Exemple #1
0
 def __init__(self):
     self.best_E   = 1.0e100
     self.second_E = 1.0e100
     self.third_E  = 1.0e100
     self.best_route   = numx.arange(n_cities)
     self.second_route = numx.arange(n_cities)
     self.third_route  = numx.arange(n_cities)
     self.tsp = Tsp()
     self.tsp.SetNCities(n_cities)
     self.r_cities = numx.arange(n_cities)
     self.__runs = 0
     self.__total_runs = 68588312
     self.__time_stamp = 0
Exemple #2
0
 def __init__(self):
     self.best_E = 1.0e100
     self.second_E = 1.0e100
     self.third_E = 1.0e100
     self.best_route = numx.arange(n_cities)
     self.second_route = numx.arange(n_cities)
     self.third_route = numx.arange(n_cities)
     self.tsp = Tsp()
     self.tsp.SetNCities(n_cities)
     self.r_cities = numx.arange(n_cities)
     self.__runs = 0
     self.__total_runs = 68588312
     self.__time_stamp = 0
Exemple #3
0
    def search(self):
        initial_route = numx.arange(n_cities)
        self.__time_stamp = int(time.time())
        sys.stdout.write(" " * 79 + "\n")
        self.do_all_perms(initial_route, 1)

        print " " * 78
        print "\n"
        print "Initial route: "
        for i in initial_route:
            print cities[i]

        print "Required %d runs estimated %d runs" % (self.__runs, self.__total_runs)
        print 
        print "Best route: "
        for i in self.best_route:
            print cities[i]

        print 
        print "Second route: "
        for i in self.second_route:
            print cities[i]

        print 
        print "Third route: "
        for i in self.third_route:
            print cities[i]
Exemple #4
0
def run():    
    # Here should go some meaningful data sample to test the transform.
    # Can you write one?
    n = 512
    data = numx.zeros((n,))
    x = numx.arange(n) * (2 * numx.pi / n)
    y = numx.cos(x*5)
    #result = transform(y)

    wavefreq, resampled = compress(y)

    pylab.figure(1)
    pylab.hold(0)
    pylab.plot(x,y,x,resampled)
    pylab.grid(1)
    
    pylab.figure(2)
    pylab.hold(0)
    pylab.plot(wavefreq[:30], '.-')
    pylab.grid(1)

    pylab.figure(3)
    pylab.hold(0)
    pylab.plot(wavefreq[:50], '.-')
    pylab.grid(1)
Exemple #5
0
def run():
    # Here should go some meaningful data sample to test the transform.
    # Can you write one?
    n = 512
    data = numx.zeros((n, ))
    x = numx.arange(n) * (2 * numx.pi / n)
    y = numx.cos(x * 5)
    #result = transform(y)

    wavefreq, resampled = compress(y)

    pylab.figure(1)
    pylab.hold(0)
    pylab.plot(x, y, x, resampled)
    pylab.grid(1)

    pylab.figure(2)
    pylab.hold(0)
    pylab.plot(wavefreq[:30], '.-')
    pylab.grid(1)

    pylab.figure(3)
    pylab.hold(0)
    pylab.plot(wavefreq[:50], '.-')
    pylab.grid(1)
Exemple #6
0
def generate_data():
    r = pygsl.rng.mt19937()
    a = numx.arange(20) / 10.# + .1
    y0 = numx.exp(a)
    sigma = 0.1 * y0
    dy = numx.array(map(r.gaussian, sigma))
    return a, y0+dy,  sigma
Exemple #7
0
def run_driver():
    mu = 10
    sys = odeiv2.system(func, jac, 2, mu)
    #sys = odeiv2.system(func, None, 2, mu)

    T = odeiv2.step_rk8pd
    pygsl.set_debug_level(0)
    d = driver_y_new(sys, T, 1e-6, 1e-6, 0.0);
    d.reset()
    d.reset_hstart(2)
    d.set_hmin(0.0)
    d.set_hmax(1.0)
    d.set_nmax(2)
    d.set_nmax(0)
    d.set_hmax(1e-6)
    d.set_hmin(2e-6)
    y = numx.array([1.0, 0.0])
    N = 100
    t = 0.0
    t1 = N * 1.
    ti = (numx.arange(N) +1) / float(N)

    pygsl.set_debug_level(0)

