def compare_strategy_vs_benchmark(self, br, strategy_df, benchmark_df): """ compare_strategy_vs_benchmark - Compares the trading strategy we are backtesting against a benchmark Parameters ---------- br : BacktestRequest Parameters for backtest such as start and finish dates strategy_df : pandas.DataFrame Strategy time series benchmark_df : pandas.DataFrame Benchmark time series """ include_benchmark = False calc_stats = False if hasattr(br, 'include_benchmark'): include_benchmark = br.include_benchmark if hasattr(br, 'calc_stats'): calc_stats = br.calc_stats if include_benchmark: tsd = TimeSeriesDesc() cash_backtest = CashBacktest() ts_filter = TimeSeriesFilter() ts_calcs = TimeSeriesCalcs() # align strategy time series with that of benchmark strategy_df, benchmark_df = strategy_df.align(benchmark_df, join='left', axis = 0) # if necessary apply vol target to benchmark (to make it comparable with strategy) if hasattr(br, 'portfolio_vol_adjust'): if br.portfolio_vol_adjust is True: benchmark_df = cash_backtest.calculate_vol_adjusted_index_from_prices(benchmark_df, br = br) # only calculate return statistics if this has been specified (note when different frequencies of data # might underrepresent vol if calc_stats: benchmark_df = benchmark_df.fillna(method='ffill') tsd.calculate_ret_stats_from_prices(benchmark_df, br.ann_factor) benchmark_df.columns = tsd.summary() # realign strategy & benchmark strategy_benchmark_df = strategy_df.join(benchmark_df, how='inner') strategy_benchmark_df = strategy_benchmark_df.fillna(method='ffill') strategy_benchmark_df = ts_filter.filter_time_series_by_date(br.plot_start, br.finish_date, strategy_benchmark_df) strategy_benchmark_df = ts_calcs.create_mult_index_from_prices(strategy_benchmark_df) self._benchmark_pnl = benchmark_df self._benchmark_tsd = tsd return strategy_benchmark_df return strategy_df
def construct_individual_strategy(self, br, spot_df, spot_df2, asset_df, tech_params, key): """ construct_individual_strategy - Combines the signal with asset returns to find the returns of an individual strategy Parameters ---------- br : BacktestRequest Parameters for backtest such as start and finish dates spot_df : pandas.DataFrame Market time series for generating signals spot_df2 : pandas.DataFrame Market time series for generated signals (can be of different frequency) tech_params : TechParams Parameters for generating signals Returns ------- cumportfolio : pandas.DataFrame cash_backtest : CashBacktest """ cash_backtest = CashBacktest() signal_df = self.construct_signal(spot_df, spot_df2, tech_params) # get trading signal cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) # calculate P&L cumpnl = cash_backtest.get_cumpnl() if br.write_csv: cumpnl.to_csv(self.DUMP_CSV + key + ".csv") cumportfolio = cash_backtest.get_cumportfolio() if br.calc_stats: cumportfolio.columns = [ key + ' ' + str(cash_backtest.get_portfolio_pnl_desc()[0]) ] else: cumportfolio.columns = [key] return cumportfolio, cash_backtest
def run_arbitrary_sensitivity(self, strat, parameter_list = None, parameter_names = None, pretty_portfolio_names = None, parameter_type = None): asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets() port_list = None for i in range(0, len(parameter_list)): br = strat.fill_backtest_request() current_parameter = parameter_list[i] # for calculating P&L for k in current_parameter.keys(): setattr(br, k, current_parameter[k]) strat.br = br # for calculating signals signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params) cash_backtest = CashBacktest() self.logger.info("Calculating... " + pretty_portfolio_names[i]) cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) stats = str(cash_backtest.get_portfolio_pnl_desc()[0]) port = cash_backtest.get_cumportfolio().resample('B') port.columns = [pretty_portfolio_names[i] + ' ' + stats] if port_list is None: port_list = port else: port_list = port_list.join(port) pf = PlotFactory() gp = GraphProperties() gp.color = 'Blues' gp.resample = 'B' gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type pf.plot_line_graph(port_list, adapter = 'pythalesians', gp = gp)
def construct_individual_strategy(self, br, spot_df, spot_df2, asset_df, tech_params, key): """ construct_individual_strategy - Combines the signal with asset returns to find the returns of an individual strategy Parameters ---------- br : BacktestRequest Parameters for backtest such as start and finish dates spot_df : pandas.DataFrame Market time series for generating signals spot_df2 : pandas.DataFrame Market time series for generated signals (can be of different frequency) tech_params : TechParams Parameters for generating signals Returns ------- cumportfolio : pandas.DataFrame cash_backtest : CashBacktest """ cash_backtest = CashBacktest() signal_df = self.construct_signal(spot_df, spot_df2, tech_params, br) # get trading signal cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) # calculate P&L cumpnl = cash_backtest.get_cumpnl() if br.write_csv: cumpnl.to_csv(self.DUMP_CSV + key + ".csv") cumportfolio = cash_backtest.get_cumportfolio() if br.calc_stats: cumportfolio.columns = [key + ' ' + str(cash_backtest.get_portfolio_pnl_desc()[0])] else: cumportfolio.columns = [key] return cumportfolio, cash_backtest
