def run_ell(file_in, file_tab, file_dat, mag, **ellipse_par):    

    # prochaine etape : mettre en argument sous une certaine forme les parametres associes epar des taches 1) strict minimum sous forme de dico fixe 2) tout pouvoir changer sous forme de dictionnaire et tester les cles ...

    # import iraf packages
 
    iraf.stsdas()
    iraf.analysis()
    iraf.isophote()

    p = Popen("ds9", shell = True)
    time.sleep(5)

    iraf.display(file_in, 1)  

    set_iraf_param(ellipse_par)

    # iraf.lpar(iraf.geompar)

    iraf.ellipse(file_in, file_tab, mag0 = str(mag), verbose = "no")
    
    # iraf.lpar(iraf.isoimap)
    
    iraf.isoimap(file_in, file_tab)

    iraf.tproject(file_tab, "temp.fits", "SMA,INTENS,INT_ERR,ELLIP,ELLIP_ERR, PA, PA_ERR, X0, Y0, TFLUX_C, TMAG_E,NPIX_E")
    
    iraf.tprint("temp.fits", pwidth = 200, Stdout = file_dat)
    
    iraf.imdel("temp.fits")

    p.kill()
Exemple #2
0
def run_elli_full(cutimage, output, xcntr, ycntr, eg, pa, sma,
                  sky):  #,radd,background):
    """The function responsible for fit ellipse"""
    EllGal = c.outdir + 'GalEllFit.fits'
    fEl = pyfits.open(os.path.join(c.datadir, cutimage))
    GaLaXy = fEl[0].data
    fEl.close()
    GaLaXy = GaLaXy - sky
    hdu = pyfits.PrimaryHDU(GaLaXy.astype(n.float32))
    hdu.writeto(EllGal)
    try:
        iraf.stsdas(_doprint=0)
        iraf.tables(_doprint=0)
        iraf.stsdas.analysis(_doprint=0)
        iraf.stsdas.analysis.isophote(_doprint=0)
    except:
        iraf.stsdas()
        iraf.tables()
        iraf.stsdas.analysis()
        iraf.stsdas.analysis.isophote()
    image_exist = 1
    iraf.unlearn('geompar')
    iraf.geompar.x0 = xcntr
    iraf.geompar.y0 = ycntr
    iraf.geompar.ellip0 = eg
    iraf.geompar.pa0 = pa
    iraf.geompar.sma0 = 6.0
    iraf.geompar.minsma = 0.1
    iraf.geompar.maxsma = sma * 5.0
    iraf.geompar.step = 0.1
    iraf.geompar.recente = "no"
    iraf.geompar.xylearn = "no"
    iraf.unlearn('controlpar')
    iraf.controlpar.conver = 0.05
    iraf.controlpar.minit = 10
    iraf.controlpar.maxit = 50
    iraf.controlpar.hcenter = "no"
    iraf.controlpar.hellip = "no"
    iraf.controlpar.hpa = "no"
    iraf.controlpar.wander = "INDEF"
    iraf.controlpar.maxgerr = 0.5
    iraf.controlpar.olthres = 1
    iraf.controlpar.soft = "no"
    iraf.samplepar.integrm = "bi-linear"
    iraf.samplepar.usclip = 3
    iraf.samplepar.lsclip = 3
    iraf.samplepar.nclip = 0
    iraf.samplepar.fflag = 0.5
    iraf.unlearn('ellipse')
    iraf.ellipse("".join(EllGal), output="test", interac="no",Stdout="ellip", \
                 Stderr="err")
    iraf.tprint("test.tab", prparam="no", prdata="yes", pwidth=80, plength=0, \
                showrow="no", orig_row="no", showhdr="no", showunits="no", \
                columns="SMA, INTENS, INT_ERR, ELLIP, ELLIP_ERR, PA, PA_ERR, \
                MAG, MAG_LERR, MAG_UERR, TMAG_E, TMAG_C, A3, \
		A3_ERR, B3, B3_ERR, A4, A4_ERR, B4_ERR"                                         , rows="-", \
                option="plain", align="yes", sp_col="", lgroup=0, Stdout=output)
    for myfile in ['ellip', 'err', 'test.tab', EllGal]:
        if os.access(c.outdir + myfile, os.F_OK):
            os.remove(c.outdir + myfile)
Exemple #3
0
def run_elli(input, xcntr, ycntr, eg, pa, sma):#,radd,background):
	