    for tnext in ti:
        #pygsl.set_debug_level(3)
        t, y  = d.apply(t, tnext, y)
        print(t, y)
Exemple #8
0
    def search(self):
        initial_route = numx.arange(n_cities)
        self.__time_stamp = int(time.time())
        sys.stdout.write(" " * 79 + "\n")
        self.do_all_perms(initial_route, 1)

        print " " * 78
        print "\n"
        print "Initial route: "
        for i in initial_route:
            print cities[i]

        print "Required %d runs estimated %d runs" % (self.__runs,
                                                      self.__total_runs)
        print
        print "Best route: "
        for i in self.best_route:
            print cities[i]

        print
        print "Second route: "
        for i in self.second_route:
            print cities[i]

        print
        print "Third route: "
        for i in self.third_route:
            print cities[i]
Exemple #9
0
 def setUp(self):
     t = Numeric.arange(self._getn())
     y = testfunc(t, self.A, self.lambda_, self.b)
     sigma = Numeric.ones(self._getn()) * 0.1
     self.data = Numeric.array((t, y, sigma), Float)
     self.sys = multifit_nlin.gsl_multifit_function_fdf(
         exp_f, exp_df, exp_fdf, self.data, self._getn(), self._getp())
Exemple #10
0
def run():
    # The geometric function
    func = lambda x,y  : 1 / (1 + x)
    mysys = chebyshev.gsl_function(func, None)
    # The series
    series = chebyshev.cheb_series(6)

    series.init(mysys, 0, 2)
    # and its coefficients

    # Make a new series object. 
    series1 = chebyshev.cheb_series(6)
    #series1.init(mysys, 0, 2)
    series1.set_a(series.get_a())
    series1.set_b(series.get_b())
    series1.set_coefficients(series.get_coefficients()*2)

    # Two items of the gsl_cheb_struct the documentation does not mention.
    series1.set_order_sp(series.get_order_sp())
    series1.set_f(series.get_f())


