def get_initial_guess(S, enzymeInfo, concLB, concUB):

        nMetabs = len(S.index)

        ini = []
        for i, metab in enumerate(S.index):

            f = np.zeros(nMetabs)
            f[i] = 1

            A = R * T * S.T
            b = -np.array([
                -R * T * np.log(item[0]) for item in enzymeInfo.loc[:, 'Keq']
            ])

            lb = [np.log(concLB)] * nMetabs
            ub = [np.log(concUB)] * nMetabs

            meth = 'pclp'

            p = LP(f=f, A=A, b=b, lb=lb, ub=ub, iprint=-1)
            r = p.solve(meth, plot=0)

            ini.append(r.xf[i])

        ini = np.array(ini)

        return ini
def optimize_minimal_driving_force(S, Vss, enzymeInfo, concLB, concUB):
    '''
	Parameters
	S: df, stoichiometric matrix, metabolite in rows, reaction in columns. negative for substrates, positive for products
	Vss: ser, net fluxes in steady state (including in and out fluxes)
	enzymeInfo: df, reaction in rows
	concLB: float, concentration lower bound (mM) for all metabolites
	concUB: float, concentration upper bound (mM) for all metabolites
	
	Returns
	optConcs: ser, optimal log(concentrations)
	optDeltaGs: ser, optimal minimal driving forces
	refDeltaGs: float, reference minimal driving forces (all concentrations at 1 mM)
	'''

    from openopt import LP
    from constants import R, T

    f = np.zeros(S.shape[0] + 1)
    f[0] = -1

    S = S * Vss[S.columns]
    A = np.concatenate((np.ones((S.shape[1], 1)), R * T * S.T), axis=1)

    b = -np.array(
        [-R * T * np.log(item[0]) for item in enzymeInfo.loc[:, 'Keq']])
    b = b * Vss[S.columns].values

    lb = [-np.inf] + [np.log(concLB)] * S.shape[0]
    ub = [np.inf] + [np.log(concUB)] * S.shape[0]

    meth = 'cvxopt_lp'

    p = LP(f=f,
           A=A,
           b=b,
           lb=lb,
           ub=ub,
           iprint=-1,
           name='Maximize minimal driving force')
    r = p.solve(meth, plot=0)

    optLogConcs = r.xf[1:]
    optConcs = pd.Series(np.exp(optLogConcs), index=S.index)

    optDeltaGs = pd.Series(-b + R * T * np.dot(S.T, optLogConcs),
                           index=S.columns)

    refDeltaGs = pd.Series(-b, index=S.columns)

    return optConcs, optDeltaGs, refDeltaGs
Exemple #3
0
    def minimize(self, **kwargs):
        """ solve the linear problem with the solver given in self.solver

        Returns:
        obj_value, solution

        obj_value -- value of the objective function at the discovered solution
        solution  -- the solution flux vector (indexed like matrix columns)
        """
        if self.solver == _GLPK:
            # Use pyMathProg interface to GLPK solver
            self.glpkP.solve()

            self.istop = self.glpkP.status()
            #            print "istop:", self.istop
            self.status = glpkToSolverStatus(self.istop)

            if self.status == SolverStatus.OPTIMAL:
                self.obj_value = self.glpkP.vobj()
                self.solution = [
                    self.glpkVar[i].primal for i in range(len(self.glpkVar))
                ]
            else:
                self.obj_value = 0.
                self.solution = []
        else:
            # Use OpenOpt interface
            lp = LP(self.obj,
                    A=self.Aineq,
                    Aeq=self.Aeq,
                    b=self.bineq,
                    beq=self.beq,
                    lb=self.lb,
                    ub=self.ub,
                    **kwargs)
            lp.debug = 1
            #            lp.iprint=-1 # suppress solver output
            r = lp.solve(self.solver if self.solver != _OOGLPK else 'glpk')

            if r.istop <= 0. or r.ff != r.ff:  # check halting condition
                self.obj_value = 0.
                self.solution = []
                self.istop = r.istop
            else:
                self.obj_value = r.ff
                self.solution = r.xf
                self.istop = r.istop
#            print self.istop

        return self.obj_value, self.solution
Exemple #4
0
def delete_dom_act_Pi(game, i):
    no_a_game = list(
        game.shape)  #will contain number of actions available for each player
    no_a_game.pop(
    )  #removes last element of list which simply was n: the number of payoffs in each action profile
    #as the first number is number of actions of last player etc., we turn the list around
    no_a_game = no_a_game[::-1]
    no_a_i = no_a_game.pop(
        i
    )  #remove the number of actions of player i from no_a_game and put it in no_a_i
    if no_a_i == 1:  #if a single action remains it cannot be dominated
        return game
    var_no = np.prod(no_a_game)  #size of the support of mu
    if var_no == 1:  #special case: the support of mu has a single elment
        return del_dom_a_Pi_point_belief(game, i, no_a_i)
    temp_game = game
    f = [0.] * var_no  #dummy objective used below
    lb = [0.] * var_no
    ub = [1.] * var_no
    Aeq = [[1.] * var_no]
    beq = (1., )
    j = 0
    while j < no_a_i:
        u_action = payoffi_builder(game, j, i)
        A = []
        b = []
        k = 0
        while k < no_a_i:
            u_other_action = payoffi_builder(game, k, i)
            A.append(u_other_action - u_action)  #elementwise difference
            b.append(0.)
            k += 1
        p = LP(
            f, A=A, b=b, lb=lb, ub=ub, Aeq=Aeq, beq=beq
        )  #we use the artificial minimization problem under the constraint that action gives a weakly higher payoff than any other action; if no feasible solution is obtained than action is dominated
        p.iprint = -1
        r = p.minimize('pclp')
        if r.stopcase != 1:  #if no feasible solution was obtained then action is dominated...
            temp_game = np.delete(
                temp_game, j, n - i - 1
            )  #...and therefore action j is removed; recall that players are "in the wrong order"
            count = 0
            z = -1
            while count <= j:
                z += 1
                if undominated[i][z] != -1:
                    count += 1
            undominated[i][z] = -1
        j += 1
    return temp_game
def compressed_sensing2(x1, trans):
    """L1 compressed sensing
    
