt_scale,cv.CV_INTER_LINEAR) cv.cvResize(frame,cvt_scale,cv.CV_INTER_NN) # need to convert the colorspace differently depending on where the image came from cvt_color = cv.cvCreateImage(cv.cvSize(cvt_scale.width,cvt_scale.height),cvt_scale.depth,3) if frame.nChannels == 3 : # frame is in BGR format, convert it to RGB so the sky isn't orange cv.cvCvtColor(cvt_scale,cvt_color,cv.CV_BGR2RGB) elif frame.nChannels == 1 : # image has only one channel, iow 1 color if channel == 0 : cv.cvMerge(frame,None,None,None,cvt_color) elif channel == 1 : cv.cvMerge(None,frame,None,None,cvt_color) elif channel == 2 : cv.cvMerge(None,None,frame,None,cvt_color) elif channel == 3 : cv.cvMerge(None,None,None,frame,cvt_color) else : cv.cvCvtColor(cvt_scale,cvt_color,cv.CV_GRAY2RGB) # create a pygame surface frame_surface=pygame.image.frombuffer(cvt_color.imageData,self.image_dims,'RGB') return frame_surface
def detect_lines(self, img_grey, img_orig): """ Detect lines within the image. To switch between standard and probabilistic Hough transform, use cv.CV_HOUGH_STANDARD, or cv.CV_HOUGH_PROBABILISTIC. """ # Set transform method ('standard','probabilistic') transform_method = 'probabilistic' # Clear out our storage cv.cvClearMemStorage(self.lines_storage) sz = cv.cvSize(img_grey.width & -2, img_grey.height & -2) img_dst_color = cv.cvCreateImage(cv.cvGetSize(img_orig), 8, 3) tgrey = cv.cvCreateImage(sz, 8, 1) cv.cvCanny(tgrey, img_grey, 50, 200, 3) if transform_method == 'standard': lines = cv.cvHoughLines2(img_grey, self.lines_storage, cv.CV_HOUGH_STANDARD, 1, cv.CV_PI/180, 100, 0, 0) else: lines = cv.cvHoughLines2(img_grey, self.lines_storage, cv.CV_HOUGH_PROBABILISTIC, 1, cv.CV_PI/180, 50, 50, 10) return lines
def pixelInRange(src, rmin, rmax, floor, roof, dst): if rmax > rmin: # normal case cvInRangeS(src, rmin, rmax, dst) else: # considering range as a cycle dst0 = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) dst1 = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) cvInRangeS(src, floor, rmax, dst0) cvInRangeS(src, rmin, roof, dst1) cvOr(dst0, dst1, dst)
def getFilter(frameWidht, frameHeight): cvNamedWindow("Filtred") cvCreateTrackbar("hmax", "Filtred", getHlsFilter('hmax'), 180, trackBarChangeHmax) cvCreateTrackbar("hmin", "Filtred", getHlsFilter('hmin'), 180, trackBarChangeHmin) #cvCreateTrackbar("lmax", "Filtred", hlsFilter['lmax'], 255, trackBarChangeLmax) #cvCreateTrackbar("lmin", "Filtred", hlsFilter['lmin'], 255, trackBarChangeLmin) cvCreateTrackbar("smax", "Filtred", getHlsFilter('smax'), 255, trackBarChangeSmax) cvCreateTrackbar("smin", "Filtred", getHlsFilter('smin'), 255, trackBarChangeSmin) cvSetMouseCallback("Filtred", mouseClick, None) frame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3) hlsFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3) filtredFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3) mask = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) hFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) lFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) sFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) ThHFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) ThLFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) ThSFrame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 1) key = -1 while key == -1: if not cvGrabFrame(CAM): print "Could not grab a frame" exit frame = cvQueryFrame(CAM) cvCvtColor(frame, hlsFrame, CV_BGR2HLS) cvSplit(hlsFrame, hFrame, lFrame, sFrame, None) pixelInRange(hFrame, getHlsFilter('hmin'), getHlsFilter('hmax'), 0, 180, ThHFrame) #pixelInRange(lFrame, getHlsFilter('lmin'), getHlsFilter('lmax'), 0, 255, ThLFrame) pixelInRange(sFrame, getHlsFilter('smin'), getHlsFilter('smax'), 0, 255, ThSFrame) cvSetZero(mask) cvAnd(ThHFrame, ThSFrame, mask) cvSetZero(filtredFrame) cvCopy(frame, filtredFrame, mask) cvShowImage("Filtred", filtredFrame) key = cvWaitKey(10) if key == 'r': key = -1 resetHlsFilter() cvDestroyWindow("Filtred")
def __FindHarris(self, filename): #find the corners of images, and save all corner points in self.vKeyPoints self.img = highgui.cvLoadImage (filename) greyimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,1) w = cv.cvGetSize(self.img).width h = cv.cvGetSize(self.img).height image = cv.cvCreateImage(cv.cvGetSize(self.img), cv.IPL_DEPTH_32F, 1) cv.cvConvert(image, greyimg) self.cornerimg = cv.cvCreateImage(cv.cvGetSize(self.img), cv.IPL_DEPTH_32F, 1) cv.cvCornerHarris(image, self.cornerimg, 11,5,0.1)
def _detect(image): """ Detects faces on `image` Parameters: @image: image file path Returns: [((x1, y1), (x2, y2)), ...] List of coordenates for top-left and bottom-right corner """ # the OpenCV API says this function is obsolete, but we can't # cast the output of cvLoad to a HaarClassifierCascade, so use # this anyways the size parameter is ignored capture = cvCreateFileCapture(image) if not capture: return [] frame = cvQueryFrame(capture) if not frame: return [] img = cvCreateImage(cvSize(frame.width, frame.height), IPL_DEPTH_8U, frame.nChannels) cvCopy(frame, img) # allocate temporary images gray = cvCreateImage((img.width, img.height), COPY_DEPTH, COPY_CHANNELS) width, height = (cvRound(img.width / IMAGE_SCALE), cvRound(img.height / IMAGE_SCALE)) small_img = cvCreateImage((width, height), COPY_DEPTH, COPY_CHANNELS) # convert color input image to grayscale cvCvtColor(img, gray, CV_BGR2GRAY) # scale input image for faster processing cvResize(gray, small_img, CV_INTER_LINEAR) cvEqualizeHist(small_img, small_img) cvClearMemStorage(STORAGE) coords = [] for haar_file in CASCADES: cascade = cvLoadHaarClassifierCascade(haar_file, cvSize(1, 1)) if cascade: faces = cvHaarDetectObjects(small_img, cascade, STORAGE, HAAR_SCALE, MIN_NEIGHBORS, HAAR_FLAGS, MIN_SIZE) or [] for face_rect in faces: # the input to cvHaarDetectObjects was resized, so scale the # bounding box of each face and convert it to two CvPoints x, y = face_rect.x, face_rect.y pt1 = (int(x * IMAGE_SCALE), int(y * IMAGE_SCALE)) pt2 = (int((x + face_rect.width) * IMAGE_SCALE), int((y + face_rect.height) * IMAGE_SCALE)) coords.append((pt1, pt2)) return coords
