Exemple #1
0
def dppo(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0,
        steps_per_epoch=4000, epochs=50, gamma=0.99, clip_ratio=0.2, pi_lr=3e-2,
        vf_lr=1e-3, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=1000,
        target_kl=1, logger_kwargs=dict(), save_freq=10):
    """
    Proximal Policy Optimization (by clipping),

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
            module. The ``step`` method should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing
                                           | the log probability, according to
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical:
                                           | make sure to flatten this!)
            ===========  ================  ======================================


        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
            you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while
            still profiting (improving the objective function)? The new policy
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`.

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Create actor-critic module
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1-clip_ratio, 1+clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1+clip_ratio) | ratio.lt(1-clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        epsilon = 0.1
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log('Early stopping at step %d due to reaching max kl.'%i)
                break
            # Manually update pi.parameters
            # loss_pi.backward()
            for l in ac.pi.logits_net:
                for x in l.parameters():
                    y, = torch.autograd.grad(loss_pi, x, create_graph=True, retain_graph=True)
                    w = torch.zeros(y.size(), requires_grad=True)
                    g, = torch.autograd.grad(y, x, grad_outputs = w, create_graph = True)
                    r, = torch.autograd.grad(g, w, grad_outputs = y, create_graph = False)
                    x.grad = y - epsilon * r

            mpi_avg_grads(ac.pi)    # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)    # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old, LossV=v_l_old,
                     KL=kl, Entropy=ent, ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))

            next_o, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t==local_steps_per_epoch-1

            if terminal or epoch_ended:
                if epoch_ended and not(terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0


        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs-1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time()-start_time)
        logger.dump_tabular()
Exemple #2
0
def td3(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=100,
        replay_size=int(1e6),
        gamma=0.99,
        polyak=0.995,
        pi_lr=1e-3,
        q_lr=1e-3,
        batch_size=100,
        start_steps=10000,
        update_after=1000,
        update_every=50,
        act_noise=0.1,
        target_noise=0.2,
        noise_clip=0.5,
        policy_delay=2,
        num_test_episodes=10,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=1):
    """
    Twin Delayed Deep Deterministic Policy Gradient (TD3)


    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with an ``act`` 
            method, a ``pi`` module, a ``q1`` module, and a ``q2`` module.
            The ``act`` method and ``pi`` module should accept batches of 
            observations as inputs, and ``q1`` and ``q2`` should accept a batch 
            of observations and a batch of actions as inputs. When called, 
            these should return:

            ===========  ================  ======================================
            Call         Output Shape      Description
            ===========  ================  ======================================
            ``act``      (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``pi``       (batch, act_dim)  | Tensor containing actions from policy
                                           | given observations.
            ``q1``       (batch,)          | Tensor containing one current estimate
                                           | of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ``q2``       (batch,)          | Tensor containing the other current 
                                           | estimate of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to TD3.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        pi_lr (float): Learning rate for policy.

        q_lr (float): Learning rate for Q-networks.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        update_after (int): Number of env interactions to collect before
            starting to do gradient descent updates. Ensures replay buffer
            is full enough for useful updates.

        update_every (int): Number of env interactions that should elapse
            between gradient descent updates. Note: Regardless of how long 
            you wait between updates, the ratio of env steps to gradient steps 
            is locked to 1.

        act_noise (float): Stddev for Gaussian exploration noise added to 
            policy at training time. (At test time, no noise is added.)

        target_noise (float): Stddev for smoothing noise added to target 
            policy.

        noise_clip (float): Limit for absolute value of target policy 
            smoothing noise.

        policy_delay (int): Policy will only be updated once every 
            policy_delay times for each update of the Q-networks.

        num_test_episodes (int): Number of episodes to test the deterministic
            policy at the end of each epoch.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    torch.manual_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Create actor-critic module and target networks
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    ac_targ = deepcopy(ac)

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False

    # List of parameters for both Q-networks (save this for convenience)
    q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size)

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(
        core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2])
    logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' %
               var_counts)

    # Set up function for computing TD3 Q-losses
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        q1 = ac.q1(o, a)
        q2 = ac.q2(o, a)

        # Bellman backup for Q functions
        with torch.no_grad():
            pi_targ = ac_targ.pi(o2)

            # Target policy smoothing
            epsilon = torch.randn_like(pi_targ) * target_noise
            epsilon = torch.clamp(epsilon, -noise_clip, noise_clip)
            a2 = pi_targ + epsilon
            a2 = torch.clamp(a2, -act_limit, act_limit)