    :Parameters:
        x1 : array-like, shape=(n_outputs,)
            input sparse vector
        trans : array-like, shape=(n_outputs, n_inputs)
            transformation matrix
    :Returns:
        decoded vector, shape=(n_inpus,)
    :RType:
        array-like
    """

    # obrain sizes of inputs and outputs
    (n_outputs, n_inputs) = trans.shape

    # define variable
    t = fd.oovar('t', size=n_inputs)
    x = fd.oovar('x', size=n_inputs)

    # objective to minimize: f x^T -> min
    objective = fd.sum(t)

    # init constraints
    constraints = []

    # equality constraint: a_eq x^T = b_eq
    constraints.append(fd.dot(trans, x) == x1)

    # inequality constraint: -t < x < t
    constraints.append(-t <= x)
    constraints.append(x <= t)

    # start_point
    start_point = {x:np.zeros(n_inputs), t:np.zeros(n_inputs)}

    # solve linear programming
    prob = LP(objective, start_point, constraints=constraints)
    result = prob.minimize('pclp') # glpk, lpSolve... if available

    # print result
#    print "x =", result.xf # arguments at mimimum
#    print "objective =", result.ff # value of objective

    return result.xf[x]
def compressed_sensing(x1, trans):
    """L1 compressed sensing
    
    :Parameters:
        x1 : array-like, shape=(n_outputs,)
            input sparse vector
        trans : array-like, shape=(n_outputs, n_inputs)
            transformation matrix
    :Returns:
        decoded vector, shape=(n_inpus,)
    :RType:
        array-like
    """

    # obrain sizes of inputs and outputs
    (n_outputs, n_inputs) = trans.shape

    # objective to minimize: f x^T -> min
    f = np.zeros((n_inputs * 2), dtype=np.float)
    f[n_inputs:2 * n_inputs] = 1.0

    # constraint: a x^T == b
    a_eq = np.zeros((n_outputs, 2 * n_inputs), dtype=np.float)
    a_eq[:, 0:n_inputs] = trans

    b_eq = x1

    # constraint: -t <= x <= t
    a = np.zeros((2 * n_inputs, 2 * n_inputs), dtype=np.float)
    for i in xrange(n_inputs):
        a[i, i] = -1.0
        a[i, n_inputs + i] = -1.0
        a[n_inputs + i, i] = 1.0
        a[n_inputs + i, n_inputs + i] = -1.0

    b = np.zeros(n_inputs * 2)

    # solve linear programming
    prob = LP(f, Aeq=a_eq, beq=b_eq, A=a, b=b)
    result = prob.minimize('pclp') # glpk, lpSolve... if available

    # print result
#    print "x =", result.xf # arguments at mimimum
#    print "objective =", result.ff # value of objective

    return result.xf[0:n_inputs]
def delete_dom_act_Pi(game,i):
    no_a_game = list(game.shape) #will contain number of actions available for each player
    no_a_game.pop()#removes last element of list which simply was n: the number of payoffs in each action profile
    #as the first number is number of actions of last player etc., we turn the list around
    no_a_game = no_a_game[::-1]
    no_a_i = no_a_game.pop(i)#remove the number of actions of player i from no_a_game and put it in no_a_i
    if no_a_i==1:#if a single action remains it cannot be dominated
        return game
    var_no = np.prod(no_a_game)#size of the support of mu
    if var_no == 1:#special case: the support of mu has a single elment
        return del_dom_a_Pi_point_belief(game, i,no_a_i)
    temp_game = game
    f = [0.]*var_no   #dummy objective used below
    lb = [0.]*var_no
    ub = [1.]*var_no
    Aeq = [[1.]*var_no]
    beq = (1.,)
    j = 0
    while j<no_a_i:
        u_action = payoffi_builder(game,j,i)
        A = []
        b = []
        k = 0
        while k<no_a_i:
            u_other_action = payoffi_builder(game,k,i)
            A.append(u_other_action - u_action)#elementwise difference
            b.append(0.)
            k+=1
        p = LP(f, A=A,b=b,lb=lb,ub=ub,Aeq=Aeq,beq=beq)#we use the artificial minimization problem under the constraint that action gives a weakly higher payoff than any other action; if no feasible solution is obtained than action is dominated
        p.iprint = -1
        r = p.minimize('pclp')
        if r.stopcase!=1:#if no feasible solution was obtained then action is dominated...
            temp_game = np.delete(temp_game,j,n-i-1)#...and therefore action j is removed; recall that players are "in the wrong order"
            count = 0
            z = -1
            while count<=j:
                z+=1
                if undominated[i][z]!=-1 :
                    count+=1 
            undominated[i][z] = -1
        j+=1
    return temp_game
Exemple #8
0
8x1  + 80x2 + 15x3 <=150      (4)
100x1 +  10x2 + x3 >= 800     (5)
80x1 + 8x2 + 15x3 = 750         (6)
x1 + 10x2 + 100x3 = 80           (7)
x1 >= 4                                     (8)
-8 >= x2 >= -80                        (9)
"""

from numpy import *
from openopt import LP
f = array([15, 8, 80])
A = mat(
    '1 2 3; 8 15 80; 8 80 15; -100 -10 -1')  # numpy.ndarray is also allowed
b = [15, 80, 150, -800]  # numpy.ndarray, matrix etc are also allowed
Aeq = mat('80 8 15; 1 10 100')  # numpy.ndarray is also allowed
beq = (750, 80)

lb = [4, -80, -inf]
ub = [inf, -8, inf]
p = LP(f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
#or p = LP(f=f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)