def get_nearest_feature( image, this_point, n=2000 ): """ Get the n-nearest features to a specified image coordinate. Features are determined using cvGoodFeaturesToTrack. """ _red = cv.cvScalar (0, 0, 255, 0); _green = cv.cvScalar (0, 255, 0, 0); _blue = cv.cvScalar (255,0,0,0); _white = cv.cvRealScalar (255) _black = cv.cvRealScalar (0) quality = 0.01 min_distance = 4 N_best = n win_size = 11 grey = cv.cvCreateImage (cv.cvGetSize (image), 8, 1) eig = cv.cvCreateImage (cv.cvGetSize (image), 32, 1) temp = cv.cvCreateImage (cv.cvGetSize (image), 32, 1) # create a grey version of the image cv.cvCvtColor ( image, grey, cv.CV_BGR2GRAY) points = cv.cvGoodFeaturesToTrack ( grey, eig, temp, N_best, quality, min_distance, None, 3, 0, 0.04) # refine the corner locations better_points = cv.cvFindCornerSubPix ( grey, points, cv.cvSize (win_size, win_size), cv.cvSize (-1, -1), cv.cvTermCriteria (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03)) eigs = [] for i in range(len(points)): eigs.append(cv.cvGetMat(eig)[int(points[i].y)][int(points[i].x)]) mypoints = np.matrix(np.zeros((len(points)*2),dtype=float)).reshape(len(points),2) dists = [] for i,point in enumerate(points): mypoints[i,0]=point.x mypoints[i,1]=point.y dists.append( np.linalg.norm(mypoints[i,:]-this_point) ) dists = np.array(dists) sorteddists = dists.argsort() cv.cvDrawCircle ( image, points[ sorteddists[0] ], 5, _green, 2, 8, 0 ) return better_points[ sorteddists[0] ]
def texture_features(self, block_size=5, filter_size=3): """ Calculates the texture features associated with the image. block_size gives the size of the texture neighborhood to be processed filter_size gives the size of the Sobel operator used to find gradient information """ #block_size = cv.cvSize(block_size, block_size) #convert to grayscale float channels = 1 self.gray_image = cv.cvCreateImage( cv.cvSize(self.im_width, self.im_height), cv.IPL_DEPTH_8U, #cv.IPL_DEPTH_16U, #cv.IPL_DEPTH_32F, channels) #cv.CV_32FC1, #cv.IPL_DEPTH_32F, #cv.IPL_DEPTH_8U, #cv.IPL_DEPTH_16U, channels = 1 eig_tex = cv.cvCreateImage( cv.cvSize(self.im_width * 6, self.im_height), cv.IPL_DEPTH_32F, channels) cv.cvCvtColor(self.image, self.gray_image, cv.CV_BGR2GRAY) #cv.cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL ); #highgui.cvConvertImage(self.image, self.gray_image) cv.cvCornerEigenValsAndVecs( self.gray_image, eig_tex, #CvArr* eigenvv, block_size, filter_size) eig_tex = ut.cv2np(eig_tex) eig_tex = np.reshape(eig_tex, [self.im_height, self.im_width, 6]) #print eig_tex.shape ## [480,640,3] ## (l1, l2, x1, y1, x2, y2), where ## l1, l2 - eigenvalues of M; not sorted ## (x1, y1) - eigenvector corresponding to l1 ## (x2, y2) - eigenvector corresponding to l2 tex_feat = np.zeros([3, self.im_height * self.im_width], dtype=np.float32) tmp = np.reshape(eig_tex, [self.im_height * self.im_width, 6]).T s = tmp[0] > tmp[1] tex_feat[1:3, s] = tmp[0, s] * tmp[2:4, s] tex_feat[0, s] = tmp[1, s] tex_feat[1:3, -s] = tmp[1, -s] * tmp[4:6, -s] tex_feat[0, -s] = tmp[0, -s] self.tex_feat = tex_feat.T self.tex_image = np.reshape(self.tex_feat, [self.im_height, self.im_width, 3])
def harrisResponse(image): """pyvision/point/DetectorHarris.py Runs at 10.5 fps... """ gray = cv.cvCreateImage( cv.cvGetSize(image), 8, 1 ) corners = cv.cvCreateImage( cv.cvGetSize(image), 32, 1 ) cv.cvCvtColor( image, gray, cv.CV_BGR2GRAY ) cv.cvCornerHarris(gray,corners,3) image = filter_and_render_cv(image,corners) #IPShellEmbed()() return image
def read(self) : frame=self.input.read() if self.debug : raw_frame = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,frame.nChannels) cv.cvCopy(frame,raw_frame,None) self.raw_frame_surface=pygame.image.frombuffer(frame.imageData,(frame.width,frame.height),'RGB') if self.enabled : cv_rs = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1) # convert color cv.cvCvtColor(frame,cv_rs,cv.CV_BGR2GRAY) # invert the image cv.cvSubRS(cv_rs, 255, cv_rs, None); # threshold the image frame = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1) cv.cvThreshold(cv_rs, frame, self.threshold, 255, cv.CV_THRESH_BINARY) if self.debug : thresh_frame = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,3) cv.cvCvtColor(frame,thresh_frame,cv.CV_GRAY2RGB) self.thresh_frame_surface=pygame.image.frombuffer(thresh_frame.imageData,(frame.width,frame.height),'RGB') # I think these functions are too specialized for transforms cv.cvSmooth(frame,frame,cv.CV_GAUSSIAN,3, 0, 0, 0 ) cv.cvErode(frame, frame, None, 1) cv.cvDilate(frame, frame, None, 1) num_contours,contours=cv.cvFindContours(frame,self.storage,cv.sizeof_CvContour,cv.CV_RETR_LIST,cv.CV_CHAIN_APPROX_NONE,cv.cvPoint(0,0)) if contours is None : return [] else : contours = cv.cvApproxPoly( contours, cv.sizeof_CvContour, self.storage, cv.CV_POLY_APPROX_DP, 3, 1 ); if contours is None : return [] else : final_contours = [] for c in contours.hrange() : area = abs(cv.cvContourArea(c)) #self.debug_print('Polygon Area: %f'%area) if area >= self.min_area : lst = [] for pt in c : lst.append((pt.x,pt.y)) final_contours.append(lst) contours = contours.h_next return final_contours return []