    iraf.stsdas(_doprint=0)
    iraf.tables(_doprint=0)
    iraf.stsdas.analysis(_doprint=0)
    iraf.stsdas.analysis.isophote(_doprint=0)
    image_exist = 1
    if(str(input)[:3] == 'ima'):
        output = 'elli_' + input[6:-4] + 'txt' 
    if(str(input)[:3] == 'out'):
        output = 'out_elli_' + str(input)[4:-7] + 'txt'
	#unlearn geompar	controlpar samplepar magpar ellipse
    iraf.geompar(x0=xcntr, y0=ycntr, ellip0=eg, pa0=pa, sma0=10, minsma=0.1, \
                 maxsma=sma*5.0, step=0.1,recente="yes")
    iraf.controlpar(conver=0.05, minit=10, maxit=50, hcenter="no", hellip="no",\
                    hpa="no", wander="", maxgerr=0.5, olthres=1,soft="no")
    iraf.samplepar(integrm="bi-linear", usclip=3,lsclip=3, nclip=0, fflag=0.5)
    iraf.magpar(mag0=0, refer=1, zerolev=0)
    iraf.ellipse("".join(input), output="test", interac="no",Stdout="ellip", \
                 Stderr="err")
    iraf.tprint("test.tab", prparam="no", prdata="yes", pwidth=80, plength=0, \
                showrow="no", orig_row="no", showhdr="no", showunits="no", \
                columns="SMA, INTENS, INT_ERR, MAG, MAG_LERR, MAG_UERR",\
                rows="-", \
                option="plain", align="yes", sp_col="", lgroup=0, Stdout=output)
    for myfile in ['ellip','err','test.tab']:
        if os.access(myfile,os.F_OK):
            os.remove(myfile)
Exemple #4
0
def run_elli_full(input, output, xcntr, ycntr, eg, pa, sma, sky):#,radd,background):
    """The function responsible for fit ellipse"""
    EllGal = 'GalEllFit.fits'
    fEl = pyfits.open(input)
    GaLaXy = fEl[0].data
    fEl.close()
    GaLaXy = GaLaXy - sky
    hdu = pyfits.PrimaryHDU(GaLaXy.astype(n.float32))
    hdu.writeto(EllGal)
    try:
        iraf.stsdas(_doprint=0)
        iraf.tables(_doprint=0)
        iraf.stsdas.analysis(_doprint=0)
        iraf.stsdas.analysis.isophote(_doprint=0)
    except:
        iraf.stsdas()
	iraf.tables()
	iraf.stsdas.analysis()
	iraf.stsdas.analysis.isophote()
    image_exist = 1
    iraf.unlearn('geompar')
    iraf.geompar.x0=xcntr
    iraf.geompar.y0=ycntr
    iraf.geompar.ellip0=eg
    iraf.geompar.pa0=pa
    iraf.geompar.sma0=6.0
    iraf.geompar.minsma=0.1
    iraf.geompar.maxsma=sma*5.0
    iraf.geompar.step=0.1
    iraf.geompar.recente="no"
    iraf.geompar.xylearn="no"
    iraf.unlearn('controlpar')
    iraf.controlpar.conver=0.05
    iraf.controlpar.minit=10
    iraf.controlpar.maxit=50
    iraf.controlpar.hcenter="no"
    iraf.controlpar.hellip="no"
    iraf.controlpar.hpa="no"
    iraf.controlpar.wander="INDEF"
    iraf.controlpar.maxgerr=0.5
    iraf.controlpar.olthres=1
    iraf.controlpar.soft="no"
    iraf.samplepar.integrm="bi-linear"
    iraf.samplepar.usclip=3
    iraf.samplepar.lsclip=3
    iraf.samplepar.nclip=0
    iraf.samplepar.fflag=0.5
    iraf.unlearn('ellipse')
    iraf.ellipse("".join(EllGal), output="test", interac="no",Stdout="ellip", \
                 Stderr="err")
    iraf.tprint("test.tab", prparam="no", prdata="yes", pwidth=80, plength=0, \
                showrow="no", orig_row="no", showhdr="no", showunits="no", \
                columns="SMA, INTENS, INT_ERR, ELLIP, ELLIP_ERR, PA, PA_ERR, \
                MAG, MAG_LERR, MAG_UERR, TMAG_E, TMAG_C, A3, \
		A3_ERR, B3, B3_ERR, A4, A4_ERR, B4_ERR", rows="-", \
                option="plain", align="yes", sp_col="", lgroup=0, Stdout=output)
    for myfile in ['ellip','err','test.tab', EllGal]:
        if os.access(myfile,os.F_OK):
            os.remove(myfile)
Exemple #5
0
def run_elli(input, output, xcntr, ycntr, eg, pa, sma):#,radd,background):
    """The function resposible for fit ellipse"""
    iraf.stsdas(_doprint=0)
    iraf.tables(_doprint=0)
    iraf.stsdas.analysis(_doprint=0)
    iraf.stsdas.analysis.isophote(_doprint=0)
    image_exist = 1
#    if(str(input)[:3] == 'ima'):
#        output = 'elli_' + input[6:-4] + 'txt' 
#    if(str(input)[:3] == 'out'):
#        output = 'out_elli_' + str(input)[4:-7] + 'txt'
#    else:
#        output = 'elli_' + input[:-5] + '.txt'
	#unlearn geompar	controlpar samplepar magpar ellipse
    iraf.unlearn('geompar')
    iraf.geompar.x0=xcntr
    iraf.geompar.y0=ycntr
    iraf.geompar.ellip0=eg
    iraf.geompar.pa0=pa
    iraf.geompar.sma0=10
    iraf.geompar.minsma=0.1
    iraf.geompar.maxsma=sma*5.0
    iraf.geompar.step=0.1
    iraf.geompar.recente="no"
    iraf.geompar.xylearn="no"
    iraf.unlearn('controlpar')
    iraf.controlpar.conver=0.05
    iraf.controlpar.minit=10
    iraf.controlpar.maxit=50
    iraf.controlpar.hcenter="no"
    iraf.controlpar.hellip="no"
    iraf.controlpar.hpa="no"
    iraf.controlpar.wander="INDEF"
    iraf.controlpar.maxgerr=0.5
    iraf.controlpar.olthres=1
    iraf.controlpar.soft="no"
    iraf.samplepar.integrm="bi-linear"
    iraf.samplepar.usclip=3
    iraf.samplepar.lsclip=3
    iraf.samplepar.nclip=0
    iraf.samplepar.fflag=0.5
    iraf.magpar.mag0=c.mag_zero
    iraf.magpar.refer=1
    iraf.magpar.zerolev=0
    iraf.ellipse("".join(input), output="test", interac="no",Stdout="ellip", \
                 Stderr="err")
    iraf.tprint("test.tab", prparam="no", prdata="yes", pwidth=80, plength=0, \
                showrow="no", orig_row="no", showhdr="no", showunits="no", \
                columns="SMA, INTENS, INT_ERR, MAG, MAG_LERR, MAG_UERR, \
                TFLUX_E", rows="-", \
                option="plain", align="yes", sp_col="", lgroup=0, Stdout=output)
    for myfile in ['ellip','err','test.tab']:
        if os.access(myfile,os.F_OK):
            os.remove(myfile)
Exemple #6
0
def run(args):
    """Generate the residual image using Ellipse run."""
    """Call the STSDAS.ANALYSIS.ISOPHOTE package"""
    if args.isophote is None:
        if args.verbose:
            print '\n' + SEP
            print "##       Call STSDAS.ANALYSIS.ISOPHOTE() "
            print SEP
        iraf.stsdas()
        iraf.analysis()
        iraf.isophote()
        iraf.ttools()
def run(args):
    """Generate the residual image using Ellipse run."""
    """Call the STSDAS.ANALYSIS.ISOPHOTE package"""
    if args.isophote is None:
        if args.verbose:
            print '\n' + SEP
            print "##       Call STSDAS.ANALYSIS.ISOPHOTE() "
            print SEP
        iraf.stsdas()
        iraf.analysis()
        iraf.isophote()
        iraf.ttools()
Exemple #8
0
def _iraf_pset_init():
    """Initialize common IRAF tasks for pset tests
    """
    if not HAS_IRAF:
        return

    # imports & package loading
    iraf.stsdas(_doprint=0)
    iraf.imgtools(_doprint=0)
    iraf.mstools(_doprint=0)

    # reset PSET egstp's values
    _unlearn_egstp(iraf.egstp)
Exemple #9
0
def _iraf_dqbits_init(_data):
    """Initialize common IRAF tasks for dqbits tests
    """
    if not HAS_IRAF:
        return

    # imports & package loading
    iraf.stsdas(_doprint=0)
    iraf.imgtools(_doprint=0)
    iraf.artdata(_doprint=0)
    iraf.mstools(_doprint=0)

    # create two data files as input (dont care if appropriate to mscombine)
    iraf.imcopy('dev$pix', _data['dqbits']['input1'])
    iraf.imcopy('dev$pix', _data['dqbits']['input2'])
Exemple #10
0
    def __init__(self,
                 shortparlists,
                 parlists,
                 FitsDir,
                 logfile,
                 verbose=1,
                 clean_up=1,
                 skyKey='ALIGNSKY',
                 hdrGain=0,
                 crlower=None,
                 imNsci=1):
        self.modName = string.split(string.split(str(self))[0], '.')[0][1:]
        self.shortparlists = shortparlists
        self.parlists = parlists
        self.Fits = FitsDir
        self.verbose = verbose
        self.crmasks = {}  # cosmic ray masks names
        self.removeList = []
        self.clean_up = clean_up
        self.skyKey = skyKey
        self.hdrGain = hdrGain
        self.crlower = crlower
        if imNsci < 1:
            raise ValueError, 'Error: pyblot got imNsci = ' + imNsci
        self.imNsci = imNsci
        self.logfile = logfile
        print self.modName, 'version', __version__
        self.logfile.write('Instantiating ' + self.modName + ' version ' +
                           __version__)

        # make sure these packages are loaded
        iraf.stsdas()
        iraf.toolbox()
        iraf.imgtool()
        iraf.fourier()
        iraf.fitting()
        iraf.ttools()
        iraf.analysis()
        iraf.dither()
        # flush the cash! twice!
        iraf.flpr()
        iraf.flpr()
        iraf.reset(imtype='fits')  # seems to make deriv task a bit happier
        iraf.set(tmp='./')
Exemple #11
0
def define_lacosmic(path_to_lacos_im=''):
    """Moves to ``STSDAS`` package and defines ``LACOS_IM`` as an
    ``iraf`` task.