#r = p.minimize('glpk') # CVXOPT must be installed
#r = p.minimize('lpSolve') # lpsolve must be installed
r = p.minimize('pclp')
#search for max: r = p.maximize('glpk') # CVXOPT & glpk must be installed
#r = p.minimize('nlp:ralg', ftol=1e-7, xtol=1e-7, goal='min', plot=1)

print('objFunValue: %f' % r.ff)  # should print 204.48841578
print('x_opt: %s' % r.xf)  # should print [ 9.89355041 -8.          1.5010645 ]
Exemple #9
0
from FuncDesigner import *
N = 100
a = oovars(N)  # create array of N oovars
b = oovars(N)  # another array of N oovars
some_lin_funcs = [i * a[i] + 4 * i + 5 * b[i] for i in range(N)]
f = some_lin_funcs[15] + some_lin_funcs[80] - sum(a) + sum(b)
point = {}
for i in range(N):
    point[a[i]] = 1.5 * i**2
    point[b[i]] = 1.5 * i**3
# BTW we could use 1-dimensional arrays here, eg point[a[25]] = [2,3,4,5], point[a[27]] = [1,2,5] etc
print f(point)  # prints 40899980.

from openopt import LP
# define prob
p = LP(f, point)

# add some box-bound constraints
aLBs = [a[i] > -10 for i in range(N)]
bLBs = [b[i] > -10 for i in range(N)]
aUBs = [a[i] < 15 for i in range(N)]
bUBs = [b[i] < 15 for i in range(N)]
p.constraints = aLBs + bLBs + aUBs + bUBs

# add some general linear constraints
p.constraints.append(a[4] + b[15] + a[20].size - f.size >
                     -9)  # array size, here a[20].size = f.size = 1
# or p.constraints += [a[4] + b[15] + a[20].size - f.size>-9]
for i in range(N):
    p.constraints.append(2 * some_lin_funcs[i] + a[i] < i / 2.0 +
                         some_lin_funcs[N - i - 1] + 1.5 * b[i])
Exemple #10
0
    def __solver__(self, p):
        n = p.n
        x0 = copy(p.x0)
        xPrev = x0.copy()
        xf = x0.copy()
        xk = x0.copy()
        p.xk = x0.copy()

        f0 = p.f(x0)

        fk = f0
        ff = f0
        p.fk = fk

        df0 = p.df(x0)

        #####################################################################

        ##        #handling box-bounded problems
        ##        if p.__isNoMoreThanBoxBounded__():
        ##            for k in range(int(p.maxIter)):
        ##
        ##        #end of handling box-bounded problems
        isBB = p.__isNoMoreThanBoxBounded__()
        ##        isBB = 0
        H = diag(ones(p.n))
        if not p.userProvided.c:
            p.c = lambda x: array([])
            p.dc = lambda x: array([]).reshape(0, p.n)
        if not p.userProvided.h:
            p.h = lambda x: array([])
            p.dh = lambda x: array([]).reshape(0, p.n)

        p.use_subproblem = 'QP'

        #p.use_subproblem = 'LLSP'

        for k in range(p.maxIter + 4):
            if isBB:
                f0 = p.f(xk)
                df = p.df(xk)
                direction = -df
                f1 = p.f(xk + direction)
                ind_l = direction <= p.lb - xk
                direction[ind_l] = (p.lb - xk)[ind_l]
                ind_u = direction >= p.ub - xk
                direction[ind_u] = (p.ub - xk)[ind_u]
                ff = p.f(xk + direction)
##                print 'f0', f0, 'f1', f1, 'ff', ff
            else:

                mr = p.getMaxResidual(xk)
                if mr > p.contol: mr_grad = p.getMaxConstrGradient(xk)
                lb = p.lb - xk  #- p.contol/2
                ub = p.ub - xk  #+ p.contol/2
                c, dc, h, dh, df = p.c(xk), p.dc(xk), p.h(xk), p.dh(xk), p.df(
                    xk)
                A, Aeq = vstack((dc, p.A)), vstack((dh, p.Aeq))
                b = concatenate((-c, p.b - p.matmult(p.A, xk)))  #+ p.contol/2
                beq = concatenate((-h, p.beq - p.matmult(p.Aeq, xk)))

                if b.size != 0:
                    isFinite = isfinite(b)
                    ind = where(isFinite)[0]
                    A, b = A[ind], b[ind]
                if beq.size != 0:
                    isFinite = isfinite(beq)
                    ind = where(isFinite)[0]
                    Aeq, beq = Aeq[ind], beq[ind]