    x = numx.arange(100) / 50.
    y = map(lambda x, s=series: s.eval_n(6, x), x)
    y1 = map(lambda x, s=series1: s.eval_n(6, x), x)
Exemple #11
0
 def setUp(self):
     x  = Numeric.arange(100)
     y  = 2 * x + 1
     self.x  = x
     self.y1 = y[:80]
     self.interp = self._testtype(100)
     self.interp.init(x,y)
Exemple #12
0
def real_example_simple1():
    n = 32
    data = numx.cos(1 * (numx.arange(n) * (2 * numx.pi / n))).astype(
        numx.Float32)
    print(data)
    result = fft.real_transform_float(data)
    print(result)
Exemple #13
0
 def testCosSpace(self):        
     x = numx.arange(self.n) * (2 * numx.pi / self.n)
     space = self.workspace(self.n)
     assert(space.get_n() == self.n)
     table = self.wavetable(self.n)
     assert(table.get_n() == self.n)
     for i in range(1,self.n/2):
        self.CosOne(x,i, (space,table))
Exemple #14
0
 def testCosSpace(self):
     x = numx.arange(self.n) * (2 * numx.pi / self.n)
     space = self.workspace(self.n)
     self.assertEqual(space.get_n(), self.n)
     table = self.wavetable(self.n)
     self.assertEqual(table.get_n(), self.n)
     for i in range(1, self._GetN2()):
         self.CosOne(x, i, (space, table))
Exemple #15
0
def halfcomplex_radix2_unpack():
    n = 32
    a = numx.arange(n)
    c = numx.zeros((n, ))
    c[1:n / 2 + 1] = a[1::2]
    c[n / 2 + 1:] = a[-2:1:-2]
    print(c)
    print(fft.halfcomplex_radix2_unpack(c))
Exemple #16
0
def halfcomplex_radix2_unpack():
    n = 32   
    a = numx.arange(n)
    c = numx.zeros((n,))
    c[1:n/2+1]=a[1::2]
    c[n/2+1:]=a[-2:1:-2]    
    print c
    print fft.halfcomplex_radix2_unpack(c)
Exemple #17
0
 def testCosSpace(self):
     x = numx.arange(self.n) * (2 * numx.pi / self.n)
     space = self.workspace(self.n)
     assert (space.get_n() == self.n)
     table = self.wavetable(self.n)
     assert (table.get_n() == self.n)
     for i in range(1, self.n / 2):
         self.CosOne(x, i, (space, table))
Exemple #18
0
def generate_data():
    r = pygsl.rng.mt19937()
    a = numx.arange(20) / 10.  # + .1
    y0 = numx.exp(a)
    sigma = 0.1 * y0
    tmp = tuple(map(r.gaussian, sigma))
    dy = numx.array(tmp)
    tmp = y0 + dy
    return a, tmp, sigma
Exemple #19
0
 def test_dirichlet(self):
     a = Numeric.arange(10) * .1 + .1
     d = self.rng.dirichlet(a)
     array_check(d, Float, (a.shape[0], ))
     ra = Numeric.reshape(a, (a.shape[0], -1))
     ra = Numeric.transpose(ra)
     p = rngmodule.dirichlet_pdf(d, ra)
     d = self.rng.dirichlet(a, 100)
     array_check(d, Float, (100, a.shape[0]))
Exemple #20
0
 def testCos(self):        
     x = numx.arange(self.n) * (2 * numx.pi / self.n)
     for i in range(1,self.n/2):
         if self.__class__.__name__ == "testrealforwardfloat":
             pygsl.set_debug_level(0)
         try:                
             self.CosOne(x,i)
         finally:
             pygsl.set_debug_level(0)
Exemple #21
0
 def testSinReturnSaveSpaces(self):
     space = self.workspace(self.n)
     table = self.wavetable(self.n)
     x = numx.arange(self.n) * ((2+0j) * numx.pi / self.n)
     for i in range(1,self.n/2):
         y = numx.sin(x * i)
         tmp = self.convert(y)
         f = self.transform(tmp, space, table, tmp)
         self._CheckSinResult(f, i)
Exemple #22
0
 def testCos(self):
     x = numx.arange(self.n) * (2 * numx.pi / self.n)
     for i in range(1, self.n / 2):
         if self.__class__.__name__ == "testrealforwardfloat":
             pygsl.set_debug_level(0)
         try:
             self.CosOne(x, i)
         finally:
             pygsl.set_debug_level(0)
Exemple #23
0
 def test_dirichlet(self):
     a = Numeric.arange(10) * 0.1 + 0.1
     d = self.rng.dirichlet(a)
     array_check(d, Float, (a.shape[0],))
     ra = Numeric.reshape(a, (a.shape[0], -1))
     ra = Numeric.transpose(ra)
     p = rngmodule.dirichlet_pdf(d, ra)
     d = self.rng.dirichlet(a, 100)
     array_check(d, Float, (100, a.shape[0]))
Exemple #24
0
 def testSinReturnSaveSpaces(self):
     space = self.workspace(self.n)
     table = self.wavetable(self.n)
     x = numx.arange(self.n) * ((2 + 0j) * numx.pi / self.n)
     for i in range(1, self.n / 2):
         y = numx.sin(x * i)
         tmp = self.convert(y)
         f = self.transform(tmp, space, table, tmp)
         self._CheckSinResult(f, i)
 def setUp(self):
     t = Numeric.arange(self._getn());
     y = testfunc(t, self.A, self.lambda_, self.b)
     sigma = Numeric.ones(self._getn()) * 0.1
     self.data = Numeric.array((t,y,sigma), Float)
     self.sys = multifit_nlin.gsl_multifit_function_fdf(exp_f, exp_df,
                                                        exp_fdf, self.data,
                                                        self._getn(),
                                                        self._getp())
Exemple #26
0
 def setUp(self):
     self.dim   = 100
     self.param = 2
     self.a = 1000.1
     self.b = 100        
     self.x = Numeric.arange(self.dim)
     x = self.x
     self.y = self.a + self.b * self.x
     self.w = Numeric.ones((self.dim,))
     self.ws = multifit.linear_workspace(self.dim, self.param)
     self.X = Numeric.transpose(Numeric.array((Numeric.ones(self.dim,), x)))
Exemple #27
0
 def setUp(self):
     self.dim = 100
     self.param = 2
     self.a = 1000.1
     self.b = 100
     self.x = Numeric.arange(self.dim)
     x = self.x
     self.y = self.a + self.b * self.x
     self.w = Numeric.ones((self.dim, ))
     self.ws = multifit.linear_workspace(self.dim, self.param)
     self.X = Numeric.transpose(Numeric.array(
         (Numeric.ones(self.dim, ), x)))
Exemple #28
0
def complex_example_simple():
    n = 16
    data = numx.arange(n) * (2 * numx.pi / n)
    data = numx.cos(data) +0j
    space = fft.complex_workspace(n)
    wavetable = fft.complex_wavetable(n)

