Exemple #1
0
def test_ExpectedNumInstanceSampler():
    N = 6
    train_length = 2
    pred_length = 1
    ds = make_dataset(N, train_length)

    t = transform.Chain(trans=[
        transform.InstanceSplitter(
            target_field=FieldName.TARGET,
            is_pad_field=FieldName.IS_PAD,
            start_field=FieldName.START,
            forecast_start_field=FieldName.FORECAST_START,
            train_sampler=transform.ExpectedNumInstanceSampler(
                num_instances=4),
            past_length=train_length,
            future_length=pred_length,
            pick_incomplete=True,
        )
    ])

    scale_hist = ScaleHistogram()

    repetition = 2
    for i in range(repetition):
        for data in t(iter(ds), is_train=True):
            target_values = data["past_target"]
            # for simplicity, discard values that are zeros to avoid confusion with padding
            target_values = target_values[target_values > 0]
            scale_hist.add(target_values)

    expected_values = {i: 2**i * repetition for i in range(1, N)}

    assert expected_values == scale_hist.bin_counts
Exemple #2
0
def test_Transformation():
    train_length = 100
    ds = ListDataset(
        [{"start": "2012-01-01", "target": [0.2] * train_length}], freq="1D"
    )

    pred_length = 10

    t = transform.Chain(
        trans=[
            transform.AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field="time_feat",
                time_features=[
                    time_feature.DayOfWeek(),
                    time_feature.DayOfMonth(),
                    time_feature.MonthOfYear(),
                ],
                pred_length=pred_length,
            ),
            transform.AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field="age",
                pred_length=pred_length,
                log_scale=True,
            ),
            transform.AddObservedValuesIndicator(
                target_field=FieldName.TARGET, output_field="observed_values"
            ),
            transform.VstackFeatures(
                output_field="dynamic_feat",
                input_fields=["age", "time_feat"],
                drop_inputs=True,
            ),
            transform.InstanceSplitter(
                target_field=FieldName.TARGET,
                is_pad_field=FieldName.IS_PAD,
                start_field=FieldName.START,
                forecast_start_field=FieldName.FORECAST_START,
                train_sampler=transform.ExpectedNumInstanceSampler(
                    num_instances=4
                ),
                past_length=train_length,
                future_length=pred_length,
                time_series_fields=["dynamic_feat", "observed_values"],
            ),
        ]
    )

    for u in t(iter(ds), is_train=True):
        print(u)
Exemple #3
0
def test_BucketInstanceSampler():
    N = 6
    train_length = 2
    pred_length = 1
    ds = make_dataset(N, train_length)

    dataset_stats = calculate_dataset_statistics(ds)

    t = transform.Chain(
        trans=[
            transform.InstanceSplitter(
                target_field=FieldName.TARGET,
                is_pad_field=FieldName.IS_PAD,
                start_field=FieldName.START,
                forecast_start_field=FieldName.FORECAST_START,
                train_sampler=transform.BucketInstanceSampler(
                    dataset_stats.scale_histogram
                ),
                past_length=train_length,
                future_length=pred_length,
                pick_incomplete=True,
            )
        ]
    )

    scale_hist = ScaleHistogram()

    repetition = 200
    for i in range(repetition):
        for data in t(iter(ds), is_train=True):
            target_values = data["past_target"]
            # for simplicity, discard values that are zeros to avoid confusion with padding
            target_values = target_values[target_values > 0]
            scale_hist.add(target_values)

    expected_values = {i: repetition for i in range(1, N)}
    found_values = scale_hist.bin_counts

    for i in range(1, N):
        assert abs(
            expected_values[i] - found_values[i] < expected_values[i] * 0.3
        )
Exemple #4
0
def test_target_dim_indicator():
    target = np.array([0, 2, 3, 10]).tolist()

    multi_dim_target = np.array([target, target, target, target])
    dataset = ListDataset(
        data_iter=[{"start": "2012-01-01", "target": multi_dim_target}],
        freq="1D",
        one_dim_target=False,
    )

    t = transform.Chain(
        trans=[
            transform.TargetDimIndicator(
                target_field=FieldName.TARGET, field_name="target_dimensions"
            )
        ]
    )

    for data_entry in t(dataset, is_train=True):
        assert (data_entry["target_dimensions"] == np.array([0, 1, 2, 3])).all()
Exemple #5
0
def test_cdf_to_gaussian_transformation():
    def make_test_data():
        target = np.array([
            0,
            0,
            0,
            0,
            10,
            10,
            20,
            20,
            30,
            30,
            40,
            50,
            59,
            60,
            60,
            70,
            80,
            90,
            100,
        ]).tolist()

        np.random.shuffle(target)

        multi_dim_target = np.array([target, target]).transpose()

        past_is_pad = np.array([[0] * len(target)]).transpose()