                if p.use_subproblem == 'LP':  #linear
                    linprob = LP(df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
                    linprob.iprint = -1
                    r2 = linprob.solve(
                        'cvxopt_glpk')  # TODO: replace lpSolve by autoselect
                    if r2.istop <= 0:
                        p.istop = -12
                        p.msg = "failed to solve LP subproblem"
                        return
                elif p.use_subproblem == 'QP':  #quadratic
                    qp = QP(H=H,
                            f=df,
                            A=A,
                            Aeq=Aeq,
                            b=b,
                            beq=beq,
                            lb=lb,
                            ub=ub)
                    qp.iprint = -1
                    r2 = qp.solve(
                        'cvxopt_qp')  # TODO: replace solver by autoselect
                    #r2 = qp.solve('qld') # TODO: replace solver by autoselect
                    if r2.istop <= 0:
                        for i in range(4):
                            if p.debug:
                                p.warn("iter " + str(k) + ": attempt Num " +
                                       str(i) +
                                       " to solve QP subproblem has failed")
                            #qp.f += 2*N*sum(qp.A,0)
                            A2 = vstack((A, Aeq, -Aeq))
                            b2 = concatenate(
                                (b, beq, -beq)) + pow(10, i) * p.contol
                            qp = QP(H=H, f=df, A=A2, b=b2, iprint=-5)
                            qp.lb = lb - pow(10, i) * p.contol
                            qp.ub = ub + pow(10, i) * p.contol
                            # I guess lb and ub don't matter here
                            try:
                                r2 = qp.solve(
                                    'cvxopt_qp'
                                )  # TODO: replace solver by autoselect
                            except:
                                r2.istop = -11
                            if r2.istop > 0: break
                        if r2.istop <= 0:
                            p.istop = -11
                            p.msg = "failed to solve QP subproblem"
                            return
                elif p.use_subproblem == 'LLSP':
                    direction_c = getConstrDirection(p,
                                                     xk,
                                                     regularization=1e-7)
                else:
                    p.err('incorrect or unknown subproblem')

            if isBB:
                X0 = xk.copy()
                N = 0
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            elif p.use_subproblem != 'LLSP':
                duals = r2.duals
                N = 1.05 * abs(duals).sum()
                direction = r2.xf
                X0 = xk.copy()
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            else:  # case LLSP
                direction_f = -df
                p2 = NSP(LLSsubprobF, [0.8, 0.8],
                         ftol=0,
                         gtol=0,
                         xtol=1e-5,
                         iprint=-1)
                p2.args.f = (xk, direction_f, direction_c, p, 1e20)
                r_subprob = p2.solve('ralg')
                alpha = r_subprob.xf
                newX = xk + alpha[0] * direction_f + alpha[1] * direction_c

                #                dw = (direction_f * direction_c).sum()
                #                cos_phi = dw/p.norm(direction_f)/p.norm(direction_c)
                #                res_0, res_1 = p.getMaxResidual(xk), p.getMaxResidual(xk+1e-1*direction_c)
                #                print cos_phi, res_0-res_1

                #                res_0 = p.getMaxResidual(xk)
                #                optimConstrPoint = getDirectionOptimPoint(p, p.getMaxResidual, xk, direction_c)
                #                res_1 = p.getMaxResidual(optimConstrPoint)
                #
                #                maxConstrLimit = p.contol

                #xk = getDirectionOptimPoint(p, p.f, optimConstrPoint, -optimConstrPoint+xk+direction_f, maxConstrLimit = maxConstrLimit)
                #print 'res_0', res_0, 'res_1', res_1, 'res_2', p.getMaxResidual(xk)
                #xk = getDirectionOptimPoint(p, p.f, xk, direction_f, maxConstrLimit)
                #newX = xk.copy()
                result = 0


#                x_0 = X0.copy()
#                N = j = 0
#                while p.getMaxResidual(x_0) > Residual0 + 0.1*p.contol:
#                    j += 1
#                    x_0 = xk + 0.75**j * (X0-xk)
#                X0 = x_0
#                result, newX = 0, X0
#                print 'newIterResidual = ', p.getMaxResidual(x_0)

            if result != 0:
                p.istop = result
                p.xf = newX
                return

            xk = newX.copy()
            fk = p.f(xk)

            p.xk, p.fk = copy(xk), copy(fk)
            #p._df = p.df(xk)
            ####################
            p.iterfcn()

            if p.istop:
                p.xf = xk
                p.ff = fk
                #p._df = g FIXME: implement me
                return
Exemple #11
0
    def schedule_all(self, timelimit=None):
        if not self.reservation_list:
            return self.schedule_dict

        self.build_data_structures()
        # allocate A & b
        # find the row size of A:
        # first find the number of reservations participating in oneofs
        oneof_reservation_num = 0
        for c in self.oneof_constraints:
            oneof_reservation_num += len(c)
        A_numrows = len(self.reservation_list) + len(self.aikt) + len(
            self.oneof_constraints) - oneof_reservation_num
        A_rows = []
        A_cols = []
        A_data = []
        #        try:
        #            A = numpy.zeros((A_numrows, len(self.Yik)), dtype=numpy.int)
        #        except ValueError:
        #            print("Number of A rows: {}".format(A_numrows))
        b = numpy.zeros(A_numrows, dtype=numpy.int16)
        # build A & b
        row = 0

        # constraint 5: oneof
        for c in self.oneof_constraints:
            for r in c:
                for entry in r.Yik_entries:
                    A_rows.append(row)
                    A_cols.append(entry)
                    A_data.append(1)
                #                    A[row,entry] = 1
                r.skip_constraint2 = True
            b[row] = 1
            row += 1

            # constraint 2: each res should have one start:
        # optimization:
        # if the reservation participates in a oneof, then this is
        # redundant with the oneof constraint added above, so don't add it.
        for r in self.reservation_list:
            if hasattr(r, 'skip_constraint2'):
                continue
            for entry in r.Yik_entries:
                A_rows.append(row)
                A_cols.append(entry)
                A_data.append(1)
                # A[row,entry] = 1
            b[row] = 1
            row += 1

        # constraint 3: each slice should only have one sched. reservation:
        for s in self.aikt.keys():
            for entry in self.aikt[s]:
                A_rows.append(row)
                A_cols.append(entry)
                A_data.append(1)
            #                A[row,entry] = 1
            b[row] = 1
            row += 1