    print data
    #data[:11] = 1.0
    #data[11:] = 1.0
    tmp = fft.complex_backward(data, space, wavetable)
    print "tmp", tmp
Exemple #29
0
def complex_example_simple():
    n = 16
    data = numx.arange(n) * (2 * numx.pi / n)
    data = numx.cos(data) + 0j
    space = fft.complex_workspace(n)
    wavetable = fft.complex_wavetable(n)

    print(data)
    #data[:11] = 1.0
    #data[11:] = 1.0
    pygsl.init.set_debug_level(0)
    tmp = fft.complex_backward(data, space, wavetable)
    print("tmp", tmp)
Exemple #30
0
def run_fdfsolver():
    A       = 1.
    lambda_ = .1
    b       = .5

    n = 40
    p = 3

    t = numx.arange(n);
    y = testfunc(t, A, lambda_, b)
    sigma = numx.ones(n) * 0.1
    data = numx.array((t,y,sigma), numx.Float)
    #mysys = multifit_nlin.gsl_multifit_function_fdf(exp_f, exp_df, exp_fdf,
    # data, n,p)
    pygsl.set_debug_level(0)
    solver = multifit_nlin.lmsder(n, p)
    pygsl.set_debug_level(0)
    #solver = multifit_nlin.lmder(mysys, n, p)


    x = numx.array((1.0, 0.0, 0.0))
    pygsl.set_debug_level(0)
    solver.set(exp_f, exp_df, exp_fdf, x, data)
    pygsl.set_debug_level(0)
    print "# Testing solver ", solver.name() 
    print "# %5s %9s %9s  %9s  %10s" % ("iter", "A", "lambda", "b", "|f(x)|")
    for iter in range(20):	    
        status = solver.iterate()
	x  = solver.x()
	dx = solver.dx()
	f  = solver.f()
	J  = solver.J()
	#tdx = multifit_nlin.gradient(J, f)
	#status = multifit_nlin.test_delta(dx, x, 1e-8, 1e-8)
	status = solver.test_delta(1e-8, 1e-8)
	fn = numx.sqrt(numx.sum(f*f))
	if status == 0:
		print "# Convereged :"
	if status == 0:
                break
        print "  %5d % .7f % .7f  % .7f  % .7f" %(iter, x[0], x[1], x[2], fn)
    else:
	raise ValueError, "Number of Iterations exceeded!"

    J = solver.J()
    covar =  multifit_nlin.covar(solver.J(), 0.0)
    print "# A      = % .5f +/- % .5f" % (x[0], covar[0,0])
    print "# lambda = % .5f +/- % .5f" % (x[1], covar[1,1])
    print "# b      = % .5f +/- % .5f" % (x[2], covar[2,2])
Exemple #31
0
def run():
    N = 1024
    x = numx.arange(N) * (numx.pi * 2 / N)
    y = numx.sin(x)

    b = bspline(10, nbreak)
    b.knots_uniform(x[0], x[-1])
    X = numx.zeros((N, ncoeffs))
    X = b.eval_vector(x)
    c, cov, chisq = multifit.linear(X, y)

    res_x = x[::N / 64]
    X = b.eval_vector(res_x)
    res_y, res_y_err = multifit.linear_est_matrix(X, c, cov)

    pylab.plot(x, y, '-')
    pylab.errorbar(res_x, res_y, fmt='g-', xerr=res_y_err)
Exemple #32
0
def run_fdfsolver():
    A = 1.
    lambda_ = .1
    b = .5

    n = 40
    p = 3

    t = numx.arange(n)
    y = testfunc(t, A, lambda_, b)
    sigma = numx.ones(n) * 0.1
    data = numx.array((t, y, sigma), )
    mysys = multifit_nlin.gsl_multifit_function_fdf(exp_f, exp_df, exp_fdf,
                                                    data, n, p)
    solver = multifit_nlin.lmsder(mysys, n, p)
    #solver = multifit_nlin.lmder(mysys, n, p)

    x = numx.array((1.0, 0.0, 0.0))
    solver.set(x)
    print("# Testing solver ", solver.name())
    print("# %5s %9s %9s  %9s  %10s" % ("iter", "A", "lambda", "b", "|f(x)|"))
    for iter in range(20):
        status = solver.iterate()
        x = solver.getx()
        dx = solver.getdx()
        f = solver.getf()
        J = solver.getJ()
        tdx = multifit_nlin.gradient(J, f)
        status = multifit_nlin.test_delta(dx, x, 1e-8, 1e-8)
        fn = numx.sqrt(numx.sum(f * f))
        if status == errno.GSL_SUCCESS:
            print("# Convereged :")
        if status == errno.GSL_SUCCESS:
            break
        print("  %5d % .7f % .7f  % .7f  % .7f" % (iter, x[0], x[1], x[2], fn))
    else:
        raise ValueError("Number of Iterations exceeded!")

