Exemple #1
0
    def test_image_coord_regress(self):

        self.calibration.set_pos(np.array([0, 0, 40]))
        self.calibration.set_angles(np.array([0, 0, 0]))
        self.calibration.set_primary_point(np.array([0, 0, 10]))
        self.calibration.set_glass_vec(np.array([0, 0, 20]))
        self.calibration.set_radial_distortion(np.array([0, 0, 0]))
        self.calibration.set_decentering(np.array([0, 0]))
        self.calibration.set_affine_trans(np.array([1, 0]))

        self.mult = MultimediaParams(n1=1,
                                     n2=np.array([1]),
                                     n3=1,
                                     d=np.array([1]))

        input = np.array([[10., 5., -20.], [10., 5., -20.]])  # vec3d
        output = np.zeros((2, 2))

        x = 10. / 6.
        y = x / 2.
        correct_output = np.array([[x, y], [x, y]])

        flat_image_coordinates(input=input,
                               cal=self.calibration,
                               mult_params=self.mult,
                               output=output)
        np.testing.assert_array_equal(output, correct_output)

        output = np.full((2, 2), 999.)
        image_coordinates(input=input,
                          cal=self.calibration,
                          mult_params=self.mult,
                          output=output)

        np.testing.assert_array_equal(output, correct_output)
Exemple #2
0
    def test_image_coord_regress(self):
        
        self.calibration.set_pos(np.array([0, 0, 40]))
        self.calibration.set_angles(np.array([0, 0, 0]))
        self.calibration.set_primary_point(np.array([0, 0, 10]))
        self.calibration.set_glass_vec(np.array([0, 0, 20]))
        self.calibration.set_radial_distortion(np.array([0, 0, 0]))
        self.calibration.set_decentering(np.array([0, 0]))
        self.calibration.set_affine_trans(np.array([1, 0]))

        self.mult = MultimediaParams(n1=1,
                                     n2=np.array([1]),
                                     n3=1,
                                     d=np.array([1]))
        
        input = np.array([[10., 5., -20.],
                          [10., 5., -20.]])  # vec3d
        output = np.zeros((2, 2))
        
        x = 10. / 6.
        y = x / 2.
        correct_output = np.array([[x, y],
                                   [x, y]])

        flat_image_coordinates(input=input, cal=self.calibration, mult_params=self.mult, output=output)
        np.testing.assert_array_equal(output, correct_output)
        
        output=np.full((2,2), 999.)
        image_coordinates(input=input, cal=self.calibration, mult_params=self.mult, output=output)

        np.testing.assert_array_equal(output, correct_output)
Exemple #3
0
    def test_single_camera_point_positions(self):
        """Point positions for a single camera case"""

        num_cams = 1
        # prepare MultimediaParams
        cpar_file = b'testing_fodder/single_cam/parameters/ptv.par'
        vpar_file = b'testing_fodder/single_cam/parameters/criteria.par'
        cpar = ControlParams(num_cams)
        cpar.read_control_par(cpar_file)
        mult_params = cpar.get_multimedia_params()

        vpar = VolumeParams()
        vpar.read_volume_par(vpar_file)

        ori_name = b'testing_fodder/single_cam/calibration/cam_1.tif.ori'
        add_name = b'testing_fodder/single_cam/calibration/cam_1.tif.addpar'
        calibs = []


        # read calibration for each camera from files
        new_cal = Calibration()
        new_cal.from_file(ori_file=ori_name, add_file=add_name)
        calibs.append(new_cal)


        # 3d point
        points = np.array([[1, 1, 0],
                           [-1, -1, 0]], dtype=float)

        targs_plain = []
        targs_jigged = []


        jigg_amp = 0.4


        new_plain_targ = image_coordinates(
            points, calibs[0], mult_params)
        targs_plain.append(new_plain_targ)

        jigged_points = points - np.r_[0, jigg_amp, 0]

        new_jigged_targs = image_coordinates(
            jigged_points, calibs[0], mult_params)
        targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        targs_jigged = np.array(targs_jigged).transpose(1,0,2)
        skew_dist_plain = point_positions(targs_plain, cpar, calibs, vpar)
        skew_dist_jigged = point_positions(targs_jigged, cpar, calibs, vpar)