    Parameters
    -----------
    path_to_lacos_im : string
        Your path to ``lacos_im.cl``.
        If left blank, assume Current Working Directory.
        #By default, reads from lacos_setup

    Notes
    -----
    The IRAF way is
        
        task lacos_im = /path/lacos_im.cl
    """
    iraf.stsdas()
    iraf.task(lacos_im=path_to_lacos_im + 'lacos_im.cl')
Exemple #12
0
# Try iqpkg
try:
    import iqpkg
    import iqutils
except:
    print "No iqpkg, iqutils.  Can't run lmi_stats."

# Necessary packages
iraf.images()
iraf.immatch()
# iraf.imfilter()
iraf.noao()
iraf.imred()
iraf.ccdred()
iraf.stsdas()
iraf.hst_calib()
iraf.nicmos()
iraf.imutil()

yes = iraf.yes
no = iraf.no
INDEF = iraf.INDEF
globclob = yes
globver = yes

LMIFILTS = ["U", "B", "V", "R", "I", "SDSS-G", "SDSS-R", "SDSS-I", "SDSS-Z", "SDSS-U"]
LMIPIXSCALE = 0.240
ASTROMCMD = "/Users/scenko/python/astrometry/vlt_autoastrometry.py"
FDICT = {"SDSS-U": "UMAG", "SDSS-G": "GMAG", "SDSS-R": "RMAG", "SDSS-I": "IMAG", "SDSS-Z": "ZMAG"}
SEEDICT = {"SDSS-U": "co", "SDSS-G": "go", "SDSS-R": "ro", "SDSS-I": "bo", "SDSS-Z": "ko"}
Exemple #13
0
def imshiftcomb(inlist,
                outimg,
                fitgeom='shift',
                inpref='',
                objmask='none',
                combine='average',
                reject='none',
                fscale=False,
                fbase=100,
                fhead='F1',
                second=False,
                first_pref='sdfr',
                second_pref='sdf2r',
                indep=False,
                sigmap='none',
                expmap='none',
                whtmap='none',
                gain=5.6,
                ffpref=''):

    # check output image
    if os.access(outimg, os.R_OK):
        print >> sys.stderr, 'operation would overwrite existing image (%s)' % outimg
        return 1

    # check input image list
    inimg_arr = check_input(inlist, inpref)
    if isinstance(inimg_arr, int):
        return 1

    # check input image list
    if sigmap != 'none':
        ffimg_arr = check_input2(inlist, ffpref)
        if isinstance(ffimg_arr, int):
            return 1

    # check optional output image
    if sigmap != 'none':
        if os.access(sigmap, os.R_OK):
            print >> sys.stderr, 'operation would overwrite existing image (%s)' % sigmap
            return 1
    if expmap != 'none':
        if os.access(expmap, os.R_OK):
            print >> sys.stderr, 'operation would overwrite existing image (%s)' % expmap
            return 1

    if whtmap != 'none':
        if os.access(whtmap, os.R_OK):
            print >> sys.stderr, 'operation would overwrite existing image (%s)' % whtmap
            return 1

    # get array size
    im = pyfits.open(inimg_arr[0])
    nx = im[0].header['NAXIS1']
    ny = im[0].header['NAXIS2']
    im.close()

    # check geomap data
    dx = []
    dy = []
    gmp_arr = []
    gmp2_arr = []
    dbs_arr = []
    for i in range(len(inimg_arr)):
        fname, ext = os.path.splitext(inimg_arr[i])
        gmp = fname + '.gmp'
        gmp2 = fname + '.gmp2'
        dbs = fname + '.dbs'

        gmp_arr.append(gmp)
        gmp2_arr.append(gmp2)
        dbs_arr.append(dbs)

        if not os.access(gmp, os.R_OK):
            print >> sys.stderr, 'geomap file (%s) does not exist' % (gmp)
            return 1

        if os.access(dbs, os.R_OK):
            print >> sys.stderr, 'database file (%s) is already exist' % (dbs)
            return 1

        if os.access(gmp2, os.R_OK):
            print >> sys.stderr, 'modified geomap file (%s) is already exist' % (
                gmp2)
            return 1

        fgmp = open(gmp)
        nl = 1
        dx_ave = 0.0
        dy_ave = 0.0
        for line in fgmp:
            if not line.startswith('#'):
                param = line[:-1].split()
                if len(param) != 4:
                    print >> sys.stderr, 'Invalid format in line %d of %s: %s' % (
                        nl, gmp, line[:-1])
                    fgmp.close()
                    return 1
                else:
                    if isfloat(param[0]) == False or isfloat(
                            param[1]) == False or isfloat(
                                param[2]) == False or isfloat(
                                    param[3]) == False:
                        print >> sys.stderr, 'failed to decode line %d of %s: %s' % (
                            nl, gmp, line[:-1])
                        fgmp.close()
                        return 1
                    else:
                        dx_ave += float(param[0]) - float(param[2])
                        dy_ave += float(param[1]) - float(param[3])

                nl += 1
        #print inimg_arr[i],nl
        dx.append(dx_ave / (nl - 1))
        dy.append(dy_ave / (nl - 1))

    if len(inimg_arr) != len(dx):
        print >> sys.stderr, 'number of input images does not match with that of offsets'
        return 1

    #print 'debug'
    #print dx, max(dx), min(dx)
    #print dy, max(dy), min(dy)

    # check object mask
    if objmask.lower() == 'none':
        objmask = ''
    else:
        objmask_arr = check_inpref(objmask, inimg_arr)
        if isinstance(objmask_arr, int):
            return 1

    # independent run flag
    if indep:
        second = True

    # prepare for temporary file
    tmp = tempfile.NamedTemporaryFile(suffix='', prefix='', dir='/tmp')
    tmp_prefix = tmp.name
    tmp.close()

    # calculate image median for zero shift
    iraf.unlearn('imstat')
    iraf.unlearn('mimstat')
    bgmed = []
    for i in range(len(inimg_arr)):
        if objmask == '':
            ret = iraf.imstat(inimg_arr[i],
                              format='no',
                              fields='midpt',
                              nclip=50,
                              lsigma=3.,
                              usigma=3.,
                              Stdout=1)
        else:
            if not second:
                ret = iraf.mimstat(inimg_arr[i],
                                   imasks=objmask_arr[i] + '[pl]',
                                   format='no',
                                   fields='midpt',
                                   nclip=50,
                                   lsigma=3.,
                                   usigma=3.,
                                   Stdout=1)
            else:
                ret = iraf.mimstat(inimg_arr[i],
                                   imasks=objmask_arr[i],
                                   format='no',
                                   fields='midpt',
                                   nclip=50,
                                   lsigma=3.,
                                   usigma=3.,
                                   Stdout=1)
        if len(ret) == 1:
            bgmed.append(-1.0 * float(ret[0]))
        else:
            fout.close()
            remove_temp_all(tmp_prefix)
            print >> sys.stderr, 'failed to calculate median of the background in %s' % inimg_arr[
                i]
            return 1