def getBackground(frameWidht, frameHeight): cvNamedWindow("Background") text = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3) frame = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3) background = cvCreateImage(cvSize(frameWidth, frameHeight), IPL_DEPTH_8U, 3) font = cvInitFont(CV_FONT_HERSHEY_COMPLEX, 1.0, 1.0, 0.0, 2) pt1 = cvPoint(50, 100) pt2 = cvPoint(50, 150) center = cvPoint(frameWidth/2, frameHeight/2) cvPutText(text, "Press enter, run away and wait", pt1, font, CV_RGB(150, 100, 150)) cvPutText(text, str(delayS) + " seconds to capture background", pt2, font, CV_RGB(150, 100, 150)) cvShowImage("Background", text) key = -1 while key == -1: key = cvWaitKey(10) like = False while not like: for i in range(delayS): cvZero(text) cvPutText(text, str(delayS-i), center, font, CV_RGB(150, 100, 150)) cvShowImage("Background", text) cvWaitKey(1000) csut = camStartUpTime while (csut): # Stats capturing frames in order to give time to the cam to auto-adjust colors if not cvGrabFrame(CAM): print "Could not grab a frame" exit cvWaitKey(10) csut -= 1 frame = cvQueryFrame(CAM) cvCopy(frame, background) cvCopy(frame, text) cvPutText(text, "Is correct? [y/n]", center, font, CV_RGB(150, 100, 150)) cvShowImage("Background", text) key = -1 while key != 'n' and key != 'y': key = cvWaitKey(10) if key == 'y': like = True return background cvDestroyWindow("Background")
def main(): # ctrl+c to end global h,s,v,h2,v2,s2,d,e highgui.cvNamedWindow("Camera 1", 1) highgui.cvNamedWindow("Orig", 1) highgui.cvCreateTrackbar("H", "Camera 1", h, 256, tb_h) highgui.cvCreateTrackbar("S", "Camera 1", s, 256, tb_s) highgui.cvCreateTrackbar("V", "Camera 1", v, 256, tb_v) highgui.cvCreateTrackbar("H2", "Camera 1", h2, 256, tb_h2) highgui.cvCreateTrackbar("S2", "Camera 1", s2, 256, tb_s2) highgui.cvCreateTrackbar("V2", "Camera 1", v2, 256, tb_v2) highgui.cvCreateTrackbar("Dilate", "Camera 1", d, 30, tb_d) highgui.cvCreateTrackbar("Erode", "Camera 1", e, 30, tb_e) cap = highgui.cvCreateCameraCapture(1) highgui.cvSetCaptureProperty(cap, highgui.CV_CAP_PROP_FRAME_WIDTH, IMGW) highgui.cvSetCaptureProperty(cap, highgui.CV_CAP_PROP_FRAME_HEIGHT, IMGH) c = 0 t1 = tdraw = time.clock() t = 1 font = cv.cvInitFont(cv.CV_FONT_HERSHEY_PLAIN, 1, 1) while c != 0x27: image = highgui.cvQueryFrame(cap) if not image: print "capture failed" break thresh = cv.cvCreateImage(cv.cvSize(IMGW,IMGH),8,1) cv.cvSetZero(thresh) cv.cvCvtColor(image,image,cv.CV_RGB2HSV) cv.cvInRangeS(image, (h,s,v,0), (h2,s2,v2,0), thresh) result = cv.cvCreateImage(cv.cvSize(IMGW,IMGH),8,3) cv.cvSetZero(result) cv.cvOr(image,image,result,thresh) for i in range(1,e): cv.cvErode(result,result) for i in range(1,d): cv.cvDilate(result,result) # floodfill objects back in, allowing threshold differences outwards t2 = time.clock() if t2 > tdraw+0.3: t = t2-t1 tdraw=t2 cv.cvPutText(result, "FPS: " + str(1 / (t)), (0,25), font, (255,255,255)) t1 = t2 highgui.cvShowImage("Orig", image) highgui.cvShowImage("Camera 1", result) c = highgui.cvWaitKey(10)
def get_nearest_feature(image, this_point, n=2000): """ Get the n-nearest features to a specified image coordinate. Features are determined using cvGoodFeaturesToTrack. """ _red = cv.cvScalar(0, 0, 255, 0) _green = cv.cvScalar(0, 255, 0, 0) _blue = cv.cvScalar(255, 0, 0, 0) _white = cv.cvRealScalar(255) _black = cv.cvRealScalar(0) quality = 0.01 min_distance = 4 N_best = n win_size = 11 grey = cv.cvCreateImage(cv.cvGetSize(image), 8, 1) eig = cv.cvCreateImage(cv.cvGetSize(image), 32, 1) temp = cv.cvCreateImage(cv.cvGetSize(image), 32, 1) # create a grey version of the image cv.cvCvtColor(image, grey, cv.CV_BGR2GRAY) points = cv.cvGoodFeaturesToTrack(grey, eig, temp, N_best, quality, min_distance, None, 3, 0, 0.04) # refine the corner locations better_points = cv.cvFindCornerSubPix( grey, points, cv.cvSize(win_size, win_size), cv.cvSize(-1, -1), cv.cvTermCriteria(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03)) eigs = [] for i in range(len(points)): eigs.append(cv.cvGetMat(eig)[int(points[i].y)][int(points[i].x)]) mypoints = np.matrix(np.zeros((len(points) * 2), dtype=float)).reshape(len(points), 2) dists = [] for i, point in enumerate(points): mypoints[i, 0] = point.x mypoints[i, 1] = point.y dists.append(np.linalg.norm(mypoints[i, :] - this_point)) dists = np.array(dists) sorteddists = dists.argsort() cv.cvDrawCircle(image, points[sorteddists[0]], 5, _green, 2, 8, 0) return better_points[sorteddists[0]]
def __FindCorner(self, filename): #find the corners of images, and save all corner points in self.vKeyPoints self.img = highgui.cvLoadImage (filename) greyimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,1) hsvimg = cv.cvCreateImage(cv.cvGetSize(self.img), 8, 3) cv.cvCvtColor(self.img, hsvimg, cv.CV_RGB2HSV) cv.cvCvtColor (hsvimg, greyimg, cv.CV_BGR2GRAY) eigImage = cv.cvCreateImage(cv.cvGetSize(greyimg), cv.IPL_DEPTH_32F, 1) tempImage = cv.cvCreateImage(cv.cvGetSize(greyimg), cv.IPL_DEPTH_32F, 1) self.points = cv.cvGoodFeaturesToTrack(greyimg, eigImage,tempImage, 2000, 0.01, 5, None, 3,0,0.01 ) self.points2 = cv.cvFindCornerSubPix(greyimg, self.points,cv.cvSize(20, 20), cv.cvSize(-1, -1), cv.cvTermCriteria(cv.CV_TERMCRIT_ITER |cv.CV_TERMCRIT_EPS, 20, 0.03)) cv.cvReleaseImage(eigImage) cv.cvReleaseImage(tempImage)
def analyzeCut(original, edgeImage, cut, settings, showBlobs=False): """Extract the interesting features in the vicinity of a given cut""" # Get all data from the settings lo = settings.lo up = settings.up # Set up the margin with respect to the cut margin = marginCalculator.getPixels(original, cut, settings.marginPercentage) superMargin = 0 # ^^ We don't use superMargin # Set up constraints constraints = regionSelector.Constraints(cv.cvGetSize(original), cut, margin, superMargin, 0.002, 0.25) # Create temporary images blurImage = cv.cvCreateImage(cv.cvGetSize(original), 8, 3) workImage = cv.cvCreateImage(cv.cvGetSize(original), 8, 3) # Create a blurred copy of the original cv.cvSmooth(original, blurImage, cv.CV_BLUR, 3, 3, 0) # Superimpose the edges onto the blured image cv.cvNot(edgeImage, edgeImage) cv.cvCopy(blurImage, workImage, edgeImage) # We're done with the blurred image now cv.cvReleaseImage(blurImage) # Get the edges back to white cv.cvNot(edgeImage, edgeImage) # Retrive the regions touching the cut component_dictionary = featureDetector.ribbonFloodFill(original, edgeImage, workImage, cut, margin, lo, up) #start expanded # Prune components BEFORE we delete the workImage tmpnewComponents = regionSelector.pruneExpandedRegions(component_dictionary, constraints) newComponents = regionSelector.pruneExpandedRagionsto(tmpnewComponents, constraints, cut, workImage) # Clean up only if we do not return the image if not showBlobs: cv.cvReleaseImage(workImage) # Return the dictionary of accepted components or both if not showBlobs: return newComponents else: return (workImage, newComponents)