        A = coo_matrix((A_data, (A_rows, A_cols)),
                       shape=(A_numrows, len(self.Yik)))
        # constraint 6: and
        # figure out size of constraint matrix

        if not self.and_constraints:
            Aeq = []
            beq = []
        else:
            Aeq_numrows = 0
            for c in self.and_constraints:
                Aeq_numrows += len(c) - 1
            # allocate Aeq and beq
            #        Aeq = numpy.zeros((Aeq_numrows, len(self.Yik)), dtype=numpy.int)
            Aeq_rows = []
            Aeq_cols = []
            Aeq_data = []
            beq = numpy.zeros(Aeq_numrows, dtype=numpy.int16)
            row = 0
            for c in self.and_constraints:
                constraint_size = len(c)
                left_idx = 0
                right_idx = 1
                while right_idx < constraint_size:
                    left_r = c[left_idx]
                    right_r = c[right_idx]
                    for entry in left_r.Yik_entries:
                        #                    Aeq[row, entry] = 1
                        Aeq_rows.append(row)
                        Aeq_cols.append(entry)
                        Aeq_data.append(1)
                    for entry in right_r.Yik_entries:
                        Aeq_rows.append(row)
                        Aeq_cols.append(entry)
                        Aeq_data.append(-1)
                    #                    Aeq[row, entry] = -1
                    left_idx += 1
                    right_idx += 1
                    row += 1
            #            print(Aeq_numrows)
            Aeq = coo_matrix((Aeq_data, (Aeq_rows, Aeq_cols)),
                             shape=(Aeq_numrows, len(self.Yik)))

        # bounds:
        lb = numpy.zeros(len(self.Yik), dtype=numpy.int16)
        ub = numpy.ones(len(self.Yik), dtype=numpy.int16)

        # objective function:
        f = numpy.zeros(len(self.Yik))
        f = numpy.zeros(len(self.Yik), dtype=numpy.int16)
        row = 0
        for entry in self.Yik:
            f[row] = entry[2]  # priority
            row += 1

        dump_matrix_sizes(f, A, Aeq, b, beq, lb, ub,
                          len(self.compound_reservation_list))
        p = LP(f=f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
        #        r = p.minimize('pclp')
        r = p.maximize('glpk', iprint=-1)
        #        r = p.minimize('lpsolve')
        return self.unpack_result(r)
Exemple #12
0
"""
Sparse LP example
for Nvariables = 25000 
(hence Nconstraints = 75000)
glpk peak memory ~70 Mb, 
time elapsed = 35.79, CPU time elapsed = 35.0
"""

from openopt import LP
from numpy import arange
from FuncDesigner import *
N = 25000 
x, y, z = oovars(3)
startPoint = {x:0, y:[0]*N, z:[0]*(2*N)} # thus x from R, y from R^N, z from R^2N

objective = sum(x) + 2*sum(y) + 3*sum(z)

cons = [x<100,  x>-100, y<arange(N), y>-10-arange(N), z<arange(2*N), z>-100-arange(2*N), x+y>2-3*arange(N), x+z>4-5*arange(2*N)]

p = LP(objective, startPoint, constraints = cons)

solver = 'glpk' # CVXOPT & glpk must be installed
r = p.minimize(solver)

print('objFunValue:%f' % r.ff)
Exemple #13
0
from FuncDesigner import *
N = 100
a = oovars(N) # create array of N oovars
b = oovars(N) # another array of N oovars 
some_lin_funcs = [i*a[i]+4*i + 5*b[i] for i in range(N)]
f = some_lin_funcs[15] + some_lin_funcs[80] - sum(a) + sum(b)
point = {}
for i in range(N):
    point[a[i]] = 1.5 * i**2
    point[b[i]] = 1.5 * i**3
# BTW we could use 1-dimensional arrays here, eg point[a[25]] = [2,3,4,5], point[a[27]] = [1,2,5] etc
print f(point) # prints 40899980.

from openopt import LP
# define prob
p = LP(f, point)

# add some box-bound constraints
aLBs = [a[i]>-10 for i in range(N)]
bLBs = [b[i]>-10 for i in range(N)]
aUBs = [a[i]<15 for i in range(N)]
bUBs = [b[i]<15 for i in range(N)]
p.constraints = aLBs + bLBs + aUBs + bUBs

# add some general linear constraints
p.constraints.append(a[4] + b[15] + a[20].size - f.size>-9) # array size, here a[20].size = f.size = 1
# or p.constraints += [a[4] + b[15] + a[20].size - f.size>-9]
for i in range(N):
    p.constraints.append(2 * some_lin_funcs[i] + a[i] < i / 2.0 + some_lin_funcs[N-i-1] + 1.5*b[i])
# or p.constraints += [2 * some_lin_funcs[i] + a[i] < i / 2.0 + some_lin_funcs[N-i-1] + 1.5*b[i] for i in range(N]
Exemple #14
0
    def __solver__(self, p):
        n = p.n
        x0 = copy(p.x0)
        xPrev = x0.copy()
        xf = x0.copy()
        xk = x0.copy()
        p.xk = x0.copy()

        f0 = p.f(x0)

        fk = f0
        ff = f0
        p.fk = fk

        df0 = p.df(x0)

        #####################################################################


##        #handling box-bounded problems
##        if p.__isNoMoreThanBoxBounded__():
##            for k in range(int(p.maxIter)):
##
##        #end of handling box-bounded problems
        isBB = p.__isNoMoreThanBoxBounded__()
##        isBB = 0
        H = diag(ones(p.n))
        if not p.userProvided.c:
            p.c = lambda x : array([])
            p.dc = lambda x : array([]).reshape(0, p.n)
        if not p.userProvided.h:
            p.h = lambda x : array([])
            p.dh = lambda x : array([]).reshape(0, p.n)

        p.use_subproblem = 'QP'