    # get large array size and combined image size
    ret = get_large_region(nx, ny, dx, dy)
    if len(ret) != 6:
        print >> sys.stderr, 'failed to get large array size'
        return 1

    x_size = ret[0]
    y_size = ret[1]
    xcmin = ret[2]
    xcmax = ret[3]
    ycmin = ret[4]
    ycmax = ret[5]

    # calculate image region in the large format
    xmin = int((x_size - nx) / 2) + 1
    xmax = nx + int((x_size - nx) / 2)
    ymin = int((y_size - ny) / 2) + 1
    ymax = ny + int((y_size - ny) / 2)

    #print 'debug'
    #print x_size, y_size, xcmin, xcmax, ycmin, ycmax
    #print xmin, xmax, ymin, ymax

    # copy image to larger format and shift image #
    iraf.unlearn('geomap')
    iraf.unlearn('geotran')

    obj_list = tmp_prefix + '_obj.lst'
    if os.access(obj_list, os.R_OK):
        os.remove(obj_list)
    fobj = open(obj_list, 'w')

    # for exposure time weight
    expweight = tmp_prefix + '_exp.lst'
    if os.access(expweight, os.R_OK):
        os.remove(expweight)
    fexp = open(expweight, 'w')

    # for zero offset
    zeroshift = tmp_prefix + '_zeroshift.dat'
    if os.access(zeroshift, os.R_OK):
        os.remove(zeroshift)
    fzero = open(zeroshift, 'w')

    # save the original fit geometry
    fitgeom_org = fitgeom

    # preparing for the sigma list and mask
    if sigmap == 'none':
        tmp_rejmask = ''
    else:
        tmp_rejmask = tmp_prefix + 'rejmask.fits'
        if os.access(tmp_rejmask, os.R_OK):
            os.remove(tmp_rejmask)
        inverse_var_list = tmp_prefix + '_var.lst'
        if os.access(inverse_var_list, os.R_OK):
            os.remove(inverse_var_list)
        finverse_var = open(inverse_var_list, 'w')

    for i in range(len(inimg_arr)):

        # restore the original fit geometry
        fitgeom = fitgeom_org

        # geometry transformation
        fgmp = open(gmp_arr[i])
        fgmp2 = open(gmp2_arr[i], 'w')
        nobj = 0
        for line in fgmp:
            if not line.startswith('#'):
                param = line[:-1].split()
                xref = float(param[0]) + xmin - 1
                yref = float(param[1]) + ymin - 1
                xin = float(param[2]) + xmin - 1
                yin = float(param[3]) + ymin - 1
                fgmp2.write('%.3f %.3f %.3f %.3f\n' % (xref, yref, xin, yin))
                nobj += 1
        fgmp.close()
        fgmp2.close()

        # check number of objects
        if i == 0 and nobj == 1 and fitgeom == 'rotate':
            print 'Warning: Number of reference objects is not enought to measure the rotation'
            print 'Warning: Only shift applied for all images'
            fitgeom = 'shift'
            fitgeom_org = 'shift'

        if nobj == 1 and fitgeom == 'rotate':
            print 'Warning: Number of objects in %s is not enought to measure the rotation' % (
                inimg_arr[i])
            print 'Warning: Only shift applied for %s' % (inimg_arr[i])
            fitgeom = 'shift'

        # mapping geometry
        iraf.geomap(gmp2_arr[i],
                    dbs_arr[i],
                    1,
                    x_size,
                    1,
                    y_size,
                    fitgeom=fitgeom,
                    interac='no')

        # mask frame
        msk = np.ones((y_size, x_size))
        msk[ymin - 1:ymax, xmin - 1:xmax] = 0
        hdu = pyfits.PrimaryHDU(msk)
        msk_img = pyfits.HDUList([hdu])
        msk_fits = tmp_prefix + 'mask' + os.path.basename(inimg_arr[i])
        msktr_fits = tmp_prefix + 'masktr' + os.path.basename(inimg_arr[i])
        if os.access(msk_fits, os.R_OK):
            os.remove(msk_fits)
        if os.access(msktr_fits, os.R_OK):
            os.remove(msktr_fits)
        msk_img.writeto(msk_fits)
        msk_img.close()

        # transform mask geometry
        iraf.geotran(msk_fits,
                     msktr_fits,
                     dbs_arr[i],
                     gmp2_arr[i],
                     geometr='linear',
                     boundar='constant',
                     constant=1)
        os.remove(msk_fits)
        convert_maskfits_int(msktr_fits, msktr_fits)

        # load original frame
        img = pyfits.open(inimg_arr[i])
        if sigmap != 'none':
            ffimg = pyfits.open(ffimg_arr[i])

        # for exposure time weight
        try:
            t = float(img[0].header['EXP1TIME'])
            coadd = float(img[0].header['COADDS'])
            expt = t * coadd
        except KeyError:
            print >> sys.stderr, 'can not read exposure time from the header of %s' % inimg_arr[
                i]
            img.close()
            return 1

        # for flux scaling and weight
        if fscale:
            try:
                flux = float(img[0].header[fhead])
            except KeyError:
                print >> sys.stderr, 'can not read flux keyword (%s) from the header of %s' % (
                    fhead, inimg_arr[i])
                img.close()
                return 1

            flux_scale = fbase / flux
            weight = expt * (1.0 / flux_scale)**2

        else:
            flux_scale = 1.0
            weight = expt

        fzero.write('%f\n' % (bgmed[i] * flux_scale))
        fexp.write('%f\n' % weight)

        # object frame
        obj = np.zeros((y_size, x_size))
        obj[ymin - 1:ymax, xmin - 1:xmax] = img[0].data * flux_scale
        hdu = pyfits.PrimaryHDU(obj)
        obj_img = pyfits.HDUList([hdu])
        obj_img[0].header = img[0].header
        obj_img[0].header['bpm'] = msktr_fits
        obj_img[0].header['expmap'] = expt
        obj_fits = tmp_prefix + 'obj' + os.path.basename(inimg_arr[i])
        objtr_fits = tmp_prefix + 'objtr' + os.path.basename(inimg_arr[i])
        if os.access(obj_fits, os.R_OK):
            os.remove(obj_fits)
        obj_img.writeto(obj_fits)
        obj_img.close()
        iraf.geotran(obj_fits,
                     objtr_fits,
                     dbs_arr[i],
                     gmp2_arr[i],
                     geometr='linear',
                     boundar='constant',
                     constant=0)
        fobj.write('%s\n' % objtr_fits)
        img.close()

        if sigmap != 'none':
            inverse_var = np.zeros((y_size, x_size))
            inverse_var[ymin - 1:ymax, xmin -
                        1:xmax] = (np.sqrt(ffimg[0].data / (gain * expt)) *
                                   flux_scale)**-2
            hdu_var = pyfits.PrimaryHDU(inverse_var)
            inverse_var_img = pyfits.HDUList([hdu_var])
            inverse_var_img[0].header = img[0].header
            inverse_var_img[0].header['bpm2'] = '%s[*,*,%d]' % (tmp_rejmask,
                                                                i + 1)
            inverse_var_fits = tmp_prefix + 'var' + os.path.basename(
                inimg_arr[i])
            inverse_vartr_fits = tmp_prefix + 'vartr' + os.path.basename(
                inimg_arr[i])
            if os.access(inverse_var_fits, os.R_OK):
                os.remove(inverse_var_fits)
            if os.access(inverse_vartr_fits, os.R_OK):
                os.remove(inverse_vartr_fits)
            inverse_var_img.writeto(inverse_var_fits)
            inverse_var_img.close()
            iraf.geotran(inverse_var_fits,
                         inverse_vartr_fits,
                         dbs_arr[i],
                         gmp2_arr[i],
                         geometr='linear',
                         boundar='constant',
                         constant=0)
            finverse_var.write('%s\n' % inverse_vartr_fits)
            ffimg.close()