def texture_features(self, block_size=5, filter_size=3): """ Calculates the texture features associated with the image. block_size gives the size of the texture neighborhood to be processed filter_size gives the size of the Sobel operator used to find gradient information """ #block_size = cv.cvSize(block_size, block_size) #convert to grayscale float channels = 1 self.gray_image = cv.cvCreateImage(cv.cvSize(self.im_width, self.im_height), cv.IPL_DEPTH_8U, #cv.IPL_DEPTH_16U, #cv.IPL_DEPTH_32F, channels) #cv.CV_32FC1, #cv.IPL_DEPTH_32F, #cv.IPL_DEPTH_8U, #cv.IPL_DEPTH_16U, channels = 1 eig_tex = cv.cvCreateImage(cv.cvSize(self.im_width*6, self.im_height), cv.IPL_DEPTH_32F, channels) cv.cvCvtColor(self.image, self.gray_image, cv.CV_BGR2GRAY); #cv.cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL ); #highgui.cvConvertImage(self.image, self.gray_image) cv.cvCornerEigenValsAndVecs(self.gray_image, eig_tex,#CvArr* eigenvv, block_size, filter_size) eig_tex = ut.cv2np(eig_tex) eig_tex = np.reshape(eig_tex, [self.im_height, self.im_width, 6]) #print eig_tex.shape ## [480,640,3] ## (l1, l2, x1, y1, x2, y2), where ## l1, l2 - eigenvalues of M; not sorted ## (x1, y1) - eigenvector corresponding to l1 ## (x2, y2) - eigenvector corresponding to l2 tex_feat = np.zeros([3, self.im_height * self.im_width], dtype=np.float32) tmp = np.reshape(eig_tex, [self.im_height * self.im_width, 6]).T s = tmp[0] > tmp[1] tex_feat[1:3, s] = tmp[0, s] * tmp[2:4, s] tex_feat[0, s] = tmp[1, s] tex_feat[1:3, -s] = tmp[1, -s] * tmp[4:6, -s] tex_feat[0, -s] = tmp[0, -s] self.tex_feat = tex_feat.T self.tex_image = np.reshape(self.tex_feat, [self.im_height, self.im_width, 3])
def _get_cv_frame(self): frame = CameraInputProvider.get_frame(self) dst = cv.cvCreateImage(cv.cvSize(self.capture_dims[0],self.capture_dims[1]),frame.depth,frame.nChannels) cv.cvWarpPerspective( frame, dst, self.matrix) return dst
def on_trackbar (position): # create the image for putting in it the founded contours contours_image = cv.cvCreateImage (cv.cvSize (_SIZE, _SIZE), 8, 3) # compute the real level of display, given the current position levels = position - 3 # initialisation _contours = contours if levels <= 0: # zero or negative value # => get to the nearest face to make it look more funny _contours = contours.h_next.h_next.h_next # first, clear the image where we will draw contours cv.cvSetZero (contours_image) # draw contours in red and green cv.cvDrawContours (contours_image, _contours, _red, _green, levels, 3, cv.CV_AA, cv.cvPoint (0, 0)) # finally, show the image highgui.cvShowImage ("contours", contours_image)
def __normImage(self, img, length): #print "Generating norm image..." width = length height = length gray = cv.cvCreateImage(cv.cvSize(img.width,img.height), 8, 1); small_img = cv.cvCreateImage(cv.cvSize(cv.cvRound(width), cv.cvRound(height)), 8, 1 ); # convert color input image to grayscale cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY); # scale input image for faster processing cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR); cv.cvEqualizeHist(small_img, small_img); #cvClearMemStorage(self.storage); norm_image = small_img # save the 'normalized image' return norm_image
def detectObject(image): grayscale = cv.cvCreateImage(size, 8, 1) cv.cvFlip(image, None, 1) cv.cvCvtColor(image, grayscale, cv.CV_BGR2GRAY) storage = cv.cvCreateMemStorage(0) cv.cvClearMemStorage(storage) cv.cvEqualizeHist(grayscale, grayscale) cascade = cv.cvLoadHaarClassifierCascade(haar_file, cv.cvSize(1,1)) objects = cv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, cv.CV_HAAR_DO_CANNY_PRUNING, cv.cvSize(100,100)) # Draw dots where hands are if objects: for i in objects: #cv.cvRectangle(image, cv.cvPoint( int(i.x), int(i.y)), # cv.cvPoint(int(i.x+i.width), int(i.y+i.height)), # cv.CV_RGB(0,255,0), 3, 8, 0) center = cv.cvPoint(int(i.x+i.width/2), int(i.y+i.height/2)) cv.cvCircle(image, center, 10, cv.CV_RGB(0,0,0), 5,8, 0) # Left side check if center.x > box_forward_left[0].x and center.x < box_backwards_left[1].x and center.y > box_forward_left[0].y and center.y < box_backwards_left[1].y: set_speed('left', center) # Right side check if center.x > box_forward_right[0].x and center.x < box_backwards_right[1].x and center.y > box_forward_right[0].y and center.y < box_backwards_right[1].y: set_speed('right', center)
def on_trackbar(position): # create the image for putting in it the founded contours contours_image = cv.cvCreateImage(cv.cvSize(_SIZE, _SIZE), 8, 3) # compute the real level of display, given the current position levels = position - 3 # initialisation _contours = contours if levels <= 0: # zero or negative value # => get to the nearest face to make it look more funny _contours = contours.h_next.h_next.h_next # first, clear the image where we will draw contours cv.cvSetZero(contours_image) # draw contours in red and green cv.cvDrawContours(contours_image, _contours, _red, _green, levels, 3, cv.CV_AA, cv.cvPoint(0, 0)) # finally, show the image highgui.cvShowImage("contours", contours_image)