        #p.use_subproblem = 'LLSP'

        for k in range(p.maxIter+4):
            if isBB:
                f0 = p.f(xk)
                df = p.df(xk)
                direction = -df
                f1 = p.f(xk+direction)
                ind_l = direction<=p.lb-xk
                direction[ind_l] = (p.lb-xk)[ind_l]
                ind_u = direction>=p.ub-xk
                direction[ind_u] = (p.ub-xk)[ind_u]
                ff = p.f(xk + direction)
##                print 'f0', f0, 'f1', f1, 'ff', ff
            else:

                mr = p.getMaxResidual(xk)
                if mr > p.contol: mr_grad = p.getMaxConstrGradient(xk)
                lb = p.lb - xk #- p.contol/2
                ub = p.ub - xk #+ p.contol/2
                c, dc, h, dh, df = p.c(xk), p.dc(xk), p.h(xk), p.dh(xk), p.df(xk)
                A, Aeq = vstack((dc, p.A)), vstack((dh, p.Aeq))
                b = concatenate((-c, p.b-p.matmult(p.A,xk))) #+ p.contol/2
                beq = concatenate((-h, p.beq-p.matmult(p.Aeq,xk)))

                if b.size != 0:
                    isFinite = isfinite(b)
                    ind = where(isFinite)[0]
                    A, b = A[ind], b[ind]
                if beq.size != 0:
                    isFinite = isfinite(beq)
                    ind = where(isFinite)[0]
                    Aeq, beq = Aeq[ind], beq[ind]


                if p.use_subproblem == 'LP': #linear
                    linprob = LP(df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
                    linprob.iprint = -1
                    r2 = linprob.solve('cvxopt_glpk') # TODO: replace lpSolve by autoselect
                    if r2.istop <= 0:
                        p.istop = -12
                        p.msg = "failed to solve LP subproblem"
                        return
                elif p.use_subproblem == 'QP': #quadratic
                    qp = QP(H=H,f=df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub = ub)
                    qp.iprint = -1
                    r2 = qp.solve('cvxopt_qp') # TODO: replace solver by autoselect
                    #r2 = qp.solve('qld') # TODO: replace solver by autoselect
                    if r2.istop <= 0:
                        for i in range(4):
                            if p.debug: p.warn("iter " + str(k) + ": attempt Num " + str(i) + " to solve QP subproblem has failed")
                            #qp.f += 2*N*sum(qp.A,0)
                            A2 = vstack((A, Aeq, -Aeq))
                            b2 = concatenate((b, beq, -beq)) + pow(10,i)*p.contol
                            qp = QP(H=H,f=df, A=A2, b=b2, iprint = -5)
                            qp.lb = lb - pow(10,i)*p.contol
                            qp.ub = ub + pow(10,i)*p.contol
                            # I guess lb and ub don't matter here
                            try:
                                r2 = qp.solve('cvxopt_qp') # TODO: replace solver by autoselect
                            except:
                                r2.istop = -11
                            if r2.istop > 0: break
                        if r2.istop <= 0:
                            p.istop = -11
                            p.msg = "failed to solve QP subproblem"
                            return
                elif p.use_subproblem == 'LLSP':
                    direction_c = getConstrDirection(p,  xk, regularization = 1e-7)
                else: p.err('incorrect or unknown subproblem')


            if isBB:
                X0 = xk.copy()
                N = 0
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            elif p.use_subproblem != 'LLSP':
                duals = r2.duals
                N = 1.05*abs(duals).sum()
                direction = r2.xf
                X0 = xk.copy()
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            else: # case LLSP
                direction_f = -df
                p2 = NSP(LLSsubprobF, [0.8, 0.8], ftol=0, gtol=0, xtol = 1e-5, iprint = -1)
                p2.args.f =  (xk, direction_f, direction_c, p, 1e20)
                r_subprob = p2.solve('ralg')
                alpha = r_subprob.xf
                newX = xk + alpha[0]*direction_f + alpha[1]*direction_c

#                dw = (direction_f * direction_c).sum()
#                cos_phi = dw/p.norm(direction_f)/p.norm(direction_c)
#                res_0, res_1 = p.getMaxResidual(xk), p.getMaxResidual(xk+1e-1*direction_c)
#                print cos_phi, res_0-res_1

#                res_0 = p.getMaxResidual(xk)
#                optimConstrPoint = getDirectionOptimPoint(p, p.getMaxResidual, xk, direction_c)
#                res_1 = p.getMaxResidual(optimConstrPoint)
#
#                maxConstrLimit = p.contol



                #xk = getDirectionOptimPoint(p, p.f, optimConstrPoint, -optimConstrPoint+xk+direction_f, maxConstrLimit = maxConstrLimit)
                #print 'res_0', res_0, 'res_1', res_1, 'res_2', p.getMaxResidual(xk)
                #xk = getDirectionOptimPoint(p, p.f, xk, direction_f, maxConstrLimit)
                #newX = xk.copy()
                result = 0
#                x_0 = X0.copy()
#                N = j = 0
#                while p.getMaxResidual(x_0) > Residual0 + 0.1*p.contol:
#                    j += 1
#                    x_0 = xk + 0.75**j * (X0-xk)
#                X0 = x_0
#                result, newX = 0, X0
#                print 'newIterResidual = ', p.getMaxResidual(x_0)

            if result != 0:
                p.istop = result
                p.xf = newX
                return

            xk = newX.copy()
            fk = p.f(xk)

            p.xk, p.fk = copy(xk), copy(fk)
            #p._df = p.df(xk)
            ####################
            p.iterfcn()

            if p.istop:
                p.xf = xk
                p.ff = fk
                #p._df = g FIXME: implement me
                return
Exemple #15
0
t = time() 
# Define some oovars
drugs = oovar(2)
material = oovar(2)
budgets = oovar(3)