    # close file handlers
    fobj.close()
    fexp.close()
    fzero.close()
    if sigmap != 'none':
        finverse_var.close()

    # combine image
    comb_img = tmp_prefix + '_comb.fits'
    if os.access(comb_img, os.R_OK):
        os.remove(comb_img)
    if expmap == 'none':
        tmp_expmap = ''
    else:
        tmp_expmap = tmp_prefix + 'expmap.fits'
        if os.access(tmp_expmap, os.R_OK):
            os.remove(tmp_expmap)

    iraf.unlearn('imcombine')
    try:
        iraf.imcombine('@' + obj_list,
                       comb_img,
                       sigma='',
                       rejmask=tmp_rejmask,
                       expmasks=tmp_expmap,
                       combine=combine,
                       reject=reject,
                       masktype='!BPM',
                       maskvalue=0.0,
                       zero='@' + zeroshift,
                       weight='@' + expweight,
                       expname='EXPMAP')
    except:
        if os.access(comb_img, os.R_OK):
            os.remove(comb_img)
        if expmap != 'none':
            if os.access(tmp_expmap, os.R_OK):
                os.remove(tmp_expmap)
        iraf.imcombine('@' + obj_list,
                       comb_img,
                       sigma='',
                       rejmask='',
                       expmasks=tmp_expmap,
                       combine=combine,
                       reject=reject,
                       masktype='!BPM',
                       maskvalue=0.0,
                       zero='@' + zeroshift,
                       weight='@' + expweight,
                       expname='EXPMAP')

    if sigmap != 'none':
        tmp_inverse_var_sum = tmp_prefix + 'inverse_var.fits'
        if os.access(tmp_inverse_var_sum, os.R_OK):
            os.remove(tmp_inverse_var_sum)
        iraf.imcombine('@' + inverse_var_list,
                       tmp_inverse_var_sum,
                       combine='sum',
                       reject='none',
                       masktype='!BPM',
                       maskvalue=0.0)
        iraf.stsdas()
        tmp_sigma = tmp_prefix + 'sigma.fits'
        if os.access(tmp_sigma, os.R_OK):
            os.remove(tmp_sigma)
        iraf.imcalc(tmp_inverse_var_sum,
                    tmp_sigma,
                    'sqrt(1.0/im1)',
                    pixtype='double')

    # cut image
    iraf.unlearn('imcopy')
    cut_img = '%s[%d:%d,%d:%d]' % (comb_img, xcmin, xcmax, ycmin, ycmax)
    iraf.imcopy(cut_img, outimg)
    if expmap != 'none':
        cut_exp = '%s[%d:%d,%d:%d]' % (tmp_expmap, xcmin, xcmax, ycmin, ycmax)
        iraf.imcopy(cut_exp, expmap)
    if sigmap != 'none':
        cut_sigma = '%s[%d:%d,%d:%d]' % (tmp_sigma, xcmin, xcmax, ycmin, ycmax)
        iraf.imcopy(cut_sigma, sigmap)
        if whtmap != 'none':
            cut_wht = '%s[%d:%d,%d:%d]' % (tmp_inverse_var_sum, xcmin, xcmax,
                                           ycmin, ycmax)
            iraf.imcopy(cut_wht, whtmap)

    # delete temporary object files
    remove_temp_all(tmp_prefix + 'obj')
    os.remove(obj_list)
    os.remove(comb_img)

    # record relative offset between input images and combined image and rotation
    for i in range(len(inimg_arr)):
        im = pyfits.open(inimg_arr[i], mode='update')

        if second:

            if indep:

                # calculate offset
                dxc = xcmin - xmin - dx[i]
                dyc = ycmin - ymin - dy[i]

                # retrieve rotation
                rot = 0.0
                fdbs = open(dbs_arr[i])
                for line in fdbs:
                    param = line[:-1].split()
                    if param[0] == 'xrotation':
                        rot = float(param[1])

                if rot > 180.0:
                    rot = rot - 360.0

                im[0].header['dx'] = dx[i]
                im[0].header['dy'] = dy[i]
                im[0].header['dxc'] = dxc
                im[0].header['dyc'] = dyc
                im[0].header['rotation'] = rot

            else:
                # check number of objects in the geomap file
                nobj = 0
                fgmp = open(gmp_arr[0])
                for line in fgmp:
                    nobj += 1

                im1 = pyfits.open(inimg_arr[i].replace(second_pref,
                                                       first_pref),
                                  mode='update')
                for j in range(nobj):
                    key = 'XC%d' % (j + 1)
                    im[0].header[key] = float(im1[0].header[key])
                    key = 'YC%d' % (j + 1)
                    im[0].header[key] = float(im1[0].header[key])
                    key = 'PEAK%d' % (j + 1)
                    im[0].header[key] = float(im1[0].header[key])
                    key = 'FWHM%d' % (j + 1)
                    im[0].header[key] = float(im1[0].header[key])
                key = 'DX'
                im[0].header[key] = float(im1[0].header[key])
                key = 'DY'
                im[0].header[key] = float(im1[0].header[key])
                key = 'DXC'
                im[0].header[key] = float(im1[0].header[key])
                key = 'DYC'
                im[0].header[key] = float(im1[0].header[key])
                key = 'ROTATION'
                im[0].header[key] = float(im1[0].header[key])
                im1.close()

        else:

            # calculate offset
            dxc = xcmin - xmin - dx[i]
            dyc = ycmin - ymin - dy[i]

            # retrieve rotation
            rot = 0.0
            fdbs = open(dbs_arr[i])
            for line in fdbs:
                param = line[:-1].split()
                if param[0] == 'xrotation':
                    rot = float(param[1])

            if rot > 180.0:
                rot = rot - 360.0

            im[0].header['dx'] = dx[i]
            im[0].header['dy'] = dy[i]
            im[0].header['dxc'] = dxc
            im[0].header['dyc'] = dyc
            im[0].header['rotation'] = rot

        im.close()

    # remove all temporary files
    remove_temp_all(tmp_prefix)

    return 0
Exemple #14
0
def sigmap(inlist,
           sigmap,
           expmap='none',
           whtmap='none',
           inpref='',
           ffpref='',
           objmask='none',
           reject='sigclip',
           fscale=False,
           fbase=100,
           fhead='F1',
           gain=5.6):