    J = solver.getJ()
    covar = multifit_nlin.covar(solver.getJ(), 0.0)
    print("# A      = % .5f +/- % .5f" % (x[0], covar[0, 0]))
    print("# lambda = % .5f +/- % .5f" % (x[1], covar[1, 1]))
    print("# b      = % .5f +/- % .5f" % (x[2], covar[2, 2]))
Exemple #33
0
def run():
    N = 1024
    x = numx.arange(N) * (numx.pi * 2 / N)
    y = numx.sin(x)


    b = bspline(10, nbreak)
    b.knots_uniform(x[0], x[-1])
    X = numx.zeros((N, ncoeffs))
    X = b.eval_vector(x)
    c, cov, chisq = multifit.linear(X, y)


    res_x = x[::N/64]
    X = b.eval_vector(res_x)
    res_y, res_y_err = multifit.linear_est_matrix(X, c, cov)

    pylab.plot(x,y, '-')
    pylab.errorbar(res_x, res_y, fmt='g-', xerr=res_y_err)    
Exemple #34
0
def siman_exp():
    prepare_distance_matrix()

    # set up a trivial initial route */
    print("# initial order of cities:\n")
    for city in cities:
        print city

    #print " # distance matrix is:"
    #print_distance_matrix();

    mytsp = Tsp()
    mytsp.SetRoute(numx.arange(n_cities))
    mytsp.SetNCities(n_cities)
    result = siman.solve(rng.rng(), mytsp)
    route = result.GetRoute()
    print("# final order of cities:\n")
    for i in route:
        print cities[i]
Exemple #35
0
def run():
    r = rng.rng()

    # slope
    a = 1.45
    # intercept
    b = 3.88

    # Generate the data
    n = 20
    i = numx.arange(n - 3)
    dx = 10.0 / (n - 1.0)
    e = r.uniform(n)
    x = -5.0 + i * dx
    y = a * x + b

    #outliers
    xo = numx.array([4.1, 3.5, 4.7])
    yo = numx.array([-6.0, -6.7, -8.3])

    x = numx.concatenate((x, xo))
    y = numx.concatenate((y, yo))

    X = numx.array([x * 0 + 1, x]).transpose()
    ws = fr.workspace(*((fr.ols, ) + X.shape))
    c_ols, cov_ols = ws.fit(X, y)
    ws = fr.workspace(*((fr.bisquare, ) + X.shape))
    c, cov = ws.fit(X, y)

    y_rob = numx.zeros(n, numx.float_)
    y_ols = numx.zeros(n, numx.float_)

    yerr_rob = numx.zeros(n, numx.float_)
    yerr_ols = numx.zeros(n, numx.float_)

    pygsl.set_debug_level(0)
    fr.est(X[0, :], c, cov)
    y_rob, yerr_rob = fr.est_vector(X, c, cov)
    pygsl.set_debug_level(0)
    y_ols, yerr_ols = fr.est_vector(X, c_ols, cov_ols)

    return x, y, (y_rob, yerr_rob), (y_ols, yerr_ols)
Exemple #36
0
def siman_exp():
    prepare_distance_matrix()

    # set up a trivial initial route */
    print("# initial order of cities:\n")
    for city in cities:
        print city


    #print " # distance matrix is:"
    #print_distance_matrix();

    mytsp = Tsp()
    mytsp.SetRoute(numx.arange(n_cities))
    mytsp.SetNCities(n_cities)
    result = siman.solve(rng.rng(), mytsp)
    route  = result.GetRoute()
    print("# final order of cities:\n")
    for i in route:
        print cities[i]
Exemple #37
0
def run():
    N = 1024
    x = numx.arange(N) * (numx.pi * 2 / N)
    y = numx.sin(x)