 
# Let's define some linear functions
f1 = 4*x+5*y + 3*z + 5
f2 = f1.sum() + 2*x + 4*y + 15
f3 = 5*f1 + 4*f2 + 20
 
# Define objective; sum(a) and a.sum() are same as well as for numpy arrays
obj = x.sum() + y - 50*z + sum(f3) + 2*f2.sum() + 4064.6
 
# Define some constraints via Python list or tuple or set of any length, probably via while/for cycles
constraints = [x+5*y<15, x[0]<4, f1<[25, 35], f1>-100, 2*f1+4*z<[80, 800], 5*f2+4*z<100, -5<x,  x<1, -20<y,  y<20, -4000<z, z<4]
 
# Start point - currently matters only size of variables, glpk, lpSolve and cvxopt_lp use start val = all-zeros
startPoint = {x:[8, 15], y:25, z:80} # however, using numpy.arrays is more recommended than Python lists
 
# Create prob
p = LP(obj, startPoint, constraints = constraints)
 
# Solve
r = p.solve('glpk') # glpk is name of solver involved, see OOF doc for more arguments
 
# Decode solution
print('Solution: x = %s   y = %f  z = %f' % (str(x(r)), y(r), z(r)))
# Solution: x = [-4.25 -4.25]   y = -20.000000  z = 4.000000
print "elapsed %.3f secs"%(time() - t)
Exemple #16
0
# Example of export OpenOpt LP to MPS file
# you should have lpsolve and its Python binding properly installed
# (you may take a look at the instructions from openopt.org/LP)

# You can solve problems defined in MPS files 
# with a variety of solvers at NEOS server for free
# http://neos.mcs.anl.gov/
# BTW they have Python API along with web API and other

from numpy import *
from openopt import LP
f = array([15,8,80])
A = mat('1 2 3; 8 15 80; 8 80 15; -100 -10 -1') # numpy.ndarray is also allowed
b = [15, 80, 150, -800] # numpy.ndarray, matrix etc are also allowed
Aeq = mat('80 8 15; 1 10 100') # numpy.ndarray is also allowed
beq = (750, 80)

lb = [4, -80, -inf]
ub = [inf, -8, inf]
p = LP(f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub, name = 'lp_1')
# or p = LP(f=f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)

# if file name not ends with '.MPS' or '.mps'
# then '.mps' will be appended
success = p.exportToMPS('asdf') 
# success is False if a error occurred (read-only file system, no write access, etc)
# elseware success is True

# objFunValue should be 204.48841578
# x_opt should be [ 9.89355041 -8.          1.5010645 ]
Exemple #17
0
f1 = 4 * x + 5 * y + 3 * z + 5
f2 = f1.sum() + 2 * x + 4 * y + 15
f3 = 5 * f1 + 4 * f2 + 20

# Define objective; sum(a) and a.sum() are same as well as for numpy arrays
obj = sum(f1) + x.sum() + y - 50 * z + 2 * f2.sum() + 4064.6

# Start point - currently matters only size of variables
startPoint = {
    x: [8, 15],
    y: 25,
    z: 80
}  # however, using numpy.arrays is more recommended than Python lists

# Create prob
p = LP(obj, startPoint)

# Define some constraints
p.constraints = [
    x + 5 * y < 15, x[0] < 4, f1 < [25, 35], f1 > -100,
    2 * f1 + 4 * z < [80, 800], 5 * f2 + 4 * z < 100, -5 < x, x < 1, -20 < y,
    y < 20, -4000 < z, z < 4
]

# Solve
r = p.solve(
    'lpSolve', fixedVars=t
)  # glpk is name of solver involved, see OOF doc for more arguments

# Decode solution
print('Solution: x = %s   y = %f  z = %f' % (r(x), r(y), r(z)))
Exemple #18
0
# you should have lpsolve and its Python binding properly installed
# (you may take a look at the instructions from openopt.org/LP)

# You can solve problems defined in MPS files
# with a variety of solvers at NEOS server for free
# http://neos.mcs.anl.gov/
# BTW they have Python API along with web API and other

from numpy import *
from openopt import LP
f = array([15, 8, 80])
A = mat(
    '1 2 3; 8 15 80; 8 80 15; -100 -10 -1')  # numpy.ndarray is also allowed
b = [15, 80, 150, -800]  # numpy.ndarray, matrix etc are also allowed
Aeq = mat('80 8 15; 1 10 100')  # numpy.ndarray is also allowed
beq = (750, 80)

lb = [4, -80, -inf]
ub = [inf, -8, inf]
p = LP(f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub, name='lp_1')
# or p = LP(f=f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)

# if file name not ends with '.MPS' or '.mps'
# then '.mps' will be appended
success = p.exportToMPS('asdf')
# success is False if a error occurred (read-only file system, no write access, etc)
# elseware success is True

# objFunValue should be 204.48841578
# x_opt should be [ 9.89355041 -8.          1.5010645 ]
Exemple #19
0
from FuncDesigner import *
from openopt import LP

# Define some oovars
x, y, z = oovars(3)

# Let's define some linear functions
f1 = 4*x+5*y + 3*z + 5
f2 = f1.sum() + 2*x + 4*y + 15
f3 = 5*f1 + 4*f2 + 20 

# Define objective; sum(a) and a.sum() are same as well as for numpy arrays
obj = sum(f1)+ x.sum()+ y - 50*z  + 2*f2.sum() + 4064.6

# Start point - currently matters only size of variables
startPoint = {x:[8, 15], y:25, z:80} # however, using numpy.arrays is more recommended than Python lists

# Create prob
p = LP(obj, startPoint)

# Define some constraints
p.constraints = [x+5*y<15, x[0]<4, f1<[25, 35], f1>-100, 2*f1+4*z<[80, 800], 5*f2+4*z<100, -5<x,  x<1, -20<y,  y<20, -4000<z, z<4]