            # Target Q-values
            q1_pi_targ = ac_targ.q1(o2, a2)
            q2_pi_targ = ac_targ.q2(o2, a2)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
            backup = r + gamma * (1 - d) * q_pi_targ

        # MSE loss against Bellman backup
        loss_q1 = ((q1 - backup)**2).mean()
        loss_q2 = ((q2 - backup)**2).mean()
        loss_q = loss_q1 + loss_q2

        # Useful info for logging
        loss_info = dict(Q1Vals=q1.detach().numpy(),
                         Q2Vals=q2.detach().numpy())

        return loss_q, loss_info

    # Set up function for computing TD3 pi loss
    def compute_loss_pi(data):
        o = data['obs']
        q1_pi = ac.q1(o, ac.pi(o))
        return -q1_pi.mean()

    # Set up optimizers for policy and q-function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    q_optimizer = Adam(q_params, lr=q_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data, timer):
        # First run one gradient descent step for Q1 and Q2
        q_optimizer.zero_grad()
        loss_q, loss_info = compute_loss_q(data)
        loss_q.backward()
        q_optimizer.step()

        # Record things
        logger.store(LossQ=loss_q.item(), **loss_info)

        # Possibly update pi and target networks
        if timer % policy_delay == 0:

            # Freeze Q-networks so you don't waste computational effort
            # computing gradients for them during the policy learning step.
            for p in q_params:
                p.requires_grad = False

            # Next run one gradient descent step for pi.
            pi_optimizer.zero_grad()
            loss_pi = compute_loss_pi(data)
            loss_pi.backward()
            pi_optimizer.step()

            # Unfreeze Q-networks so you can optimize it at next DDPG step.
            for p in q_params:
                p.requires_grad = True

            # Record things
            logger.store(LossPi=loss_pi.item())

            # Finally, update target networks by polyak averaging.
            with torch.no_grad():
                for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                    # NB: We use an in-place operations "mul_", "add_" to update target
                    # params, as opposed to "mul" and "add", which would make new tensors.
                    p_targ.data.mul_(polyak)
                    p_targ.data.add_((1 - polyak) * p.data)

    def get_action(o, noise_scale):
        a = ac.act(torch.as_tensor(o, dtype=torch.float32))
        a += noise_scale * np.random.randn(act_dim)
        return np.clip(a, -act_limit, act_limit)

    def test_agent():
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time (noise_scale=0)
                o, r, d, _ = test_env.step(get_action(o, 0))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards,
        # use the learned policy (with some noise, via act_noise).
        if t > start_steps:
            a = get_action(o, act_noise)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0

        # Update handling
        if t >= update_after and t % update_every == 0:
            for j in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                update(data=batch, timer=j)

        # End of epoch handling
        if (t + 1) % steps_per_epoch == 0:
            epoch = (t + 1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
Exemple #3
0
def td3(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=100,
        replay_size=int(1e6),
        gamma=0.99,
        polyak=0.995,
        pi_lr=1e-3,
        q_lr=1e-3,
        batch_size=100,
        start_steps=10000,
        update_after=1000,
        update_every=50,
        act_noise=0.1,
        target_noise=0.2,
        noise_clip=0.5,
        policy_delay=2,
        num_test_episodes=10,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=1):
    """
    Twin Delayed Deep Deterministic Policy Gradient (TD3)


    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Deterministically computes actions
                                           | from policy given states.
            ``q1``       (batch,)          | Gives one estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q2``       (batch,)          | Gives another estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q1_pi``    (batch,)          | Gives the composition of ``q1`` and 
                                           | ``pi`` for states in ``x_ph``: 
                                           | q1(x, pi(x)).
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to TD3.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        pi_lr (float): Learning rate for policy.

        q_lr (float): Learning rate for Q-networks.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        update_after (int): Number of env interactions to collect before
            starting to do gradient descent updates. Ensures replay buffer
            is full enough for useful updates.

        update_every (int): Number of env interactions that should elapse
            between gradient descent updates. Note: Regardless of how long 
            you wait between updates, the ratio of env steps to gradient steps 
            is locked to 1.
            
        act_noise (float): Stddev for Gaussian exploration noise added to 
            policy at training time. (At test time, no noise is added.)

        target_noise (float): Stddev for smoothing noise added to target 
            policy.

        noise_clip (float): Limit for absolute value of target policy 
            smoothing noise.

        policy_delay (int): Policy will only be updated once every 
            policy_delay times for each update of the Q-networks.

