Exemple #1
0
 def test_labels_frequency(self):
     annotations = [[1, 1, 2], [-1, 1, 2]]
     nclasses = 4
     expected_result = [0., 0.6, 0.4, 0.0]
     result = voting.labels_frequency(annotations, nclasses)
     #self.assertAlmostEqual(expected_result, list(result)) #AlmostEqual not working on np.arrays but lists
     assert_array_almost_equal(expected_result, result)  #Probably better
 def test_labels_frequency(self):
     annotations = [[1, 1, 2], [-1, 1, 2]]
     nclasses = 4
     expected_result = [0., 0.6, 0.4, 0.0]
     result = voting.labels_frequency(annotations, nclasses)
     #self.assertAlmostEqual(expected_result, list(result)) #AlmostEqual not working on np.arrays but lists
     assert_array_almost_equal(expected_result, result) #Probably better
Exemple #3
0
    def test_label_frequency(self):
        annotations = [[1, 1, 2], [-1, 1, 2]]
        nclasses = 4
        expected = np.array([0., 0.6, 0.4, 0.])
        result = voting.labels_frequency(annotations, nclasses)

        assert_array_almost_equal(expected, result, 2)
Exemple #4
0
    def test_label_frequency(self):
	annotations = [[1, 1, 2], [-1, 1, 2]]
	nclasses = 4
	expected = np.array([ 0. ,  0.6,  0.4,  0. ])
	result = voting.labels_frequency(annotations, nclasses)

	assert_array_almost_equal(expected, result, 2)
Exemple #5
0
    def test_labels_frequency(self):
        annotations = [[1, 2, MV, MV], [MV, MV, 3, 3], [MV, 1, 3, 1],
                       [MV, MV, MV, MV]]

        nclasses = 5
        expected = np.array([0., 3., 1., 3., 0.]) / 7.
        result = voting.labels_frequency(annotations, nclasses)
        np.testing.assert_almost_equal(result, expected)
def test_labels_frequency():
    matrix = [
        [1, 2, 2, -1],
        [2, 2, 2, 2],
        [1, 1, 3, 3],
        [1, 3, 3, 2],
        [-1, 2, 3, 1],
        [-1, -1, -1, 3],
    ]
    result = voting.labels_frequency(matrix, 4)

    assert np.all([res != None for res in result])
    assert len(result) == 4
    assert np.all(
        voting.labels_frequency([[-1, -1, -1, -1], [-1, -1, -1, -1]], 4) ==
        np.zeros(4))
    assert np.all([i >= 0 and i <= 1 for i in result])
    assert isclose(np.sum(result), 1) or isclose(
        np.sum(result), 0, abs_tol=1e-12)
    def test_labels_frequency(self):
        annotations = [
            [ 1,  2, MV, MV],
            [MV, MV,  3,  3],
            [MV,  1,  3,  1],
            [MV, MV, MV, MV]
        ]

        nclasses = 5
        expected = np.array([0., 3., 1., 3., 0.]) / 7.
        result = voting.labels_frequency(annotations, nclasses)
        np.testing.assert_almost_equal(result, expected)
Exemple #8
0
 def test_labels_freq(self):
     annotations=[[1, 1, 2], [-1, 1, 2]]
     nclasses=4
     #annotations = [
     #    [1,  2, MV, MV],
     #    [MV, MV,  3,  3],
     #    [MV,  1,  3,  1],
     #    [MV, MV, MV, MV],
     #]
     #nclasses = 5
     #expected = [0, 3, 1, 3, 0]
     expected=[ 0. ,  0.6,  0.4,  0. ]
     result = voting.labels_frequency(annotations, nclasses)
     self.assertAlmostEqual(result, expected,5)
Exemple #9
0
 def test_labels_freq(self):
     annotations = [[1, 1, 2], [-1, 1, 2]]
     nclasses = 4
     #annotations = [
     #    [1,  2, MV, MV],
     #    [MV, MV,  3,  3],
     #    [MV,  1,  3,  1],
     #    [MV, MV, MV, MV],
     #]
     #nclasses = 5
     #expected = [0, 3, 1, 3, 0]
     expected = [0., 0.6, 0.4, 0.]
     result = voting.labels_frequency(annotations, nclasses)
     self.assertAlmostEqual(result, expected, 5)
Exemple #10
0
 def test_labels_frequency(self):
     result = voting.labels_frequency([[1, 1, 2], [-1, 1, 2]], 4)
     expected = np.asarray([0., 0.6, 0.4, 0.])
     assert_array_almost_equal(result, expected)
 def test_exception_all_missing(self):
     with self.assertRaises(PyannoValueError):
         result = voting.labels_frequency([[MV, MV, MV], [MV, MV, MV]], 4)
 def test_labels_frequency(self):
     result = voting.labels_frequency([[1, 1, 2], [-1, 1, 2]], 4)
     expected = np.asarray([ 0. ,  0.6,  0.4,  0. ])
     assert_array_almost_equal(result, expected)
 def test_exception_empty_list(self):
     with self.assertRaises(PyannoValueError):
         result = voting.labels_frequency([], 4)
Exemple #14
0
 def test_different_missing_value(self):
     annotations = np.array([[1, 1, 2], [MV, 1, 2]])
     expected = [0.0, 0.6, 0.4, 0.0]
     result = voting.labels_frequency(annotations, 4, MV)
     print(result)
     np.testing.assert_array_almost_equal(expected, result)
Exemple #15
0
 def test_different_missing_value(self):
     annotations = np.array([[1, 1, 2], [MV, 1, 2]])
     expected = [0., 0.6, 0.4, 0.]
     result = voting.labels_frequency(annotations, 4, MV)
     print(result)
     np.testing.assert_array_almost_equal(expected, result)
Exemple #16
0
 def test_exception_empty_list(self):
     with self.assertRaises(PyannoValueError):
         result = voting.labels_frequency([], 4)
Exemple #17
0
 def test_exception_all_missing(self):
     with self.assertRaises(PyannoValueError):
         result = voting.labels_frequency([[MV, MV, MV], [MV, MV, MV]], 4)