# Solve
r = p.solve('lpSolve', fixedVars=t) # glpk is name of solver involved, see OOF doc for more arguments

# Decode solution
print('Solution: x = %s   y = %f  z = %f' % (r(x), r(y), r(z)))
# Solution: x = [-4.25 -4.25]   y = -20.000000  z = 4.000000
Exemple #20
0
ub = [1.]*len(Ulist)
Aeq = [[1.]*len(Ulist)]
beq = (1.,)
A  = []
b = []
player = 0
while player<len(no_action):
    action = 0
    while action < no_action[player]:
        for k in range(0,no_action[player]):
            A.append(multiply(udiff(player,action,k),aik_indicator(player,action)))
            b.append(0.)
        action = action + 1
    player = player +1
#print A,b
p = LP(neg_welfare, A=A,b=b,lb=lb,ub=ub,Aeq=Aeq,beq=beq)#we use the artificial minimization problem under the constraint that action gives a weakly higher payoff than any other action; if no feasible solution is obtained than action is dominated
p.iprint = -1
try:
    r = p.minimize('pclp')
    pminw = LP(welfare, A=A,b=b,lb=lb,ub=ub,Aeq=Aeq,beq=beq)
    pminw.iprint = -1
    rminw = pminw.minimize('pclp')

except:
    print "Solver returns error. Probably, each player has a unique rationalizable action (check with rationalizability solver)."
    quit()
    
###formatting the result back into the same format as the game input
# first: rounding
outr = []
for item in r.xf:
 def solve(self):
     p=LP(self.cost_function,Aeq=self.Aeq,beq=self.beq,lb=self.lb)
     p.iprint = -1
     r=p.solve('pclp')
     return [r.xf,r.ff]
Exemple #22
0
 print len(s.matrix)
 # for m in bMets:
 #     s.add_reaction(Reaction('R_'+m.identifier+'_Transp', (m,), (), ()))
 # A_eq = numpy.delete(numpy.array(s.matrix, dtype=float), bIndices, 0)
 transpColumn = numpy.zeros((len(s.matrix), len(bIndices)))
 for i, elem in enumerate(bIndices):
     transpColumn[elem,i] = 1
 A_eq = numpy.append(numpy.array(s.matrix, dtype=float), transpColumn, 1)
 print A_eq
 print numpy.shape(A_eq)
 b_eq = numpy.zeros(len(A_eq))
 print numpy.shape(A_eq)[1]
 print len(b_eq)
 print len(numpy.random.randint(-10, -5, numpy.shape(A_eq)[1]))
 print len(numpy.random.randint(5, 10, numpy.shape(A_eq)[1]))
 lp = LP(f=obj, Aeq=A_eq, beq=b_eq, lb=numpy.random.randint(-6, -0, numpy.shape(A_eq)[1]), ub=numpy.random.randint(0, 6, numpy.shape(A_eq)[1]))
 lp.exportToMPS
 # print help(lp.manage)
 # lp.solve('cvxopt_lp')
 # print help(lp.solve)
 r = lp.solve('glpk', goal='max')
 # print dir(r)
 # print r.ff
 # print r.evals
 # print r.isFeasible
 # print r.msg
 # print r.xf
 # print r.duals
 # print r.rf
 # print r.solverInfo
 # problem = openopt.LP(f=objective, Aeq=A_eq, beq=b_eq, lb=lb, ub=ub)
Exemple #23
0
(hence Nconstraints = 75000)
glpk peak memory ~70 Mb, 
time elapsed = 35.79, CPU time elapsed = 35.0
"""

from openopt import LP
from numpy import arange
from FuncDesigner import *
N = 25000
x, y, z = oovars(3)
startPoint = {
    x: 0,
    y: [0] * N,
    z: [0] * (2 * N)
}  # thus x from R, y from R^N, z from R^2N

objective = sum(x) + 2 * sum(y) + 3 * sum(z)

cons = [
    x < 100, x > -100, y < arange(N), y > -10 - arange(N), z < arange(2 * N),
    z > -100 - arange(2 * N), x + y > 2 - 3 * arange(N),
    x + z > 4 - 5 * arange(2 * N)
]

p = LP(objective, startPoint, constraints=cons)

solver = 'glpk'  # CVXOPT & glpk must be installed
r = p.minimize(solver)

print('objFunValue:%f' % r.ff)
Exemple #24
0
8x1  + 80x2 + 15x3 <=150      (4)
100x1 +  10x2 + x3 >= 800     (5)
80x1 + 8x2 + 15x3 = 750         (6)
x1 + 10x2 + 100x3 = 80           (7)
x1 >= 4                                     (8)
-8 >= x2 >= -80                        (9)
"""

from numpy import *
from openopt import LP

f = array([15, 8, 80])
A = mat("1 2 3; 8 15 80; 8 80 15; -100 -10 -1")  # numpy.ndarray is also allowed
b = [15, 80, 150, -800]  # numpy.ndarray, matrix etc are also allowed
Aeq = mat("80 8 15; 1 10 100")  # numpy.ndarray is also allowed
beq = (750, 80)

lb = [4, -80, -inf]
ub = [inf, -8, inf]
p = LP(f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
# or p = LP(f=f, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)

# r = p.minimize('glpk') # CVXOPT must be installed
# r = p.minimize('lpSolve') # lpsolve must be installed
r = p.minimize("pclp")
# search for max: r = p.maximize('glpk') # CVXOPT & glpk must be installed
# r = p.minimize('nlp:ralg', ftol=1e-7, xtol=1e-7, goal='min', plot=1)

print("objFunValue: %f" % r.ff)  # should print 204.48841578
print("x_opt: %s" % r.xf)  # should print [ 9.89355041 -8.          1.5010645 ]