    # check output image
    if os.access(sigmap, os.R_OK):
        print >> sys.stderr, 'operation would overwrite existing image (%s)' % sigmap
        return 1

    if os.access(expmap, os.R_OK):
        print >> sys.stderr, 'operation would overwrite existing image (%s)' % expmap
        return 1

    if os.access(whtmap, os.R_OK):
        print >> sys.stderr, 'operation would overwrite existing image (%s)' % whtmap
        return 1

    # check input image list
    inimg_arr = check_input(inlist, inpref)
    if isinstance(inimg_arr, int):
        return 1

    # check input image list
    ffimg_arr = check_input2(inlist, ffpref)
    if isinstance(ffimg_arr, int):
        return 1

    # get array size
    im = pyfits.open(inimg_arr[0])
    nx = im[0].header['NAXIS1']
    ny = im[0].header['NAXIS2']
    im.close()

    # check geomap data
    dx = []
    dy = []
    gmp_arr = []
    gmp2_arr = []
    dbs_arr = []
    for i in range(len(inimg_arr)):
        fname, ext = os.path.splitext(inimg_arr[i])
        gmp = fname + '.gmp'
        gmp2 = fname + '.gmp2'
        dbs = fname + '.dbs'

        gmp_arr.append(gmp)
        gmp2_arr.append(gmp2)
        dbs_arr.append(dbs)

        if not os.access(gmp, os.R_OK):
            print >> sys.stderr, 'geomap file (%s) does not exist' % (gmp)
            return 1

        if not os.access(dbs, os.R_OK):
            print >> sys.stderr, 'database file (%s) does not exist' % (dbs)
            return 1

        if not os.access(gmp2, os.R_OK):
            print >> sys.stderr, 'modified geomap file (%s) does not exist' % (
                gmp2)
            return 1

        fgmp = open(gmp)
        nl = 1
        dx_ave = 0.0
        dy_ave = 0.0
        for line in fgmp:
            if not line.startswith('#'):
                param = line[:-1].split()
                if len(param) != 4:
                    print >> sys.stderr, 'Invalid format in line %d of %s: %s' % (
                        nl, gmp, line[:-1])
                    fgmp.close()
                    return 1
                else:
                    if isfloat(param[0]) == False or isfloat(
                            param[1]) == False or isfloat(
                                param[2]) == False or isfloat(
                                    param[3]) == False:
                        print >> sys.stderr, 'failed to decode line %d of %s: %s' % (
                            nl, gmp, line[:-1])
                        fgmp.close()
                        return 1
                    else:
                        dx_ave += float(param[0]) - float(param[2])
                        dy_ave += float(param[1]) - float(param[3])

                nl += 1
        #print inimg_arr[i],nl
        dx.append(dx_ave / (nl - 1))
        dy.append(dy_ave / (nl - 1))

    if len(inimg_arr) != len(dx):
        print >> sys.stderr, 'number of input images does not match with that of offsets'
        return 1

    # check object mask
    if objmask.lower() == 'none':
        objmask = ''
    else:
        objmask_arr = check_inpref(objmask, inimg_arr)
        if isinstance(objmask_arr, int):
            return 1

    # prepare for temporary file
    tmp = tempfile.NamedTemporaryFile(suffix='', prefix='', dir='/tmp')
    tmp_prefix = tmp.name
    tmp.close()

    # get large array size and combined image size
    ret = get_large_region(nx, ny, dx, dy)
    if len(ret) != 6:
        print >> sys.stderr, 'failed to get large array size'
        return 1

    x_size = ret[0]
    y_size = ret[1]
    xcmin = ret[2]
    xcmax = ret[3]
    ycmin = ret[4]
    ycmax = ret[5]

    # calculate image region in the large format
    xmin = int((x_size - nx) / 2) + 1
    xmax = nx + int((x_size - nx) / 2)
    ymin = int((y_size - ny) / 2) + 1
    ymax = ny + int((y_size - ny) / 2)

    # copy image to larger format and shift image #
    iraf.unlearn('geomap')
    iraf.unlearn('geotran')

    # for exposure time weight and flux scaling
    expt_arr = []
    flux_scale_arr = []
    for i in range(len(inimg_arr)):

        # load original frame
        img = pyfits.open(inimg_arr[i])

        # for exposure time weight
        try:
            t = float(img[0].header['EXP1TIME'])
            coadd = float(img[0].header['COADDS'])
            expt_arr.append(t * coadd)
        except KeyError:
            print >> sys.stderr, 'can not read exposure time from the header of %s' % inimg_arr[
                i]
            img.close()
            return 1

        # for flux scaling and weight
        if fscale:
            try:
                flux = float(img[0].header[fhead])
            except KeyError:
                print >> sys.stderr, 'can not read flux keyword (%s) from the header of %s' % (
                    fhead, inimg_arr[i])
                img.close()
                return 1
            flux_scale_arr.append(fbase / flux)
        else:
            flux_scale_arr.append(1.0)
        img.close()

    # preparing weighted variance map for each image
    inverse_var_list = tmp_prefix + '_obj.lst'
    if os.access(inverse_var_list, os.R_OK):
        os.remove(inverse_var_list)
    finverse_var = open(inverse_var_list, 'w')

    for i in range(len(inimg_arr)):

        # mask frame
        msk = np.ones((y_size, x_size))
        msk[ymin - 1:ymax, xmin - 1:xmax] = 0
        hdu = pyfits.PrimaryHDU(msk)
        msk_img = pyfits.HDUList([hdu])
        msk_fits = tmp_prefix + 'mask' + os.path.basename(inimg_arr[i])
        msktr_fits = tmp_prefix + 'masktr' + os.path.basename(inimg_arr[i])
        if os.access(msk_fits, os.R_OK):
            os.remove(msk_fits)
        if os.access(msktr_fits, os.R_OK):
            os.remove(msktr_fits)
        msk_img.writeto(msk_fits)
        msk_img.close()

        # transform mask geometry
        iraf.geotran(msk_fits,
                     msktr_fits,
                     dbs_arr[i],
                     gmp2_arr[i],
                     geometr='linear',
                     boundar='constant',
                     constant=1)
        os.remove(msk_fits)
        convert_maskfits_int(msktr_fits, msktr_fits)