        num_test_episodes (int): Number of episodes to test the deterministic
            policy at the end of each epoch.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    tf.set_random_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph, x2_ph, r_ph, d_ph = core.placeholders(obs_dim, act_dim,
                                                      obs_dim, None, None)

    #=========================================================================#
    #                                                                         #
    #           All of your code goes in the space below.                     #
    #                                                                         #
    #=========================================================================#

    # Main outputs from computation graph
    with tf.variable_scope('main'):
        #######################
        #                     #
        #   YOUR CODE HERE    #
        #                     #
        #######################
        # pi, q1, q2, q1_pi =
        pass

    # Target policy network
    with tf.variable_scope('target'):
        #######################
        #                     #
        #   YOUR CODE HERE    #
        #                     #
        #######################
        # pi_targ =
        pass

    # Target Q networks
    with tf.variable_scope('target', reuse=True):

        # Target policy smoothing, by adding clipped noise to target actions
        #######################
        #                     #
        #   YOUR CODE HERE    #
        #                     #
        #######################

        # Target Q-values, using action from smoothed target policy
        #######################
        #                     #
        #   YOUR CODE HERE    #
        #                     #
        #######################
        pass

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size)

    # Count variables
    var_counts = tuple(
        core.count_vars(scope)
        for scope in ['main/pi', 'main/q1', 'main/q2', 'main'])
    print(
        '\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d, \t total: %d\n'
        % var_counts)

    # Bellman backup for Q functions, using Clipped Double-Q targets
    #######################
    #                     #
    #   YOUR CODE HERE    #
    #                     #
    #######################

    # TD3 losses
    #######################
    #                     #
    #   YOUR CODE HERE    #
    #                     #
    #######################
    # pi_loss =
    # q1_loss =
    # q2_loss =
    # q_loss =

    #=========================================================================#
    #                                                                         #
    #           All of your code goes in the space above.                     #
    #                                                                         #
    #=========================================================================#

    # Separate train ops for pi, q
    pi_optimizer = tf.train.AdamOptimizer(learning_rate=pi_lr)
    q_optimizer = tf.train.AdamOptimizer(learning_rate=q_lr)
    train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi'))
    train_q_op = q_optimizer.minimize(q_loss, var_list=get_vars('main/q'))

    # Polyak averaging for target variables
    target_update = tf.group([
        tf.assign(v_targ, polyak * v_targ + (1 - polyak) * v_main)
        for v_main, v_targ in zip(get_vars('main'), get_vars('target'))
    ])

    # Initializing targets to match main variables
    target_init = tf.group([
        tf.assign(v_targ, v_main)
        for v_main, v_targ in zip(get_vars('main'), get_vars('target'))
    ])

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    sess.run(target_init)

    # Setup model saving
    logger.setup_tf_saver(sess,
                          inputs={
                              'x': x_ph,
                              'a': a_ph
                          },
                          outputs={
                              'pi': pi,
                              'q1': q1,
                              'q2': q2
                          })

    def get_action(o, noise_scale):
        a = sess.run(pi, feed_dict={x_ph: o.reshape(1, -1)})[0]
        a += noise_scale * np.random.randn(act_dim)
        return np.clip(a, -act_limit, act_limit)

    def test_agent():
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time (noise_scale=0)
                o, r, d, _ = test_env.step(get_action(o, 0))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0
    total_steps = steps_per_epoch * epochs

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards,
        # use the learned policy (with some noise, via act_noise).
        if t > start_steps:
            a = get_action(o, act_noise)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0

        # Update handling
        if t >= update_after and t % update_every == 0:
            for j in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                feed_dict = {
                    x_ph: batch['obs1'],
                    x2_ph: batch['obs2'],
                    a_ph: batch['acts'],
                    r_ph: batch['rews'],
                    d_ph: batch['done']
                }
                q_step_ops = [q_loss, q1, q2, train_q_op]
                outs = sess.run(q_step_ops, feed_dict)
                logger.store(LossQ=outs[0], Q1Vals=outs[1], Q2Vals=outs[2])

                if j % policy_delay == 0:
                    # Delayed policy update
                    outs = sess.run([pi_loss, train_pi_op, target_update],
                                    feed_dict)
                    logger.store(LossPi=outs[0])

        # End of epoch wrap-up
        if (t + 1) % steps_per_epoch == 0:
            epoch = (t + 1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
Exemple #4
0
def train_mnist(steps_per_epoch=100,
                epochs=5,
                lr=1e-3,
                layers=2,
                hidden_size=64,
                logger_kwargs=dict(),
                save_freq=1):