def PIL2Ipl(input): """Converts a PIL image to the OpenCV/IPL CvMat data format. Supported input image formats are: RGB L F """ if not (isinstance(input, PIL.Image.Image) or isinstance(input, Image.Image)): raise TypeError, 'Must be called with PIL.Image.Image or Image.Image!' # mode dictionary: # (pil_mode : (ipl_depth, ipl_channels) mode_list = { "RGB" : (cv.IPL_DEPTH_8U, 3), "L" : (cv.IPL_DEPTH_8U, 1), "F" : (cv.IPL_DEPTH_32F, 1) } if not mode_list.has_key(input.mode): raise ValueError, 'unknown or unsupported input mode' result = cv.cvCreateImage( cv.cvSize(input.size[0], input.size[1]), # size mode_list[input.mode][0], # depth mode_list[input.mode][1] # channels ) # set imageData result.imageData = input.tostring() return result
def __init__(self, name, size=2, draw_center=True, draw_grid=True, meters_radius=4.0): """ name = name of window meter_radus = 4.0 size = multiple of 400x200 to use for screen meter_radius = how many per metrer """ self.draw_center = draw_center self.draw_grid = draw_grid self.w = (int)(round(size * 400.0)) self.h = (int)(round(size * 200.0)) self.meters_disp = 4.0 #Range in meters of area around robot to display self.laser_win = name self.buffer = cv.cvCreateImage(cv.cvSize(self.w, 2 * self.h), cv.IPL_DEPTH_8U, 3) #print "RobotDisp: window width", self.buffer.width #print "RobotDisp: window height", self.buffer.height self.pixels_per_meter = self.h / self.meters_disp hg.cvNamedWindow(name, hg.CV_WINDOW_AUTOSIZE) hg.cvMoveWindow(name, 0, 50) self.font = cv.cvInitFont(cv.CV_FONT_HERSHEY_PLAIN, as_int(1), as_int(1), 0, 1, cv.CV_AA)
def detectObject(image): grayscale = cv.cvCreateImage(size, 8, 1) cv.cvFlip(image, None, 1) cv.cvCvtColor(image, grayscale, cv.CV_BGR2GRAY) storage = cv.cvCreateMemStorage(0) cv.cvClearMemStorage(storage) cv.cvEqualizeHist(grayscale, grayscale) cascade = cv.cvLoadHaarClassifierCascade(haar_file, cv.cvSize(1, 1)) objects = cv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, cv.CV_HAAR_DO_CANNY_PRUNING, cv.cvSize(100, 100)) # Draw dots where hands are if objects: for i in objects: #cv.cvRectangle(image, cv.cvPoint( int(i.x), int(i.y)), # cv.cvPoint(int(i.x+i.width), int(i.y+i.height)), # cv.CV_RGB(0,255,0), 3, 8, 0) center = cv.cvPoint(int(i.x + i.width / 2), int(i.y + i.height / 2)) cv.cvCircle(image, center, 10, cv.CV_RGB(0, 0, 0), 5, 8, 0) # Left side check if center.x > box_forward_left[ 0].x and center.x < box_backwards_left[ 1].x and center.y > box_forward_left[ 0].y and center.y < box_backwards_left[1].y: set_speed('left', center) # Right side check if center.x > box_forward_right[ 0].x and center.x < box_backwards_right[ 1].x and center.y > box_forward_right[ 0].y and center.y < box_backwards_right[1].y: set_speed('right', center)
def read(self): frame=self.input.read() if self.enabled: cv_rs = [None]*4 cv_thresh = [0]*4 cv_max = [255]*4 for i in self.channels : cv_rs[i] = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1) cv_thresh[i] = self.thresholds[i] cv_max[i] = self.max_thresholds[i] # extract the color channel cv.cvSplit(frame,cv_rs[0],cv_rs[1],cv_rs[2],cv_rs[3]) #self.debug_print(cv_rs) for i in self.channels : cv.cvThreshold(cv_rs[i],cv_rs[i],cv_thresh[i],cv_max[i],self.type) #cv_thresh = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,3) cv.cvZero(frame) cv.cvMerge(cv_rs[0],cv_rs[1],cv_rs[2],cv_rs[3],frame) #frame = cv_thresh return frame
def detect_faces(self, img_grey): """ Detect faces within an image, then draw around them. The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned for accurate yet slow object detection. For a faster operation on real video images the settings are: scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, min_size=<minimum possible face size """ min_size = cv.cvSize(20, 20) self.image_scale = 1.3 haar_scale = 1.2 min_neighbors = 2 haar_flags = 0 # Create a small image for better performance small_size = cv.cvSize(cv.cvRound(img_grey.width / self.image_scale), cv.cvRound(img_grey.height / self.image_scale)) small_img = cv.cvCreateImage(small_size, 8, 1) cv.cvResize(img_grey, small_img, cv.CV_INTER_LINEAR) cv.cvEqualizeHist(small_img, small_img) cv.cvClearMemStorage(self.faces_storage) if (self.cascade): t = cv.cvGetTickCount() faces = cv.cvHaarDetectObjects(small_img, self.cascade, self.faces_storage, haar_scale, min_neighbors, haar_flags, min_size) t = cv.cvGetTickCount() - t cv.cvReleaseImage(small_img) #print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.)); return faces
def read(self) : frame=self.input.read() cv_rs = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1) cv.cvCvtColor(frame,cv_rs,cv.CV_RGB2GRAY) frame = cv_rs if self.enabled : # I think these functions are too specialized for transforms cv.cvSmooth(frame,frame,cv.CV_GAUSSIAN,3, 0, 0, 0 ) cv.cvErode(frame, frame, None, 1) cv.cvDilate(frame, frame, None, 1) num_contours,contours=cv.cvFindContours(frame,self.storage,cv.sizeof_CvContour,cv.CV_RETR_LIST,cv.CV_CHAIN_APPROX_NONE,cv.cvPoint(0,0)) if contours is None : return [] else : contours = cv.cvApproxPoly( contours, cv.sizeof_CvContour, self.storage, cv.CV_POLY_APPROX_DP, 3, 1 ); if contours is None : return [] else : final_contours = [] for c in contours.hrange() : area = abs(cv.cvContourArea(c)) #self.debug_print('Polygon Area: %f'%area) if area >= self.min_area : lst = [] for pt in c : lst.append((pt.x,pt.y)) final_contours.append(lst) contours = contours.h_next return final_contours return []