        # load original frame
        ffimg = pyfits.open(ffimg_arr[i])
        img = pyfits.open(inimg_arr[i])
        # object frame
        inverse_var = np.zeros((y_size, x_size))
        #print np.median(ffimg[0].data), ffimg_arr[i], gain, expt_arr[i], flux_scale_arr[i]
        #print np.median(np.sqrt(ffimg[0].data / (gain * expt_arr[i]))), flux_scale_arr[i]
        inverse_var[ymin - 1:ymax, xmin -
                    1:xmax] = (np.sqrt(ffimg[0].data / (gain * expt_arr[i])) *
                               flux_scale_arr[i])**-2
        hdu = pyfits.PrimaryHDU(inverse_var)
        inverse_var_img = pyfits.HDUList([hdu])
        inverse_var_img[0].header = img[0].header
        inverse_var_img[0].header['bpm'] = msktr_fits
        inverse_var_img[0].header.update('EXPTIME', expt_arr[i])
        #inverse_var_img[0].header.update('MASKSCAL', expt_arr[i])
        #inverse_var_img[0].header.update('MASKZERO', expt_arr[i])
        #print 'EXPT = %f' % (expt_arr[i])
        inverse_var_fits = tmp_prefix + 'var' + os.path.basename(inimg_arr[i])
        inverse_vartr_fits = tmp_prefix + 'vartr' + os.path.basename(
            inimg_arr[i])
        if os.access(inverse_var_fits, os.R_OK):
            os.remove(inverse_var_fits)
        if os.access(inverse_vartr_fits, os.R_OK):
            os.remove(inverse_vartr_fits)
        inverse_var_img.writeto(inverse_var_fits)
        inverse_var_img.close()
        iraf.geotran(inverse_var_fits,
                     inverse_vartr_fits,
                     dbs_arr[i],
                     gmp2_arr[i],
                     geometr='linear',
                     boundar='constant',
                     constant=0)
        finverse_var.write('%s\n' % inverse_vartr_fits)
        ffimg.close()

    # close file handlers
    finverse_var.close()

    # sum weighted variance images
    tmp_inverse_var_sum = tmp_prefix + 'inverse_var.fits'
    if os.access(tmp_inverse_var_sum, os.R_OK):
        os.remove(tmp_inverse_var_sum)
    tmp_sigma = tmp_prefix + 'sigma.fits'
    if os.access(tmp_sigma, os.R_OK):
        os.remove(tmp_sigma)
    tmp_exp = tmp_prefix + 'exp.fits'
    if os.access(tmp_exp, os.R_OK):
        os.remove(tmp_exp)

    if expmap != 'none':
        #iraf.hselect('@'+inverse_var_list,"$I,EXPTIME,MASKSCAL,MASKZERO","yes")
        iraf.imcombine('@' + inverse_var_list,
                       tmp_inverse_var_sum,
                       expmasks=tmp_exp,
                       combine='sum',
                       reject=reject,
                       masktype='!BPM',
                       maskvalue=0.0,
                       expname='EXPTIME')
    else:
        iraf.imcombine('@' + inverse_var_list,
                       tmp_inverse_var_sum,
                       combine='sum',
                       reject=reject,
                       masktype='!BPM',
                       maskvalue=0.0)

    # calculate sigma
    iraf.stsdas()
    iraf.imcalc(tmp_inverse_var_sum,
                tmp_sigma,
                'sqrt(1.0/im1)',
                pixtype='double')

    # cut image
    iraf.unlearn('imcopy')
    cut_sig = '%s[%d:%d,%d:%d]' % (tmp_sigma, xcmin, xcmax, ycmin, ycmax)
    iraf.imcopy(cut_sig, sigmap)
    if expmap != 'none':
        cut_exp = '%s[%d:%d,%d:%d]' % (tmp_exp, xcmin, xcmax, ycmin, ycmax)
        iraf.imcopy(cut_exp, expmap)

    # calc weight map
    if whtmap != 'none':
        cut_wht = '%s[%d:%d,%d:%d]' % (tmp_inverse_var_sum, xcmin, xcmax,
                                       ycmin, ycmax)
        iraf.imcopy(cut_wht, whtmap)

    # delete temporary object files
    os.remove(inverse_var_list)

    # remove all temporary files
    remove_temp_all(tmp_prefix)

    return 0
Exemple #15
0
def decon(r, f, idx, r1, r2, fiber_size, pixel_pitch):

#    x1 = np.where(r >= r1)[0][0]
#    x2 = np.where(r >= r2)[0][0]

    'in pixel units'
    radius = (fiber_size/pixel_pitch)/(2)#*(r2-r1)/(x2-x1))

#    idx = np.where(r >= peak)[0][0]
    idx += chi(r,f,radius, idx)

    size = f.shape[0]

    _ = np.seterr(invalid='ignore')
    
    theta = np.arccos(np.abs(r - r[idx])/radius)
    pn = radius*np.nan_to_num(np.sin(theta))

    zpn = pn[np.where(pn != 0)[0]]
#    zpn = pn
#    zpn = np.zeros(f.size)
#    zpn[0:f.size] = pn[np.where(pn != 0)[0][0]]

    ff = np.copy(f)/np.sum(f[np.where(f > 0)[0]])
    pnf = np.copy(zpn)/np.sum(zpn)


    if debug:
        fig1 = plt.figure(fignum)
        plt.clf()

        sp3 = fig1.add_subplot(223)

        sp3.plot(r*pixel_pitch,ff,label='Ring profile')
        sp3.plot(r*pixel_pitch,pn/pn.sum(),label='Ideal beam profile')
        sp3.legend()
        sp3.set_title("Area normalized data and ideal beam profile")
        sp3.set_xlabel("Radius (um)")
        sp3.set_ylabel("Normalized Counts")

    'so we can parallelize'
    temp_str = 'temp_'+str(datetime.now().microsecond)
    idl_name = temp_str+'_idl.fits'

    pyfits.PrimaryHDU(ff).writeto(temp_str+'_ff.fits')
    pyfits.PrimaryHDU(pnf).writeto(temp_str+'_pn.fits')

    stsdas()
    stsdas.analysis()
    stsdas.analysis.restore()
    stsdas.analysis.restore.lucy\
        (temp_str+'_ff.fits',temp_str+'_pn.fits',temp_str+'_frd.fits',1,0)
    
    command = "\"MWRFITS, MRDFITS('"+temp_str+"_frd.fits'),'"+idl_name+"'\""

    os.system('idl -quiet -e '+command)

    frd = pyfits.open(idl_name)[0].data

    global frd_sav
    frd_save = frd

    (peak, r1, r2) = find_peak(r,frd)

    os.system('rm ./'+temp_str+'*.fits')

    return ((r2 - r1),frd)
Exemple #16
0
#                                                                                       #		
#########################################################################################
'''

import os
from pyraf import iraf
from astropy.io import fits
from shutil import copy2
import rsstools as rt
import numpy as np

iraf.noao(_doprint=0)
iraf.twodspec(_doprint=0)
iraf.longslit(_doprint=0)
iraf.apextract(dispaxis='1')
iraf.stsdas(_doprint=0)
iraf.analysis(_doprint=0)
iraf.fitting(_doprint=0)


class arc(object):
    def __init__(self, name):
        self.name = name 
        self.noext = os.path.splitext(self.name)[0]
        self.idname = rt.makesetups(self.name,"arc")
        self.idfits = self.idname+'.fits'
        self.linelist = self.idname.split('_')[0].lower()+'.dat'
        self.header = self.read_header()
    def read_header(self):
        return fits.getheader(self.name)  
    def __str__(self):
Exemple #17
0
#!/usr/bin/env python

import numpy as np
import pyfits
from pyraf import iraf
iraf.stsdas()
import subtract_scattered_background as ssb
import rmscheck
import os, sys
import pylab as plt
from stats import gauss