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(np.linalg.norm(jigged_points - skew_dist_jigged[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position after jigging.')
Exemple #4
0
 def test_img_coord_typecheck(self):
     
     with self.assertRaises(TypeError):
         list = [[0 for x in range(3)] for x in range(10)]  # initialize a 10x3 list (but not numpy matrix)
         flat_image_coordinates(list, self.control, out=None)
     with self.assertRaises(TypeError):
         flat_image_coordinates(np.empty((10, 2)), self.calibration, self.control.get_multimedia_params(), output=None)
     with self.assertRaises(TypeError):
         image_coordinates(np.empty((10, 3)), self.calibration, self.control.get_multimedia_params(), output=np.zeros((10, 3)))
     with self.assertRaises(TypeError):
         image_coordinates(np.zeros((10, 2)), self.calibration, self.control.get_multimedia_params(), output=np.zeros((10, 2)))
    def test_single_camera_point_positions(self):
        """Point positions for a single camera case"""

        num_cams = 1
        # prepare MultimediaParams
        cpar_file = b'testing_fodder/single_cam/parameters/ptv.par'
        vpar_file = b'testing_fodder/single_cam/parameters/criteria.par'
        cpar = ControlParams(num_cams)
        cpar.read_control_par(cpar_file)
        mult_params = cpar.get_multimedia_params()

        vpar = VolumeParams()
        vpar.read_volume_par(vpar_file)

        ori_name = b'testing_fodder/single_cam/calibration/cam_1.tif.ori'
        add_name = b'testing_fodder/single_cam/calibration/cam_1.tif.addpar'
        calibs = []

        # read calibration for each camera from files
        new_cal = Calibration()
        new_cal.from_file(ori_file=ori_name, add_file=add_name)
        calibs.append(new_cal)

        # 3d point
        points = np.array([[1, 1, 0], [-1, -1, 0]], dtype=float)

        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.4

        new_plain_targ = image_coordinates(points, calibs[0], mult_params)
        targs_plain.append(new_plain_targ)

        jigged_points = points - np.r_[0, jigg_amp, 0]

        new_jigged_targs = image_coordinates(jigged_points, calibs[0],
                                             mult_params)
        targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)
        targs_jigged = np.array(targs_jigged).transpose(1, 0, 2)
        skew_dist_plain = point_positions(targs_plain, cpar, calibs, vpar)
        skew_dist_jigged = point_positions(targs_jigged, cpar, calibs, vpar)

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(
                np.linalg.norm(jigged_points -
                               skew_dist_jigged[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position after jigging.')
Exemple #6
0
    def test_full_calibration(self):
        ref_pts = np.array([
            a.flatten() for a in np.meshgrid(np.r_[-60:-30:4j], np.r_[0:15:4j],
                                             np.r_[0:15:4j])
        ]).T

        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(
            image_coordinates(ref_pts, self.cal,
                              self.control.get_multimedia_params()),
            self.control)

        # Full calibration works with TargetArray objects, not NumPy.
        target_array = TargetArray(len(targets))
        for i in xrange(len(targets)):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(targets[i])

        # Perturb the calibration object, then compore result to original.
        self.cal.set_pos(self.cal.get_pos() + np.r_[15., -15., 15.])
        self.cal.set_angles(self.cal.get_angles() + np.r_[-.5, .5, -.5])

        ret, used, err_est = full_calibration(self.cal, ref_pts, target_array,
                                              self.control)

        np.testing.assert_array_almost_equal(self.cal.get_angles(),
                                             self.orig_cal.get_angles(),
                                             decimal=4)
        np.testing.assert_array_almost_equal(self.cal.get_pos(),
                                             self.orig_cal.get_pos(),
                                             decimal=3)
Exemple #7
0
 def test_full_calibration(self):
     ref_pts = np.array([a.flatten() for a in np.meshgrid(
         np.r_[-60:-30:4j], np.r_[0:15:4j], np.r_[0:15:4j])]).T
     
     # Fake the image points by back-projection
     targets = convert_arr_metric_to_pixel(image_coordinates(
         ref_pts, self.cal, self.control.get_multimedia_params()),
         self.control)
     