    b = bspline(4, nbreak)
    k = b.get_internal_knots()
    pygsl.set_debug_level(10)
    b.knots(k)
    X = b.eval_vector(x)
    c, cov, chisq = multifit.linear(X, y)

    b.set_coefficients_and_covariance_matrix(c, cov)

    res_x = x[::N / 64]
    res_y, res_y_err = b.eval_dep_yerr_vector(res_x)
    #res_y = b.eval_dep_vector(res_x)

    print(res_y)
    pylab.plot(x, y, '-')
    pylab.errorbar(res_x, res_y, fmt='g-', xerr=res_y_err)
Exemple #38
0
def run():
    N = 1024
    x = numx.arange(N) * (numx.pi * 2 / N)
    y = numx.sin(x)

    b = bspline(4, nbreak)
    k = b.get_internal_knots()
    pygsl.set_debug_level(10)
    b.knots(k)
    X = b.eval_vector(x)
    c, cov, chisq = multifit.linear(X, y)

    b.set_coefficients_and_covariance_matrix(c, cov)

    res_x = x[:: N / 64]
    res_y, res_y_err = b.eval_dep_yerr_vector(res_x)
    # res_y = b.eval_dep_vector(res_x)

    print res_y
    pylab.plot(x, y, "-")
    pylab.errorbar(res_x, res_y, fmt="g-", xerr=res_y_err)
Exemple #39
0
def run():
    r = rng.rng()
    bw = bspline(4, nbreak)

    # Data to be fitted
    x = 15. / (N - 1) * numx.arange(N)
    y = numx.cos(x) * numx.exp(0.1 * x)
    sigma = .1
    w = 1.0 / sigma**2 * numx.ones(N)
    dy = r.gaussian(sigma, N)
    y = y + dy

    # use uniform breakpoints on [0, 15]
    bw.knots_uniform(0.0, 15.0)

    X = numx.zeros((N, ncoeffs))
    for i in range(N):
        B = bw.eval(x[i])
        X[i, :] = B

    # do the fit
    c, cov, chisq = multifit.wlinear(X, w, y,
                                     multifit.linear_workspace(N, ncoeffs))

    # output the smoothed curve
    res_y = []
    res_y_err = []
    for i in range(N):
        B = bw.eval(x[i])
        yi, yi_err = multifit.linear_est(B, c, cov)
        res_y.append(yi)
        res_y_err.append(yi_err)
        #print yi, yerr
    res_y = numx.array(res_y)
    res_y_err = numx.array(res_y_err)
    return (
        x,
        y,
    ), (x, res_y), res_y_err
Exemple #40
0
def run():
    r = rng.rng()
    bw = bspline(4, nbreak)


    # Data to be fitted
    x = 15. / (N-1) * numx.arange(N)
    y = numx.cos(x) * numx.exp(0.1 * x)    
    sigma = .1
    w = 1.0 / sigma**2 * numx.ones(N) 
    dy = r.gaussian(sigma, N)
    y  = y + dy

    # use uniform breakpoints on [0, 15] 
    bw.knots_uniform(0.0, 15.0)

    X = numx.zeros((N, ncoeffs))
    for i in range(N):
        B = bw.eval(x[i])
        X[i,:] = B
        
    # do the fit
    c, cov, chisq = multifit.wlinear(X, w, y, multifit.linear_workspace(N, ncoeffs))

    # output the smoothed curve
    res_y = []
    res_y_err = []
    for i in range(N):
        B = bw.eval(x[i])
        yi, yi_err = multifit.linear_est(B, c, cov)
        res_y.append(yi)
        res_y_err.append(yi_err)
        #print yi, yerr
    res_y = numx.array(res_y)
    res_y_err = numx.array(res_y_err)    
    return (x, y,), (x, res_y),  res_y_err
Exemple #41
0
def real_example_simple1():
    n = 32
    data = numx.cos(1*(numx.arange(n) * (2 * numx.pi / n))).astype(numx.Float32)
    print data
    result =  fft.real_transform_float(data)
    print result
Exemple #42
0
def polydd():
    xa = numx.arange(100) / 100.0 * 2. * numx.pi
    ya = numx.sin(xa)
    dd = poly.poly_dd(xa, ya)
    dd.eval(0)        
    c = dd.taylor(0.0)
Exemple #43
0
import pygsl

def run(array):
    # Initalise the wavelet and the workspace
    w = wavelet.daubechies(4)
    ws = wavelet.workspace(len(array))
    