"""
A pipeline that prepares the IRAC mosaics for use by TFIT. 
Assume the starting images to be the following:
- a drizzled IRAC mosaic image with pixel scale 0.6 arcsec/pixel, with the 
  same astrometry as the high-resolution HST mosaics, and has the unit of 
  MJy/sr
- an IRAC uncertainty image (*_unc.fits), in units of MJy/sr
- usually the cutout of the IRAC mosaic should cover a larger area than the HST
  mosaics, so that TFIT doesn't break down when there are high-resolution 
  templates near (or even beyond) the image border of the IRAC mosaic
"""
exptimes={'ch1':96.8, 'ch2':96.8, 'ch3':96.8, 'ch4':46.8}   # exposure time per AOR (used to convert cov map to exp map)
fluxconv = {'ch1':0.1253, 'ch2':0.1469}
subreg_default = {'bullet':(141,260,365,450)}
# the FLUXCONV factor in units of MJy/sr per DN/sec, for the warm mission only
# taken from the webpage 
# http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/warmfeatures/

def irac_pipeline(drz_img, unc_img, channel, rmsmode='unc', pixscale=0.6, gain=3.7,
Exemple #18
0
def ellipse(image, outname, verbose=False, **kwargs):
    """run ellipse task

    image : input image name
    outname : output filename
    
    Keywords:
    *geompar*
        x0, y0 -- required
        ellip0 : initial ellipticity (default=0.2)
        pa0 : initial PA in degrees ccw from +y (default=20)
        sma0 : initial semi-major axis (default=10)
        minsma : minimum sma (default=1)
        maxsma : maximum sma (default='INDEF')
        step : sma step size (default=0.1)
        linear : linear sampling of sma? (default='no')
    *controlpar*
        conver : 
    """
    # verify input
    if 'x0' not in kwargs.keys() or 'y0' not in kwargs.keys():
        raise KeyError('x0 or y0 is not found')
    # load packages
    iraf.stsdas(_doprint=0, motd=False)
    iraf.analysis(_doprint=0)
    iraf.isophote(_doprint=0)

    # reset all parameters
    iraf.unlearn('ellipse', 'geompar', 'controlpar', 'samplepar')
    iraf.ellipse.interactive = False
    iraf.ellipse.xylearn = False  # if True, it prompts input upon faling to find center

    # geompar
    iraf.ellipse.x0 = kwargs.pop('x0')
    iraf.ellipse.y0 = kwargs.pop('y0')
    iraf.ellipse.ellip0 = kwargs.pop('ellip0', 0.2)
    iraf.ellipse.pa0 = kwargs.pop('pa0', 20.0)
    iraf.ellipse.sma0 = kwargs.pop('sma0', 10.0)
    iraf.ellipse.minsma = kwargs.pop('minsma', 1.)
    iraf.ellipse.maxsma = kwargs.pop('maxsma', 'INDEF')
    iraf.ellipse.step = kwargs.pop('step', 0.1)
    iraf.ellipse.linear = kwargs.pop('linear', 0)
    iraf.ellipse.verbose = verbose

    # controlpar
    iraf.ellipse.conver = kwargs.pop('conver', 0.05)
    iraf.ellipse.minit = kwargs.pop('minit', 10)
    iraf.ellipse.maxit = kwargs.pop('maxit', 50)
    iraf.ellipse.hcenter = kwargs.pop('hcenter', 'no')

    # samplepar
    iraf.ellipse.tsample = kwargs.pop('tsample', 'none')
    iraf.ellipse.harmonics = kwargs.pop('harmonics', 'none')

    if verbose:
        iraf.lparam('ellipse')
        iraf.lparam('geompar')
        iraf.lparam('controlpar')
        iraf.lparam('samplepar')

    # run ellipse
    tempname = shorten_iauname(image) + str(uuid.uuid4()) + '.tab'
    try:
        iraf.ellipse(image, tempname)
        # print ascii table
        iraf.tprint(tempname, pwidth='INDEF', Stdout=outname)
        os.remove(tempname)
    except:
        print 'ellipse failed'
Exemple #19
0
from pyraf import iraf
from astropy.io import fits
import numpy as np
import os
import glob

os.putenv('iraf', '/iraf/iraf')
iraf.stsdas(_doprint=1)

objectName = os.getcwd()[-5:].lower()

print objectName
# iraf.stsdas.analysis.gasp.xyeq()

os.putenv('iraf', '/iraf.216/iraf')
iraf.stsdas(_doprint=1)

os.putenv('iraf', '/iraf/iraf')
iraf.stsdas(_doprint=1)
Exemple #20
0
def pyraf_bmodel(binary,
                 parent,
                 output=None,
                 highar=False,
                 verbose=False,
                 interp='spline',
                 backgr=0.0):
    """Wrapper of the `Pyraf` `bmodel` function to build 2-D model.

    For details about the `bmodel` task, please see:
        http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?bmodel

    Parameters
    ----------
    binary: str
        Location of the output binary file from `ellipse` task.
    parent: str
        Location of the input image that `ellipse` run is based on.
    output: str, optional
        Name of the output FITS image
    highar: boolen, optional
        Whether to include the higher-order Fourier component. Default: False.
    verbose: boolen, optional
        Verbose mode. Default: False.
    interp: str, optional
        The interpolation mode used by the `trebin` task.
        Allowed values are: nearest | linear | poly3 | spline. Default: spline.

    Returns
    -------
    model: ndarray
        2-D model image of the `ellipse` results.

    """
    # Initiate the isophote module in IRAF/STSDAS
    try:
        from pyraf import iraf
        iraf.stsdas()
        iraf.analysis()
        iraf.isophote()
    except ImportError:
        raise Exception("# Unfortunately, you need to install pyraf first.")

    # Make sure the files are available
    if not os.path.isfile(binary):
        raise FileNotFoundError(
            "# Can not find the binary output file: {}".format(binary))
    if not os.path.isfile(parent):
        raise FileNotFoundError(
            "# Can not find the input image: {}".format(parent))

    # Name of the output FITS file
    if output is None:
        output = os.path.splitext(binary)[0] + '_model.fits'

    # Remove the output file if it exists
    if os.path.isfile(output):
        os.remove(output)

    # Check the interpolation method
    if interp not in PYRAF_INTERP:
        raise Exception("# Wrong interpolation method! Choices are {}".format(
            PYRAF_INTERP))

    # Higher-order harmonic modes
    highar_str = "yes" if highar else "no"
    verbose_str = "yes" if verbose else "no"

    try:
        iraf.bmodel(binary,
                    output,
                    parent=parent,
                    interp=interp,
                    highar=highar_str,
                    backgr=backgr,
                    verbose=verbose_str)
    except Exception:
        warnings.warn("# Something is wrong with the Bmodel task!")
        return None

    if not os.path.isfile(output):
        raise FileNotFoundError(
            "# Cannot find the output file: {}".format(output))
    else:
        model = fits.open(output)[0].data
        return model
Exemple #21
0
from pyraf import iraf
from astropy.io import fits
import numpy as np
import os
import glob

os.putenv('iraf','/iraf/iraf')
iraf.stsdas(_doprint=1)

objectName = os.getcwd()[-5:].lower()

print objectName
# iraf.stsdas.analysis.gasp.xyeq()

os.putenv('iraf','/iraf.216/iraf')
iraf.stsdas(_doprint=1)

os.putenv('iraf','/iraf/iraf')
iraf.stsdas(_doprint=1)