     # Full calibration works with TargetArray objects, not NumPy.
     target_array = TargetArray(len(targets))
     for i in xrange(len(targets)):
         target_array[i].set_pnr(i)
         target_array[i].set_pos(targets[i])
     
     # Perturb the calibration object, then compore result to original.
     self.cal.set_pos(self.cal.get_pos() + np.r_[15., -15., 15.])
     self.cal.set_angles(self.cal.get_angles() + np.r_[-.5, .5, -.5])
     
     ret, used, err_est = full_calibration(
         self.cal, ref_pts, target_array, self.control)
     
     np.testing.assert_array_almost_equal(
         self.cal.get_angles(), self.orig_cal.get_angles(),
         decimal=4)
     np.testing.assert_array_almost_equal(
         self.cal.get_pos(), self.orig_cal.get_pos(),
         decimal=3)
Exemple #8
0
    def test_img_coord_typecheck(self):

        with self.assertRaises(TypeError):
            list = [[0 for x in range(3)] for x in range(10)
                    ]  # initialize a 10x3 list (but not numpy matrix)
            flat_image_coordinates(list, self.control, out=None)
        with self.assertRaises(TypeError):
            flat_image_coordinates(np.empty((10, 2)),
                                   self.calibration,
                                   self.control.get_multimedia_params(),
                                   output=None)
        with self.assertRaises(TypeError):
            image_coordinates(np.empty((10, 3)),
                              self.calibration,
                              self.control.get_multimedia_params(),
                              output=np.zeros((10, 3)))
        with self.assertRaises(TypeError):
            image_coordinates(np.zeros((10, 2)),
                              self.calibration,
                              self.control.get_multimedia_params(),
                              output=np.zeros((10, 2)))
Exemple #9
0
    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10),
                              (200, 200, 200),
                              (600, 800, 100),
                              (20, 10, 2000),
                              (30, 30, 30)], dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(
            xy_img_pts_metric, control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)
Exemple #10
0
    def test_match_detection_to_ref(self):
        """Match detection to reference (sortgrid)"""
        xyz_input = np.array([(10, 10, 10), (200, 200, 200), (600, 800, 100),
                              (20, 10, 2000), (30, 30, 30)],
                             dtype=float)
        coords_count = len(xyz_input)

        xy_img_pts_metric = image_coordinates(
            xyz_input, self.calibration, self.control.get_multimedia_params())
        xy_img_pts_pixel = convert_arr_metric_to_pixel(xy_img_pts_metric,
                                                       control=self.control)

        # convert to TargetArray object
        target_array = TargetArray(coords_count)

        for i in range(coords_count):
            target_array[i].set_pnr(i)
            target_array[i].set_pos(
                (xy_img_pts_pixel[i][0], xy_img_pts_pixel[i][1]))

        # create randomized target array
        indices = range(coords_count)
        shuffled_indices = range(coords_count)

        while indices == shuffled_indices:
            random.shuffle(shuffled_indices)

        rand_targ_array = TargetArray(coords_count)
        for i in range(coords_count):
            rand_targ_array[shuffled_indices[i]].set_pos(target_array[i].pos())
            rand_targ_array[shuffled_indices[i]].set_pnr(target_array[i].pnr())

        # match detection to reference
        matched_target_array = match_detection_to_ref(cal=self.calibration,
                                                      ref_pts=xyz_input,
                                                      img_pts=rand_targ_array,
                                                      cparam=self.control)

        # assert target array is as before
        for i in range(coords_count):
            if matched_target_array[i].pos() != target_array[i].pos() \
                    or matched_target_array[i].pnr() != target_array[i].pnr():
                self.fail()

        # pass ref_pts and img_pts with non-equal lengths
        with self.assertRaises(ValueError):
            match_detection_to_ref(cal=self.calibration,
                                   ref_pts=xyz_input,
                                   img_pts=TargetArray(coords_count - 1),
                                   cparam=self.control)
Exemple #11
0
    def _project_cal_points(self, i_cam, color="yellow"):
        x, y = [], []
        for row in self.cal_points:
            projected = image_coordinates(np.atleast_2d(row['pos']), \
                                          self.cals[i_cam], self.cpar.get_multimedia_params())
            pos = convert_arr_metric_to_pixel(projected, self.cpar)

            x.append(pos[0][0])
            y.append(pos[0][1])