def run_arbitrary_sensitivity(self, strat, parameter_list=None, parameter_names=None, pretty_portfolio_names=None, parameter_type=None): asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets() port_list = None tsd_list = [] for i in range(0, len(parameter_list)): br = strat.fill_backtest_request() current_parameter = parameter_list[i] # for calculating P&L for k in current_parameter.keys(): setattr(br, k, current_parameter[k]) strat.br = br # for calculating signals signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params, br) cash_backtest = CashBacktest() self.logger.info("Calculating... " + pretty_portfolio_names[i]) cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) tsd_list.append(cash_backtest.get_portfolio_pnl_tsd()) stats = str(cash_backtest.get_portfolio_pnl_desc()[0]) port = cash_backtest.get_cumportfolio().resample('B') port.columns = [pretty_portfolio_names[i] + ' ' + stats] if port_list is None: port_list = port else: port_list = port_list.join(port) # reset the parameters of the strategy strat.br = strat.fill_backtest_request() pf = PlotFactory() gp = GraphProperties() ir = [t.inforatio()[0] for t in tsd_list] # gp.color = 'Blues' # plot all the variations gp.resample = 'B' gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type pf.plot_line_graph(port_list, adapter='pythalesians', gp=gp) # plot all the IR in a bar chart form (can be easier to read!) gp = GraphProperties() gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + ' IR.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type summary = pandas.DataFrame(index=pretty_portfolio_names, data=ir, columns=['IR']) pf.plot_bar_graph(summary, adapter='pythalesians', gp=gp) return port_list
def run_arbitrary_sensitivity(self, strat, parameter_list = None, parameter_names = None, pretty_portfolio_names = None, parameter_type = None): asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets() port_list = None tsd_list = [] for i in range(0, len(parameter_list)): br = strat.fill_backtest_request() current_parameter = parameter_list[i] # for calculating P&L for k in current_parameter.keys(): setattr(br, k, current_parameter[k]) strat.br = br # for calculating signals signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params, br) cash_backtest = CashBacktest() self.logger.info("Calculating... " + pretty_portfolio_names[i]) cash_backtest.calculate_trading_PnL(br, asset_df, signal_df) tsd_list.append(cash_backtest.get_portfolio_pnl_tsd()) stats = str(cash_backtest.get_portfolio_pnl_desc()[0]) port = cash_backtest.get_cumportfolio().resample('B').mean() port.columns = [pretty_portfolio_names[i] + ' ' + stats] if port_list is None: port_list = port else: port_list = port_list.join(port) # reset the parameters of the strategy strat.br = strat.fill_backtest_request() pf = PlotFactory() gp = GraphProperties() ir = [t.inforatio()[0] for t in tsd_list] # gp.color = 'Blues' # plot all the variations gp.resample = 'B' gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type pf.plot_line_graph(port_list, adapter = 'pythalesians', gp = gp) # plot all the IR in a bar chart form (can be easier to read!) gp = GraphProperties() gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + ' IR.png' gp.scale_factor = self.scale_factor gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type summary = pandas.DataFrame(index = pretty_portfolio_names, data = ir, columns = ['IR']) pf.plot_bar_graph(summary, adapter = 'pythalesians', gp = gp) return port_list
# for logging from pythalesians.util.loggermanager import LoggerManager # for signal generation from pythalesians.timeseries.techind.techindicator import TechIndicator from pythalesians.timeseries.techind.techparams import TechParams # for plotting from pythalesians_graphics.graphs.graphproperties import GraphProperties from pythalesians_graphics.graphs import PlotFactory logger = LoggerManager().getLogger(__name__) import datetime cash_backtest = CashBacktest() br = BacktestRequest() fxconv = FXConv() # get all asset data br.start_date = "02 Jan 1990" br.finish_date = datetime.datetime.utcnow() br.spot_tc_bp = 2.5 # 2.5 bps bid/ask spread br.ann_factor = 252 # have vol target for each signal br.signal_vol_adjust = True br.signal_vol_target = 0.05 br.signal_vol_max_leverage = 3 br.signal_vol_periods = 60 br.signal_vol_obs_in_year = 252
# for logging from pythalesians.util.loggermanager import LoggerManager # for signal generation from pythalesians.timeseries.techind.techindicator import TechIndicator from pythalesians.timeseries.techind.techparams import TechParams # for plotting from pythalesians.graphics.graphs.graphproperties import GraphProperties from pythalesians.graphics.graphs.plotfactory import PlotFactory logger = LoggerManager().getLogger(__name__) import datetime cash_backtest = CashBacktest() br = BacktestRequest() fxconv = FXConv() # get all asset data br.start_date = "02 Jan 1990" br.finish_date = datetime.datetime.utcnow() br.spot_tc_bp = 2.5 # 2.5 bps bid/ask spread br.ann_factor = 252 # have vol target for each signal br.signal_vol_adjust = True br.signal_vol_target = 0.05 br.signal_vol_max_leverage = 3 br.signal_vol_periods = 60 br.signal_vol_obs_in_year = 252
# for logging from pythalesians.util.loggermanager import LoggerManager # for signal generation from pythalesians.timeseries.techind.techindicator import TechIndicator from pythalesians.timeseries.techind.techparams import TechParams # for plotting from chartesians.graphs.graphproperties import GraphProperties from chartesians.graphs import PlotFactory logger = LoggerManager().getLogger(__name__) import datetime cash_backtest = CashBacktest() br = BacktestRequest() fxconv = FXConv() # get all asset data br.start_date = "02 Jan 1990" br.finish_date = datetime.datetime.utcnow() br.spot_tc_bp = 2.5 # 2.5 bps bid/ask spread br.ann_factor = 252 # have vol target for each signal br.signal_vol_adjust = True br.signal_vol_target = 0.05 br.signal_vol_max_leverage = 3 br.signal_vol_periods = 60 br.signal_vol_obs_in_year = 252