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Load and preprocess MNIST data
    (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
    x_train = x_train.reshape(-1, 28 * 28) / 255.0

    # Define inputs & main outputs from computation graph
    x_ph = tf.placeholder(tf.float32, shape=(None, 28 * 28))
    y_ph = tf.placeholder(tf.int32, shape=(None, ))
    logits = mlp(x_ph,
                 hidden_sizes=[hidden_size] * layers + [10],
                 activation=tf.nn.relu)
    predict = tf.argmax(logits, axis=1, output_type=tf.int32)

    # Define loss function, accuracy, and training op
    y = tf.one_hot(y_ph, 10)
    loss = tf.losses.softmax_cross_entropy(y, logits)
    acc = tf.reduce_mean(tf.cast(tf.equal(y_ph, predict), tf.float32))
    train_op = tf.train.AdamOptimizer().minimize(loss)

    # Prepare session
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Setup model saving
    logger.setup_tf_saver(sess,
                          inputs={'x': x_ph},
                          outputs={
                              'logits': logits,
                              'predict': predict
                          })

    start_time = time.time()

    # Run main training loop
    for epoch in range(epochs):
        for t in range(steps_per_epoch):
            idxs = np.random.randint(0, len(x_train), 32)
            feed_dict = {x_ph: x_train[idxs], y_ph: y_train[idxs]}
            outs = sess.run([loss, acc, train_op], feed_dict=feed_dict)
            logger.store(Loss=outs[0], Acc=outs[1])

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state(state_dict=dict(), itr=None)

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('Acc', with_min_and_max=True)
        logger.log_tabular('Loss', average_only=True)
        logger.log_tabular('TotalGradientSteps', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
Exemple #5
0
def sac(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=100,
        replay_size=int(1e6),
        gamma=0.99,
        polyak=0.995,
        lr=1e-3,
        alpha=0.2,
        batch_size=100,
        start_steps=10000,
        update_after=1000,
        update_every=50,
        num_test_episodes=10,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=1):
    """
    Soft Actor-Critic (SAC)


    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with an ``act``
            method, a ``pi`` module, a ``q1`` module, and a ``q2`` module.
            The ``act`` method and ``pi`` module should accept batches of
            observations as inputs, and ``q1`` and ``q2`` should accept a batch
            of observations and a batch of actions as inputs. When called,
            ``act``, ``q1``, and ``q2`` should return:

            ===========  ================  ======================================
            Call         Output Shape      Description
            ===========  ================  ======================================
            ``act``      (batch, act_dim)  | Numpy array of actions for each
                                           | observation.
            ``q1``       (batch,)          | Tensor containing one current estimate
                                           | of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ``q2``       (batch,)          | Tensor containing the other current
                                           | estimate of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ===========  ================  ======================================

            Calling ``pi`` should return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Tensor containing actions from policy
                                           | given observations.
            ``logp_pi``  (batch,)          | Tensor containing log probabilities of
                                           | actions in ``a``. Importantly: gradients
                                           | should be able to flow back into ``a``.
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
            you provided to SAC.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target
            networks. Target networks are updated towards main networks
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually
            close to 1.)

        lr (float): Learning rate (used for both policy and value learning).

        alpha (float): Entropy regularization coefficient. (Equivalent to
            inverse of reward scale in the original SAC paper.)

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        update_after (int): Number of env interactions to collect before
            starting to do gradient descent updates. Ensures replay buffer
            is full enough for useful updates.

        update_every (int): Number of env interactions that should elapse
            between gradient descent updates. Note: Regardless of how long
            you wait between updates, the ratio of env steps to gradient steps
            is locked to 1.

        num_test_episodes (int): Number of episodes to test the deterministic
            policy at the end of each epoch.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """
    device = (torch.device("cuda")
              if torch.cuda.is_available() else torch.device("cpu"))

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    if torch.cuda.is_available():
        logger.log('\nuse GPU')

    env, test_env = env_fn(), env_fn()

    # For reproduciability
    env.seed(seed)
    test_env.seed(seed)
    seed_torch(seed)

    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    act_is_cont = isinstance(env.action_space, gym.spaces.Box)

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    # act_limit = env.action_space.high[0]

    # Create actor-critic module and target networks
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    ac_targ = deepcopy(ac)

    logger.log(ac.q1)

    #ac.load_state_dict(torch.load('ac_t0'))
    #ac_targ.load_state_dict(torch.load('ac_targ_t0'))

    ac = ac.to(device)
    ac_targ = ac_targ.to(device)