def detect_faces(self, img_grey): """ Detect faces within an image, then draw around them. The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned for accurate yet slow object detection. For a faster operation on real video images the settings are: scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, min_size=<minimum possible face size """ min_size = cv.cvSize(20,20) self.image_scale = 1.3 haar_scale = 1.2 min_neighbors = 2 haar_flags = 0 # Create a small image for better performance small_size = cv.cvSize(cv.cvRound(img_grey.width/self.image_scale),cv.cvRound(img_grey.height/self.image_scale)) small_img = cv.cvCreateImage(small_size, 8, 1) cv.cvResize(img_grey, small_img, cv.CV_INTER_LINEAR) cv.cvEqualizeHist(small_img, small_img) cv.cvClearMemStorage(self.faces_storage) if(self.cascade): t = cv.cvGetTickCount(); faces = cv.cvHaarDetectObjects(small_img, self.cascade, self.faces_storage, haar_scale, min_neighbors, haar_flags, min_size) t = cv.cvGetTickCount() - t cv.cvReleaseImage(small_img) #print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.)); return faces
def read(self): frame = self.input.read() # which channels to combine cv_rs = [None]*4 #self.debug_print('channels:%s'%self.channels) # if frame only has one channel, just return it if frame.nChannels == 1 : for i in self.channels : cv_rs[i] = frame else : for i in self.channels : cv_rs[i] = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,1) #self.debug_print(cv_rs) # extract the color channel #print 'frame.nChannels',frame.nChannels cv.cvSplit(frame,cv_rs[0],cv_rs[1],cv_rs[2],cv_rs[3]) #cvt_im = cv.cvCreateImage(cv.cvSize(frame.width,frame.height),frame.depth,3) cv.cvMerge(cv_rs[0],cv_rs[1],cv_rs[2],cv_rs[3],frame) return frame
def process(self, videofile, progress): progress(0, _("Extracting histogram")) video = hg.cvCreateFileCapture(str(videofile).encode(sys.getfilesystemencoding())) if not video: raise Exception("Could not open video file") histo = cv.cvCreateHist([256],cv.CV_HIST_ARRAY,[[0,256]], 1) frame = hg.cvQueryFrame(video) frame_gray = cv.cvCreateImage(cv.cvGetSize(frame), frame.depth, 1); hists = [] nbframes = 0 fps = hg.cvGetCaptureProperty(video, hg.CV_CAP_PROP_FPS) while frame : if not progress(hg.cvGetCaptureProperty(video, hg.CV_CAP_PROP_POS_AVI_RATIO)): break hg.cvConvertImage(frame,frame_gray) cv.cvCalcHist(frame_gray,histo,0,None) h = [cv.cvGetReal1D(histo.bins,i) for i in range(255) ] h = numpy.array(h,dtype='int32') hists.append(h) frame = hg.cvQueryFrame(video) nbframes += 1 hists = numpy.array(hists) return hists.reshape(nbframes, -1), fps
def show(fr,width,height,name): image = cv.cvCreateImage(cv.cvSize (width, height),8,1) l = 0 for j in range(0,image.width): for i in range(0,image.height): cv.cvSet2D(image,i,j,int(fr[l][0])); l=l+1 highgui.cvShowImage(name,image) highgui.cvWaitKey(1000/29)
def HarrisPoints(self, imgfile): self.points = [] self.drawimg = highgui.cvLoadImage(imgfile) c = 1 try: gray = cv.cvCreateImage(cv.cvGetSize(self.drawimg), 8, 1) cv.cvCvtColor(self.drawimg, gray, cv.CV_BGR2GRAY) eig = cv.cvCreateImage(cv.cvGetSize(self.drawimg), 32, 1) tmpimg = cv.cvCreateImage(cv.cvGetSize(self.drawimg), 32, 1) p = cv.cvGoodFeaturesToTrack(gray, eig, tmpimg, 100, 0.1, 20, None, 7, 1, 0.04) for x in p: cv.cvCircle(self.drawimg, x, 3, cv.CV_RGB(0, 255, 0), 8, 0) self.points.append(x) except Exception, e: print e print 'ERROR: problem handling ' + imgfile
def putoriginal(fname, img): ori_img = highgui.cvLoadImage(fname) ori_img_thumb = cv.cvCreateImage( cv.cvSize(ori_img.width / 4, ori_img.height / 4), 8, 3) cv.cvResize(ori_img, ori_img_thumb) for x in range(ori_img_thumb.height): for y in range(ori_img_thumb.width): cv.cvSet2D(img, x, y, cv.cvGet2D(ori_img_thumb, x, y)) return
def __findedge(self, filename): tmpimg = highgui.cvLoadImage(filename) self.img = cv.cvCreateImage( cv.cvSize(int(tmpimg.width * self.enlarge), int(tmpimg.height * self.enlarge)), 8, 3) cv.cvResize(tmpimg, self.img, cv.CV_INTER_LINEAR) if (self.drawimage): self.drawimg = cv.cvCloneImage(self.img) else: self.drawimg = cv.cvCreateImage(cv.cvGetSize(self.img), 8, 3) greyimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8, 1) cv.cvCvtColor(self.img, greyimg, cv.CV_BGR2GRAY) self.allcurve = [] for i in range(80, 200, 20): bimg = cv.cvCloneImage(greyimg) cv.cvSmooth(bimg, bimg, cv.CV_MEDIAN, 9) # cv.cvSmooth(bimg, bimg, cv.CV_BILATERAL, 9) # cv.cvSmooth(bimg, bimg, cv.CV_BLUR, 9) # cv.cvSmooth(bimg, bimg, cv.CV_BLUR, 9) cv.cvThreshold(greyimg, bimg, i, 255, cv.CV_THRESH_BINARY) self.__findcurve(bimg)
def mask_image(im, mask): if mask.depth == 8: bim = cv.cvCreateImage(cv.cvSize(mask.width, mask.height), cv.IPL_DEPTH_32F, mask.nChannels) cv.cvConvertScale(mask, bim, 1.0 / 255.0) if im.depth == 8: newim = cv.cvCreateImage(cv.cvSize(im.width, im.height), cv.IPL_DEPTH_32F, im.nChannels) cv.cvConvertScale(im, newim, 1.0 / 255.0) print 'newim.depth = ', newim.depth print 'newim.nChannels = ', newim.nChannels print 'bim.depth = ', bim.depth print 'bim.nChannels = ', bim.nChannels if newim.nChannels == 3 and newim.depth == 32 and bim.nChannels == 3 and bim.depth == 32: outputIm = cv.cvCloneImage(bim) cv.cvMul(bim, newim, outputIm, 1) return outputIm else: print 'oops problem with formats' return mask
def detect_face(self, img): """ Detect faces within an image, then draw around them. The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned for accurate yet slow object detection. For a faster operation on real video images the settings are: scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, min_size=<minimum possible face size """ min_size = cv.cvSize(20, 20) image_scale = 1.3 haar_scale = 1.2 min_neighbors = 2 haar_flags = 0 gray = cv.cvCreateImage(cv.cvSize(img.width, img.height), 8, 1) small_img = cv.cvCreateImage( cv.cvSize(cv.cvRound(img.width / image_scale), cv.cvRound(img.height / image_scale)), 8, 1) cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY) cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR) cv.cvEqualizeHist(small_img, small_img) cv.cvClearMemStorage(self.storage) if (self.cascade): t = cv.cvGetTickCount() faces = cv.cvHaarDetectObjects(small_img, self.cascade, self.storage, haar_scale, min_neighbors, haar_flags, min_size) t = cv.cvGetTickCount() - t #print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.)); if faces: for r in faces: pt1 = cv.cvPoint(int(r.x * image_scale), int(r.y * image_scale)) pt2 = cv.cvPoint(int((r.x + r.width) * image_scale), int((r.y + r.height) * image_scale)) cv.cvRectangle(img, pt1, pt2, cv.CV_RGB(255, 0, 0), 3, 8, 0) return img