        # x.append(x1)
        # y.append(y1)
        self.drawcross("init_x", "init_y", x, y, color, 3, i_cam=i_cam)
        self.status_text = 'Initial guess finished.'
Exemple #12
0
 def test_full_corresp(self):
     """Full scene correspondences"""
     print "about to dump core"
     cpar = ControlParams(4)
     cpar.read_control_par("testing_fodder/corresp/control.par")
     vpar = VolumeParams()
     vpar.read_volume_par("testing_fodder/corresp/criteria.par")
     
     # Cameras are at so high angles that opposing cameras don't see each 
     # other in the normal air-glass-water setting.
     cpar.get_multimedia_params().set_layers([1.0001], [1.])
     cpar.get_multimedia_params().set_n3(1.0001)
     
     cals = []
     img_pts = []
     corrected = []
     for c in xrange(4):
         cal = Calibration()
         cal.from_file(
             "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
             "testing_fodder/calibration/cam1.tif.addpar")
         cals.append(cal)
     
         # Generate test targets.
         targs = TargetArray(16)
         for row, col in np.ndindex(4, 4):
             targ_ix = row*4 + col
             # Avoid symmetric case:
             if (c % 2):
                 targ_ix = 15 - targ_ix
             targ = targs[targ_ix]
             
             pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
             pos2d = image_coordinates(
                 pos3d, cal, cpar.get_multimedia_params())
             targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
             
             targ.set_pnr(targ_ix)
             targ.set_pixel_counts(25, 5, 5)
             targ.set_sum_grey_value(10)
         
         img_pts.append(targs)
         mc = MatchedCoords(targs, cpar, cal)
         corrected.append(mc)
     
     sorted_pos, sorted_corresp, num_targs = correspondences(
         img_pts, corrected, cals, vpar, cpar)
     self.failUnlessEqual(num_targs, 16)
Exemple #13
0
    def test_full_corresp(self):
        """Full scene correspondences"""
        cpar = ControlParams(4)
        cpar.read_control_par(r"testing_fodder/corresp/control.par")
        vpar = VolumeParams()
        vpar.read_volume_par(r"testing_fodder/corresp/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.0001], [1.])
        cpar.get_multimedia_params().set_n3(1.0001)

        cals = []
        img_pts = []
        corrected = []
        for c in xrange(4):
            cal = Calibration()
            cal.from_file(
                "testing_fodder/calibration/sym_cam%d.tif.ori" % (c + 1),
                "testing_fodder/calibration/cam1.tif.addpar")
            cals.append(cal)

            # Generate test targets.
            targs = TargetArray(16)
            for row, col in np.ndindex(4, 4):
                targ_ix = row * 4 + col
                # Avoid symmetric case:
                if (c % 2):
                    targ_ix = 15 - targ_ix
                targ = targs[targ_ix]

                pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
                pos2d = image_coordinates(pos3d, cal,
                                          cpar.get_multimedia_params())
                targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

                targ.set_pnr(targ_ix)
                targ.set_pixel_counts(25, 5, 5)
                targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 16)
Exemple #14
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par(b"testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(b"testing_fodder/single_cam/parameters/criteria.par")
        
        # Cameras are at so high angles that opposing cameras don't see each 
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)
        
        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            b"testing_fodder/single_cam/calibration/cam_1.tif.ori",
            b"testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)
        
        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row*3 + col
            targ = targs[targ_ix]
            
            pos3d = 10*np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(
                pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])
            
            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)
            
            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)
        
        _, _, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
Exemple #15
0
    def test_single_cam_corresp(self):
        """Single camera correspondence"""
        cpar = ControlParams(1)
        cpar.read_control_par("testing_fodder/single_cam/parameters/ptv.par")
        vpar = VolumeParams()
        vpar.read_volume_par(
            "testing_fodder/single_cam/parameters/criteria.par")

        # Cameras are at so high angles that opposing cameras don't see each
        # other in the normal air-glass-water setting.
        cpar.get_multimedia_params().set_layers([1.], [1.])
        cpar.get_multimedia_params().set_n3(1.)