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False

    # List of parameters for both Q-networks (save this for convenience)
    q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size,
                                 device=device,
                                 env=env)

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(
        core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2])
    logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' %
               var_counts)

    # Set up function for computing SAC Q-losses
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        if act_is_cont:
            q1 = ac.q1(o, a)
            q2 = ac.q2(o, a)
        else:
            q1 = ac.q1(o, a).gather(1, a.unsqueeze(-1).long()).squeeze()
            q2 = ac.q2(o, a).gather(1, a.unsqueeze(-1).long()).squeeze()

        # Bellman backup for Q functions
        with torch.no_grad():
            # Target actions come from *current* policy
            a2, logp_a2, pa2 = ac.pi(o2)

            # Target Q-values
            q1_pi_targ = ac_targ.q1(o2, a2)
            q2_pi_targ = ac_targ.q2(o2, a2)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)

            if act_is_cont:
                term = q_pi_targ - alpha * logp_a2  # Continuous
            else:
                term = torch.mul(pa2, (q_pi_targ - alpha * logp_a2))
                term = torch.sum(term, dim=-1)

            backup = r + gamma * (1 - d) * (term)

        # MSE loss against Bellman backup
        loss_q1 = ((q1 - backup)**2).mean()
        loss_q2 = ((q2 - backup)**2).mean()
        loss_q = loss_q1 + loss_q2

        # Useful info for logging
        q_info = {
        }  # dict(Q1Vals=q1.cpu().detach().numpy(), Q2Vals=q2.cpu().detach().numpy())

        return loss_q, q_info

    # Set up function for computing SAC pi loss
    def compute_loss_pi(data):
        o = data['obs']
        pi, logp_pi, pa = ac.pi(o)
        q1_pi = ac.q1(o, pi)
        q2_pi = ac.q2(o, pi)
        q_pi = torch.min(q1_pi, q2_pi)

        # Entropy-regularized policy loss
        if act_is_cont:
            term = (alpha * logp_pi - q_pi)  # Continous
        else:
            term = torch.sum(pa * (alpha * logp_pi - q_pi), dim=-1)

        loss_pi = term.mean()

        # Useful info for logging
        pi_info = {}  # dict(LogPi=logp_pi.cpu().detach().numpy())

        return loss_pi, pi_info

    # Set up optimizers for policy and q-function
    pi_optimizer = Adam(ac.pi.parameters(), lr=lr)
    q_optimizer = Adam(q_params, lr=lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data):
        # First run one gradient descent step for Q1 and Q2
        q_optimizer.zero_grad()
        loss_q, q_info = compute_loss_q(data)
        loss_q.backward()
        q_optimizer.step()

        # Record things
        logger.store(LossQ=loss_q.item(), **q_info)

        # Freeze Q-networks so you don't waste computational effort
        # computing gradients for them during the policy learning step.
        for p in q_params:
            p.requires_grad = False

        # Next run one gradient descent step for pi.
        pi_optimizer.zero_grad()
        loss_pi, pi_info = compute_loss_pi(data)
        loss_pi.backward()
        pi_optimizer.step()

        # Unfreeze Q-networks so you can optimize it at next DDPG step.
        for p in q_params:
            p.requires_grad = True

        # Record things
        logger.store(LossPi=loss_pi.item(), **pi_info)

        # Finally, update target networks by polyak averaging.
        with torch.no_grad():
            for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(polyak)
                p_targ.data.add_((1 - polyak) * p.data)

    def get_action(o, deterministic=False):
        o = np.expand_dims(o, axis=0)
        a = ac.act(
            torch.as_tensor(o, dtype=torch.float32).to(device), deterministic)
        return np.squeeze(a, axis=0)

    def test_agent():
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                o, r, d, _ = test_env.step(get_action(o, True))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards,
        # use the learned policy.
        if t > start_steps:
            a = get_action(o)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0

        # Update handling
        if False:  # For discrete action space
            if t > update_after:
                batch = replay_buffer.sample_batch(batch_size)
                update(data=batch)

        if True:  # For continuous action space
            if t >= update_after and t % update_every == 0:
                for j in range(update_every):
                    batch = replay_buffer.sample_batch(batch_size)
                    update(data=batch)

        # End of epoch handling
        if t >= update_after and (t + 1) % steps_per_epoch == 0:
            epoch = (t + 1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            #logger.log_tabular('Q1Vals', with_min_and_max=True)
            #logger.log_tabular('Q2Vals', with_min_and_max=True)
            #logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
Exemple #6
0
def vpg(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=10):
    """
    Vanilla Policy Gradient 