def run(self): if self.capture: webcam_frame = highgui.cvQueryFrame(self.capture) else: print "Capture failed!" return if self.inverted_video.get_active(): highgui.cvConvertImage(webcam_frame, webcam_frame, highgui.CV_CVTIMG_FLIP) highgui.cvConvertImage(webcam_frame, self.display_frame, highgui.CV_CVTIMG_SWAP_RB) if False: # PROCESS WEBCAM FRAME HERE... inputImage = cv.cvCreateImage(cv.cvGetSize(webcam_frame), cv.IPL_DEPTH_8U, 1) cv.cvCvtColor(webcam_frame, inputImage, cv.CV_RGB2GRAY) cv.cvThreshold(inputImage, inputImage, 128, 255, cv.CV_THRESH_BINARY) mysize = cv.cvGetSize(webcam_frame) height = mysize.height width = mysize.width # Find horizontal first-moment: if False: mysum = 0 for i in range(height): mysum += sum(inputImage[i, :]) print "Sum:", mysum cv.cvMerge(inputImage, inputImage, inputImage, None, self.display_frame) incoming_pixbuf = gtk.gdk.pixbuf_new_from_data( self.display_frame.imageData, gtk.gdk.COLORSPACE_RGB, False, 8, self.display_frame.width, self.display_frame.height, self.display_frame.widthStep) incoming_pixbuf.copy_area(0, 0, self.display_frame.width, self.display_frame.height, self.webcam_pixbuf, 0, 0) self.video_image.queue_draw() return self.video_enabled_button.get_active()
def detect_faces_on(path): faces = [] image = cvLoadImage(path) # convert to grayscale for faster results grayscale = cvCreateImage(cvSize(image.width, image.height), 8, 1) cvCvtColor(image, grayscale, CV_BGR2GRAY) # smooth picture for better results cvSmooth(grayscale, grayscale, CV_GAUSSIAN, 3, 3) storage = cvCreateMemStorage(0) cvClearMemStorage(storage) cvEqualizeHist(grayscale, grayscale) cascade_files = [ # ('/usr/share/opencv/haarcascades/haarcascade_eye_tree_eyeglasses.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_lowerbody.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_mcs_mouth.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_profileface.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_eye.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_mcs_eyepair_big.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_mcs_nose.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_righteye_2splits.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_frontalface_alt2.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_fullbody.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_mcs_eyepair_small.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_mcs_righteye.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_upperbody.xml', (50, 50)), ('/usr/share/opencv/haarcascades/haarcascade_frontalface_alt_tree.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_lefteye_2splits.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_mcs_lefteye.xml', (50, 50)), # ('/usr/share/opencv/haarcascades/haarcascade_mcs_upperbody.xml', (50, 50)), # ('parojos_22_5.1.xml', (22, 5)), # ('Mouth.xml', (22, 15)), ] for cascade_file, cascade_sizes in cascade_files: cascade = cvLoadHaarClassifierCascade(os.path.join(cascade_file), cvSize(1, 1)) faces += cvHaarDetectObjects(grayscale, cascade, storage, HAAR_SCALE, HAAR_NEIGHBORS, CV_HAAR_DO_CANNY_PRUNING, cvSize(*cascade_sizes)) return [{'x': f.x, 'y': f.y, 'w': f.width, 'h': f.height} for f in faces]
def detect_faces(image): """Converts an image to grayscale and prints the locations of any faces found""" grayscale = cvCreateImage(cvSize(image.width, image.height), 8, 1) cvCvtColor(image, grayscale, CV_BGR2GRAY) storage = cvCreateMemStorage(0) cvClearMemStorage(storage) cvEqualizeHist(grayscale, grayscale) # The default parameters (scale_factor=1.1, min_neighbors=3, # flags=0) are tuned for accurate yet slow face detection. For # faster face detection on real video images the better settings are # (scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING). # --- http://www710.univ-lyon1.fr/~bouakaz/OpenCV-0.9.5/docs/ref/OpenCVRef_Experimental.htm#decl_cvHaarDetectObjects # The size box is of the *minimum* detectable object size. Smaller box = more processing time. - http://cell.fixstars.com/opencv/index.php/Facedetect minsize = (int(MINFACEWIDTH_PERCENT * image.width + 0.5), int(MINFACEHEIGHT_PERCENT * image.height)) print >> sys.stderr, "Min size of face: %s" % ` minsize ` faces = [] for cascadefile in [ '/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml' ]: # for cascadefile in ['/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml', '/usr/share/opencv/haarcascades/haarcascade_profileface.xml']: cascade = cvLoadHaarClassifierCascade(cascadefile, cvSize(1, 1)) # faces += cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, CV_HAAR_DO_CANNY_PRUNING, cvSize(50,50)) # faces += cvHaarDetectObjects(grayscale, cascade, storage, 1.1, 3, 0, cvSize(MINFACEWIDTH,MINFACEHEIGHT)) # faces += cvHaarDetectObjects(grayscale, cascade, storage, 1.1, 3, 0, cvSize(MINFACEWIDTH,MINFACEHEIGHT)) # faces += cvHaarDetectObjects(grayscale, cascade, storage, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING, cvSize(*minsize)) faces += cvHaarDetectObjects(grayscale, cascade, storage, 1.1, 4, CV_HAAR_DO_CANNY_PRUNING, cvSize(*minsize)) # faces += cvHaarDetectObjects(grayscale, cascade, storage, scale_factor=1.1, min_neighbors=3, flags=0, cvSize(50,50)) # print dir(faces) bboxes = [] if faces: for f in faces: print >> sys.stderr, "\tFace at [(%d,%d) -> (%d,%d)]" % ( f.x, f.y, f.x + f.width, f.y + f.height) bboxes = [Face(f.x, f.y, f.x + f.width, f.y + f.height) for f in faces] return bboxes