        cals = []
        img_pts = []
        corrected = []
        cal = Calibration()
        cal.from_file(
            "testing_fodder/single_cam/calibration/cam_1.tif.ori",
            "testing_fodder/single_cam/calibration/cam_1.tif.addpar")
        cals.append(cal)

        # Generate test targets.
        targs = TargetArray(9)
        for row, col in np.ndindex(3, 3):
            targ_ix = row * 3 + col
            targ = targs[targ_ix]

            pos3d = 10 * np.array([[col, row, 0]], dtype=np.float64)
            pos2d = image_coordinates(pos3d, cal, cpar.get_multimedia_params())
            targ.set_pos(convert_arr_metric_to_pixel(pos2d, cpar)[0])

            targ.set_pnr(targ_ix)
            targ.set_pixel_counts(25, 5, 5)
            targ.set_sum_grey_value(10)

            img_pts.append(targs)
            mc = MatchedCoords(targs, cpar, cal)
            corrected.append(mc)

        sorted_pos, sorted_corresp, num_targs = correspondences(
            img_pts, corrected, cals, vpar, cpar)

        self.failUnlessEqual(num_targs, 9)
Exemple #16
0
    def test_external_calibration(self):
        """External calibration using clicked points."""
        ref_pts = np.array([[-40., -25., 8.], [40., -15., 0.], [40., 15., 0.],
                            [40., 0., 8.]])

        # Fake the image points by back-projection
        targets = convert_arr_metric_to_pixel(
            image_coordinates(ref_pts, self.cal,
                              self.control.get_multimedia_params()),
            self.control)

        # Jigg the fake detections to give raw_orient some challenge.
        targets[:, 1] -= 0.1

        self.assertTrue(
            external_calibration(self.cal, ref_pts, targets, self.control))
        np.testing.assert_array_almost_equal(self.cal.get_angles(),
                                             self.orig_cal.get_angles(),
                                             decimal=4)
        np.testing.assert_array_almost_equal(self.cal.get_pos(),
                                             self.orig_cal.get_pos(),
                                             decimal=3)
Exemple #17
0
 def test_external_calibration(self):
     """External calibration using clicked points."""
     ref_pts = np.array([
         [-40., -25., 8.],
         [ 40., -15., 0.],
         [ 40.,  15., 0.],
         [ 40.,   0., 8.]])
 
     # Fake the image points by back-projection
     targets = convert_arr_metric_to_pixel(image_coordinates(
         ref_pts, self.cal, self.control.get_multimedia_params()),
         self.control)
     
     # Jigg the fake detections to give raw_orient some challenge.
     targets[:,1] -= 0.1
     
     self.assertTrue(external_calibration(
         self.cal, ref_pts, targets, self.control))
     np.testing.assert_array_almost_equal(
         self.cal.get_angles(), self.orig_cal.get_angles(),
         decimal=4)
     np.testing.assert_array_almost_equal(
         self.cal.get_pos(), self.orig_cal.get_pos(),
         decimal=3)
part_traject = np.zeros((num_frames, 3))
part_traject[:, 0] = np.r_[:num_frames] * velocity

# Find targets on each camera.
cpar = ControlParams(3)
cpar.read_control_par("testing_fodder/track/parameters/control_newpart.par")

targs = []
for cam in xrange(num_cams):
    cal = Calibration()
    cal.from_file("testing_fodder/cal/sym_cam%d.tif.ori" % (cam + 1),
                  "testing_fodder/cal/cam1.tif.addpar")
    targs.append(
        convert_arr_metric_to_pixel(
            image_coordinates(part_traject, cal, cpar.get_multimedia_params()),
            cpar))

for frame in xrange(num_frames):
    # write 3D positions:
    with open("testing_fodder/track/res_orig/particles.%d" % (frame + 1),
              "w") as outfile:
        # Note correspondence to the single target in each frame.
        outfile.writelines([
            str(1) + "\n",
            "{:5d}{:10.3f}{:10.3f}{:10.3f}{:5d}{:5d}{:5d}{:5d}\n".format(
                1, part_traject[frame, 0], part_traject[frame, 1],
                part_traject[frame, 1], 0, 0, 0, 0)
        ])