    # Transform forward
    result = w.transform_forward(array, ws)

    # Select the largest 20 coefficients
    abscoeff = numx.absolute(result)
    indices  = numx.argsort(abscoeff) # ascending order

    tmp = numx.zeros(result.shape, numx.float_)
    for i in indices[-20:]:
        tmp[i] = result[i] # Set all others to zero

    # And back
    result2 = w.transform_inverse(tmp, ws)

    #print result2
    #print result2 - array
    
if __name__ == '__main__':
    a = numx.arange(256)
    b = numx.sin(a*(2*numx.pi / 16.))
    #b = a * 0.0
    run(b)
Exemple #44
0
 def SetNCities(self, n_cities):
     self.n_cities = n_cities
     self.r_cities = numx.arange(n_cities)
Exemple #45
0

def run(array):
    # Initalise the wavelet and the workspace
    w = wavelet.daubechies(4)
    ws = wavelet.workspace(len(array))

    # Transform forward
    result = w.transform_forward(array, ws)

    # Select the largest 20 coefficients
    abscoeff = numx.absolute(result)
    indices = numx.argsort(abscoeff)  # ascending order

    tmp = numx.zeros(result.shape, numx.float_)
    for i in indices[-20:]:
        tmp[i] = result[i]  # Set all others to zero

    # And back
    result2 = w.transform_inverse(tmp, ws)

    #print result2
    #print result2 - array


if __name__ == '__main__':
    a = numx.arange(256)
    b = numx.sin(a * (2 * numx.pi / 16.))
    #b = a * 0.0
    run(b)
Exemple #46
0
def polydd():
    xa = numx.arange(100) / 100.0 * 2. * numx.pi
    ya = numx.sin(xa)
    dd = poly.poly_dd(xa, ya)
    dd.eval(0)
    c = dd.taylor(0.0)
Exemple #47
0
#!/usr/bin/env python
from pygsl import hankel
from pygsl import _numobj as numx

a = numx.arange(1000)

h = hankel.DiscreteHankelTransform(100)
h.init(10,10)
h.apply(a[:100])
#print "Finished!"
Exemple #48
0
 def setUp(self):
     xa = Numeric.arange(100) / 100.0 * 2. * Numeric.pi
     ya = Numeric.sin(xa)
     self.dd = poly.poly_dd(xa, ya)
Exemple #49
0
 def testGet(self):
     tmp = self.qrng()
     self.__testreturn(tmp, 1)
     for i in (Numeric.arange(10) + 1):
         tmp = self.qrng(i)
         self.__testreturn(tmp, i)
Exemple #50
0
 def setUp(self):
     xa = Numeric.arange(100) / 100.0 * 2. * Numeric.pi
     ya = Numeric.sin(xa)
     self.dd = poly.poly_dd(xa, ya)
Exemple #51
0
 def testSin(self):        
     x = numx.arange(self.n) * (2 * numx.pi / self.n)
     for i in range(1,self.n/2):
        self.SinOne(x,i)
Exemple #52
0
 def setUp(self):
     self.a = 0.0
     self.b = 100
     self.x = Numeric.arange(100)
     self.y = self.a + self.b * self.x
     self.w = Numeric.ones(100) * 1000000
Exemple #53
0
The output of this script is designed to be displayed by the GNU plotutils
'graph' program. e.g

     $ python ./interpolation.py > interp.dat
     $ graph -T ps < interp.dat > interp.ps

The result shows a smooth interpolation of the original points.  The
interpolation method can changed simply by varing spline. .

"""
from pygsl import spline, errors
from pygsl import _numobj as numx

print "#m=0,S=2"
n = 10
a = numx.arange(n)
x = a + 0.5 * numx.sin(a)
y = a + numx.cos(a**2)
for i in a:
    print x[i], y[i]

print "#m=1,S=0"
# Generation of the spline object ...  Acceleration is handled internally
myspline = spline.cspline(n)
myspline = spline.linear(n)
acc = myspline._object.get_accel_object()
#print "Accel object", dir(acc)
# initalise with the vector of the independent and the dependent
myspline.init(x,y)
x1 = numx.arange(n * 20) / 20.
for xi in x1:
Exemple #54
0
 def testSin(self):
     x = numx.arange(self.n) * (2 * numx.pi / self.n)
     for i in range(1, self.n / 2):
         self.SinOne(x, i)