def detect(image): image_size = opencv.cvGetSize(image) # create grayscale version grayscale = opencv.cvCreateImage(image_size, 8, 1) opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY) # create storage storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # equalize histogram opencv.cvEqualizeHist(grayscale, grayscale) # detect objects faces = opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(100, 100)) # eyes = opencv.cvHaarDetectObjects(grayscale, eye_cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(60,60)) draw_bounding_boxes(faces, image, 127,255,0, 3)
def initialize_video(self): webcam_frame = highgui.cvQueryFrame(self.capture) if not webcam_frame: print "Frame acquisition failed." return False self.webcam_pixbuf = gtk.gdk.pixbuf_new_from_data( webcam_frame.imageData, gtk.gdk.COLORSPACE_RGB, False, 8, webcam_frame.width, webcam_frame.height, webcam_frame.widthStep) self.video_image.set_from_pixbuf(self.webcam_pixbuf) self.display_frame = cv.cvCreateImage( cv.cvSize(webcam_frame.width, webcam_frame.height), cv.IPL_DEPTH_8U, 3) return True
def np2cv(im): print 'WARNING: np2cv is not reliable or well tested (it is a bit flakey...)' #raise AssertionError('np2cv does not work :-(') if len(im.shape) == 3: shp = im.shape channels = shp[2] height = shp[0] width = shp[1] #height, width, channels = im.shape elif len(im.shape) == 2: height, width = im.shape channels = 1 else: raise AssertionError( "unrecognized shape for the input image. should be 3 or 2, but was %d." % len(im.shape)) key = str(im.dtype) cv_type = np2cv_type_dict[key] print 'attempt to create opencv image with (key, width, height, channels) =', ( key, width, height, channels) cv_im = cv.cvCreateImage(cv.cvSize(width, height), cv_type, channels) #cv_im.imageData = im.tostring() if True: if len(im.shape) == 3: for y in xrange(height): for x in xrange(width): pix = [float(v) for v in im[y, x]] scalar = cv.cvScalar(*pix) #print scalar cv_im[y, x] = scalar else: for y in xrange(height): for x in xrange(width): pix = float(im[y, x]) cv_im[y, x] = cv.cvScalar(pix, pix, pix) #print 'im[y,x], cv_im[y,x] =', im[y,x], cv_im[y,x] print 'resulted in an image openCV image with the following properties:' numpy_type, nchannels = cv2np_type_dict[cv.cvGetElemType(cv_im)] print '(numpy_type, nchannels, cvmat.width, cvmat.height) =', ( numpy_type, nchannels, cv_im.width, cv_im.height) return cv_im
def threshold_image(image, n=[]): """Record the first 5 images to get a background, then diff current frame with the last saved frame. """ if len(n) < 5: # n[4] will be our background # First capture a few images n.append(cv.cvCloneMat(image)) if len(n) == 5: # last time here # could do averaging here. pass return image original = n[4] differenceImage = cv.cvCloneMat(image) cv.cvAbsDiff(image, original, differenceImage) """The threshold value determines the amount of "Change" required before something will show up""" thresholdValue = 50 # 32 cv.cvThreshold(differenceImage, differenceImage, thresholdValue, 255, cv.CV_THRESH_BINARY) # Convert to one channel gray = cv.cvCreateImage(cv.cvGetSize(differenceImage), 8, 1) cv.cvCvtColor(differenceImage, gray, cv.CV_BGR2GRAY) # Use median filter to remove salt and pepper noise. cv.cvSmooth(gray, gray, cv.CV_MEDIAN, 15) # Dilate and the threshold image # It adds a border to the object. #cv.cvDilate(gray,gray, None, 9) # Add a bit of Blur to the threshold mask cv.cvSmooth(gray, gray, cv.CV_GAUSSIAN, 5) result = cv.cvCloneMat(image) cv.cvSetZero(result) cv.cvAnd(image, image, result, gray) return result
def timerEvent(self, ev): # Fetch a frame from the video camera frame = highgui.cvQueryFrame(self.cap) img_orig = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), cv.IPL_DEPTH_8U, frame.nChannels) if (frame.origin == cv.IPL_ORIGIN_TL): cv.cvCopy(frame, img_orig) else: cv.cvFlip(frame, img_orig, 0) # Create a grey frame to clarify data #img = self.detect_face(frame_copy) img = self.detect_squares(frame_copy) img_pil = adaptors.Ipl2PIL(img) s = StringIO() img_pil.save(s, "PNG") s.seek(0) q_img = QImage() q_img.loadFromData(s.read()) bitBlt(self, 0, 0, q_img)
def display_images(image_list, max_x=1200, max_y=1000, save_images=False): """ Display a list of OpenCV images tiled across the screen with maximum width of max_x and maximum height of max_y save_images - will save the images(with timestamp) """ curtime = time.localtime() date_name = time.strftime('%Y_%m_%d_%I%M%S', curtime) loc_x, loc_y = 0, 0 wins = [] for i, im in enumerate(image_list): if save_images: if im.nChannels == 1 and im.depth == cv.IPL_DEPTH_32F: clr = cv.cvCreateImage(cv.cvSize(im.width, im.height), cv.IPL_DEPTH_8U, 1) cv.cvConvertScale(im, clr, 255.0) im = clr highgui.cvSaveImage('image%d_' % i + date_name + '.png', im) window_name = 'image %d' % i wins.append((window_name, im)) highgui.cvNamedWindow(window_name, highgui.CV_WINDOW_AUTOSIZE) highgui.cvMoveWindow(window_name, loc_x, loc_y) loc_x = loc_x + im.width if loc_x > max_x: loc_x = 0 loc_y = loc_y + im.height if loc_y > max_y: loc_y = 0 while True: for name, im in wins: highgui.cvShowImage(name, im) keypress = highgui.cvWaitKey(10) if keypress == '\x1b': break
def detect(self, pil_image, cascade_name, recogn_w=50, recogn_h=50): # Get cascade: cascade = self.get_cascade(cascade_name) image = opencv.PIL2Ipl(pil_image) image_size = opencv.cvGetSize(image) grayscale = image if pil_image.mode == "RGB": # create grayscale version grayscale = opencv.cvCreateImage(image_size, 8, 1) # Change to RGB2Gray - I dont think itll affect the conversion opencv.cvCvtColor(image, grayscale, opencv.CV_BGR2GRAY) # create storage storage = opencv.cvCreateMemStorage(0) opencv.cvClearMemStorage(storage) # equalize histogram opencv.cvEqualizeHist(grayscale, grayscale) # detect objects return opencv.cvHaarDetectObjects(grayscale, cascade, storage, 1.2, 2, opencv.CV_HAAR_DO_CANNY_PRUNING, opencv.cvSize(recogn_w, recogn_h))