    # write associated targets from all cameras:
Exemple #19
0
velocity = 0.01

part_traject = np.zeros((num_frames,3))
part_traject[:,0] = np.r_[:num_frames]*velocity

# Find targets on each camera.
cpar = ControlParams(3)
cpar.read_control_par("testing_fodder/track/parameters/control_newpart.par")

targs = []
for cam in xrange(num_cams):
    cal = Calibration()
    cal.from_file(
        "testing_fodder/cal/sym_cam%d.tif.ori" % (cam + 1), 
        "testing_fodder/cal/cam1.tif.addpar")
    targs.append(convert_arr_metric_to_pixel(image_coordinates(
        part_traject, cal, cpar.get_multimedia_params()), cpar))

for frame in xrange(num_frames):
    # write 3D positions:
    with open("testing_fodder/track/res_orig/particles.%d" % (frame + 1), "w") as outfile:
        # Note correspondence to the single target in each frame.
        outfile.writelines([
            str(1) + "\n", 
            "{:5d}{:10.3f}{:10.3f}{:10.3f}{:5d}{:5d}{:5d}{:5d}\n".format(
                1, part_traject[frame,0], part_traject[frame,1], 
                part_traject[frame,1], 0, 0, 0, 0)]) 
    
    # write associated targets from all cameras:
    for cam in xrange(num_cams):
        with open("testing_fodder/track/newpart/cam%d.%04d_targets" \
                % (cam + 1, frame + 1), "w") as outfile:
Exemple #20
0
    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0], [17, 42, 0]], dtype=float)

        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)

            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1, 0, 2)
        targs_jigged = np.array(targs_jigged).transpose(1, 0, 2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')
Exemple #21
0
    def test_point_positions(self):
        """Point positions"""
        # prepare MultimediaParams
        mult_params = self.control.get_multimedia_params()

        mult_params.set_n1(1.)
        mult_params.set_layers(np.array([1.]), np.array([1.]))
        mult_params.set_n3(1.)

        # 3d point
        points = np.array([[17, 42, 0],
                           [17, 42, 0]], dtype=float)
        
        num_cams = 4
        ori_tmpl = r'testing_fodder/calibration/sym_cam{cam_num}.tif.ori'
        add_file = r'testing_fodder/calibration/cam1.tif.addpar'
        calibs = []
        targs_plain = []
        targs_jigged = []

        jigg_amp = 0.5

        # read calibration for each camera from files
        for cam in range(num_cams):
            ori_name = ori_tmpl.format(cam_num=cam + 1)
            new_cal = Calibration()
            new_cal.from_file(ori_file=ori_name, add_file=add_file)
            calibs.append(new_cal)

        for cam_num, cam_cal in enumerate(calibs):
            new_plain_targ = image_coordinates(
                points, cam_cal, self.control.get_multimedia_params())
            targs_plain.append(new_plain_targ)
            
            if (cam_num % 2) == 0:
                jigged_points = points - np.r_[0, jigg_amp, 0]
            else:
                jigged_points = points + np.r_[0, jigg_amp, 0]

            new_jigged_targs = image_coordinates(
                jigged_points, cam_cal, self.control.get_multimedia_params())
            targs_jigged.append(new_jigged_targs)

        targs_plain = np.array(targs_plain).transpose(1,0,2)
        targs_jigged = np.array(targs_jigged).transpose(1,0,2)
        skew_dist_plain = point_positions(targs_plain, self.control, calibs)
        skew_dist_jigged = point_positions(targs_jigged, self.control, calibs)

        if np.any(skew_dist_plain[1] > 1e-10):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_plain[1] > 1e-10)[0][0]))

        if np.any(np.linalg.norm(points - skew_dist_plain[0], axis=1) > 1e-6):
            self.fail('Rays converge on wrong position.')

        if np.any(skew_dist_jigged[1] > 0.7):
            self.fail(('skew distance of target#{targ_num} ' \
                + 'is more than allowed').format(
                    targ_num=np.nonzero(skew_dist_jigged[1] > 1e-10)[0][0]))
        if np.any(np.linalg.norm(points - skew_dist_jigged[0], axis=1) > 0.1):
            self.fail('Rays converge on wrong position after jigging.')