        past_observed_target = np.array([[1] * len(target),
                                         [1] * len(target)]).transpose()

        ds = ListDataset(
            # Mimic output from InstanceSplitter
            data_iter=[{
                "start":
                "2012-01-01",
                "target":
                multi_dim_target,
                "past_target":
                multi_dim_target,
                "future_target":
                multi_dim_target,
                "past_is_pad":
                past_is_pad,
                f"past_{FieldName.OBSERVED_VALUES}":
                past_observed_target,
            }],
            freq="1D",
            one_dim_target=False,
        )
        return ds

    def make_fake_output(u: DataEntry):
        fake_output = np.expand_dims(np.expand_dims(u["past_target_cdf"],
                                                    axis=0),
                                     axis=0)
        return fake_output

    ds = make_test_data()

    t = transform.Chain(trans=[
        transform.CDFtoGaussianTransform(
            target_field=FieldName.TARGET,
            observed_values_field=FieldName.OBSERVED_VALUES,
            max_context_length=20,
            target_dim=2,
        )
    ])

    for u in t(iter(ds), is_train=False):

        fake_output = make_fake_output(u)

        # Fake transformation chain output
        u["past_target_sorted"] = torch.tensor(
            np.expand_dims(u["past_target_sorted"], axis=0))

        u["slopes"] = torch.tensor(np.expand_dims(u["slopes"], axis=0))

        u["intercepts"] = torch.tensor(np.expand_dims(u["intercepts"], axis=0))

        back_transformed = transform.cdf_to_gaussian_forward_transform(
            u, fake_output)

        # Get any sample/batch (slopes[i][:, d]they are all the same)
        back_transformed = back_transformed[0][0]

        original_target = u["target"]

        # Original target and back-transformed target should be the same
        assert np.allclose(original_target, back_transformed)
Exemple #6
0
def test_multi_dim_transformation(is_train):
    train_length = 10

    first_dim: list = list(np.arange(1, 11, 1))
    first_dim[-1] = "NaN"

    second_dim: list = list(np.arange(11, 21, 1))
    second_dim[0] = "NaN"

    ds = ListDataset(
        data_iter=[{
            "start": "2012-01-01",
            "target": [first_dim, second_dim]
        }],
        freq="1D",
        one_dim_target=False,
    )
    pred_length = 2

    # Looks weird - but this is necessary to assert the nan entries correctly.
    first_dim[-1] = np.nan
    second_dim[0] = np.nan

    t = transform.Chain(trans=[
        transform.AddTimeFeatures(
            start_field=FieldName.START,
            target_field=FieldName.TARGET,
            output_field="time_feat",
            time_features=[
                time_feature.DayOfWeek(),
                time_feature.DayOfMonth(),
                time_feature.MonthOfYear(),
            ],
            pred_length=pred_length,
        ),
        transform.AddAgeFeature(
            target_field=FieldName.TARGET,
            output_field="age",
            pred_length=pred_length,
            log_scale=True,
        ),
        transform.AddObservedValuesIndicator(
            target_field=FieldName.TARGET,
            output_field="observed_values",
            convert_nans=False,
        ),
        transform.VstackFeatures(
            output_field="dynamic_feat",
            input_fields=["age", "time_feat"],
            drop_inputs=True,
        ),
        transform.InstanceSplitter(
            target_field=FieldName.TARGET,
            is_pad_field=FieldName.IS_PAD,
            start_field=FieldName.START,
            forecast_start_field=FieldName.FORECAST_START,
            train_sampler=transform.ExpectedNumInstanceSampler(
                num_instances=4),
            past_length=train_length,
            future_length=pred_length,
            time_series_fields=["dynamic_feat", "observed_values"],
            time_first=False,
        ),
    ])

    if is_train:
        for u in t(iter(ds), is_train=True):
            assert_shape(u["past_target"], (2, 10))
            assert_shape(u["past_dynamic_feat"], (4, 10))
            assert_shape(u["past_observed_values"], (2, 10))
            assert_shape(u["future_target"], (2, 2))

            assert_padded_array(
                u["past_observed_values"],
                np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]),
                u["past_is_pad"],
            )
            assert_padded_array(
                u["past_target"],
                np.array([first_dim, second_dim]),
                u["past_is_pad"],
            )
    else:
        for u in t(iter(ds), is_train=False):
            assert_shape(u["past_target"], (2, 10))
            assert_shape(u["past_dynamic_feat"], (4, 10))
            assert_shape(u["past_observed_values"], (2, 10))
            assert_shape(u["future_target"], (2, 0))

            assert_padded_array(
                u["past_observed_values"],
                np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]),
                u["past_is_pad"],
            )
            assert_padded_array(
                u["past_target"],
                np.array([first_dim, second_dim]),
                u["past_is_pad"],
            )