    (with GAE-Lambda for advantage estimation)

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a 
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` 
            module. The ``step`` method should accept a batch of observations 
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of 
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing 
                                           | the log probability, according to 
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical: 
                                           | make sure to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Create actor-critic module
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing VPG policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        loss_pi = -(logp * adv).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        pi_info = dict(kl=approx_kl, ent=ent)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        # Get loss and info values before update
        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with a single step of gradient descent
        pi_optimizer.zero_grad()
        loss_pi, pi_info = compute_loss_pi(data)
        loss_pi.backward()
        mpi_avg_grads(ac.pi)  # average grads across MPI processes
        pi_optimizer.step()

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent = pi_info['kl'], pi_info_old['ent']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))

            next_o, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform VPG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
Exemple #7
0
def dqn(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0,
        steps_per_epoch=500, epochs=100, replay_size=int(1e6), gamma=0.99,
        epsilon_start=1, epsilon_step=1e-4, epsilon_end=0.1,
        lr=1e-3, batch_size=100, start_steps=5000,
        max_ep_len=1000, logger_kwargs=dict(), update_freq=100, save_freq=1):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols
            for state, ``x_ph``, and action, ``a_ph``, and returns the main
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``q``        (batch,)          | Gives the current estimate
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic
            function you provided to DDPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        epsilon_start (float): Starting value of epsilon (probability with which
            we take random action, always between 0 and 1)

        epsilon_step (float): Reduce epsilon by this amount every step.

        epsilon_end (float): Stop at this value of epsilon.

        lr (float): Learning rate for Q-networks.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        update_freq (int): How often (in terms of gap between epochs) to update
            the parameters of target network

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture

    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    ac_target = deepcopy(ac)

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.q])
    logger.log('\nNumber of parameters: \t q: %d\n'%var_counts)

    q_params = itertools.chain(ac.q.parameters(), ac_target.q.parameters())
    q_optimizer = Adam(q_params, lr=lr)

    def update(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']

        q = ac.q(o)

        one_hot_act = torch.nn.functional.one_hot(a.long(), env.action_space.n)
        qa_theta = torch.sum(one_hot_act*q, axis=1)
        qa_theta = qa_theta.float()
        with torch.no_grad():
            q_target = ac_target.q(o2)
            tmp,_ = torch.max(q_target, 1)
            qa_target = r + gamma*(1-d)*tmp

        # DQN losses
        #q_loss = torch.mean((qa_theta-qa_target)**2)
        q_loss = F.smooth_l1_loss(qa_theta, qa_target)

        q_optimizer.zero_grad()
        q_loss.backward()
        q_optimizer.step()

        q_info = dict(QVals=q.cpu().detach().numpy())
        logger.store(LossQ=q_loss.item(), **q_info)


    # Setup model saving
    logger.setup_pytorch_saver(ac)

    def get_action(o, epsilon):
        """Select an action from the set of available actions.
        Chooses an action randomly with probability epsilon otherwise
        act greedily according to the current Q-value estimates.
        """
        if np.random.random() <= epsilon:
            return env.action_space.sample()
        else:
            q_values = ac.q(torch.Tensor(o.reshape(1, -1)))
            return torch.argmax(q_values, dim=1).item()

    def test_agent(n=10):
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not(d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time (noise_scale=0)
                o, r, d, _ = test_env.step(get_action(o, 0))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        """
        Anneal epsilon linearly from epsilon_start with epsilon_step
        With epsilon probabilty we choose a random action for
        better exploration.
        """

        ac.q.eval()

        epsilon = epsilon_start - (t * epsilon_step)
        if epsilon < epsilon_end:
            epsilon = epsilon_end
        a = get_action(o, epsilon)

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len==max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        if d or (ep_len == max_ep_len):
            """
            Store episode return at the end of trajectory
            """
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        if t % update_freq == 0:
            # Copy parameters operation between theta & target
            ac_target.q.load_state_dict(ac.q.state_dict())

        if t > start_steps:
            ac.q.train()
            data = replay_buffer.sample_batch(batch_size)

            update(data)

        # End of epoch wrap-up
        if t > start_steps and (t - start_steps) % steps_per_epoch == 0:
            epoch = (t - start_steps) // steps_per_epoch

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('QVals', with_min_and_max=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Epsilon', epsilon)
            logger.log_tabular('Time', time.time()-start_time)
            logger.dump_tabular()