Exemple #1
0
    def test_solving(self):
        from sfepy.base.base import IndexedStruct
        from sfepy.fem \
             import FieldVariable, Material, ProblemDefinition, \
                    Function, Equation, Equations, Integral
        from sfepy.fem.conditions import Conditions, EssentialBC
        from sfepy.terms import Term
        from sfepy.solvers.ls import ScipyDirect
        from sfepy.solvers.nls import Newton

        u = FieldVariable('u', 'unknown', self.field, self.dim)
        v = FieldVariable('v', 'test', self.field, self.dim,
                          primary_var_name='u')

        m = Material('m', lam=1.0, mu=1.0)
        f = Material('f', val=[[0.02], [0.01]])

        bc_fun = Function('fix_u_fun', fix_u_fun,
                          extra_args={'extra_arg' : 'hello'})

        fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
        shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})

        integral = Integral('i', order=3)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral, self.omega, m=m, v=v, u=u)

        t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)

        eq = Equation('balance', t1 + t2)
        eqs = Equations([eq])

        ls = ScipyDirect({})

        nls_status = IndexedStruct()
        nls = Newton({}, lin_solver=ls, status=nls_status)

        pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
        ## pb.save_regions_as_groups('regions')

        pb.time_update(ebcs=Conditions([fix_u, shift_u]))

        state = pb.solve()

        name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
        pb.save_state(name, state)

        ok = nls_status.condition == 0
        if not ok:
            self.report('solver did not converge!')

        _ok = state.has_ebc()
        if not _ok:
            self.report('EBCs violated!')

        ok = ok and _ok

        return ok
Exemple #2
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val': val, 'gval': gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
Exemple #3
0
def create_mass_matrix(field):
    """
    Create scalar mass matrix corresponding to the given field.

    Returns
    -------
    mtx : csr_matrix
        The mass matrix in CSR format.
    """
    u = FieldVariable('u', 'unknown', field, 1)
    v = FieldVariable('v', 'test', field, 1, primary_var_name='u')

    integral = Integral('i', order=field.approx_order * 2)
    term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u)
    eq = Equation('aux', term)
    eqs = Equations([eq])
    eqs.time_update(None)

    dummy = eqs.create_state_vector()

    mtx = eqs.create_matrix_graph()
    mtx = eqs.eval_tangent_matrices(dummy, mtx)

    return mtx
Exemple #4
0
def create_mass_matrix(field):
    """
    Create scalar mass matrix corresponding to the given field.

    Returns
    -------
    mtx : csr_matrix
        The mass matrix in CSR format.
    """
    u = FieldVariable('u', 'unknown', field, 1)
    v = FieldVariable('v', 'test', field, 1, primary_var_name='u')

    integral = Integral('i', order=field.approx_order * 2)
    term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u)
    eq = Equation('aux', term)
    eqs = Equations([eq])
    eqs.time_update(None)

    dummy = eqs.create_state_vector()

    mtx = eqs.create_matrix_graph()
    mtx = eqs.eval_tangent_matrices(dummy, mtx)

    return mtx
Exemple #5
0
def create_mass_matrix(field):
    """
    Create scalar mass matrix corresponding to the given field.

    Returns
    -------
    mtx : csr_matrix
        The mass matrix in CSR format.
    """
    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    integral = Integral("i", order=field.approx_order * 2)
    term = Term.new("dw_volume_dot(v, u)", integral, field.region, v=v, u=u)
    eq = Equation("aux", term)
    eqs = Equations([eq])
    eqs.time_update(None)

    dummy = eqs.create_state_vector()

    mtx = eqs.create_matrix_graph()
    mtx = eqs.eval_tangent_matrices(dummy, mtx)

    return mtx
Exemple #6
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = Domain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'nodes in x < %.10f' % (min_x + eps))
    gamma2 = domain.create_region('Gamma2',
                                  'nodes in x > %.10f' % (max_x - eps))

    field = H1NodalVolumeField('fu',
                               nm.float64,
                               'vector',
                               omega,
                               approx_order=2)

    u = FieldVariable('u', 'unknown', field, mesh.dim)
    v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u')

    m = Material('m', lam=1.0, mu=1.0)
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                  integral,
                  omega,
                  m=m,
                  v=v,
                  u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
Exemple #7
0
def create_evaluable(expression, fields, materials, variables, integrals,
                     regions=None,
                     ebcs=None, epbcs=None, lcbcs=None, ts=None, functions=None,
                     auto_init=False, mode='eval', extra_args=None,
                     verbose=True, kwargs=None):
    """
    Create evaluable object (equations and corresponding variables)
    from the `expression` string.

    Parameters
    ----------
    expression : str
        The expression to evaluate.
    fields : dict
        The dictionary of fields used in `variables`.
    materials : Materials instance
        The materials used in the expression.
    variables : Variables instance
        The variables used in the expression.
    integrals : Integrals instance
        The integrals to be used.
    regions : Region instance or list of Region instances
        The region(s) to be used. If not given, the regions defined
        within the fields domain are used.
    ebcs : Conditions instance, optional
        The essential (Dirichlet) boundary conditions for 'weak'
        mode.
    epbcs : Conditions instance, optional
        The periodic boundary conditions for 'weak'
        mode.
    lcbcs : Conditions instance, optional
        The linear combination boundary conditions for 'weak'
        mode.
    ts : TimeStepper instance, optional
        The time stepper.
    functions : Functions instance, optional
        The user functions for boundary conditions, materials
        etc.
    auto_init : bool
        Set values of all variables to all zeros.
    mode : one of 'eval', 'el_avg', 'qp', 'weak'
        The evaluation mode - 'weak' means the finite element
        assembling, 'qp' requests the values in quadrature points,
        'el_avg' element averages and 'eval' means integration over
        each term region.
    extra_args : dict, optional
        Extra arguments to be passed to terms in the expression.
    verbose : bool
        If False, reduce verbosity.
    kwargs : dict, optional
        The variables (dictionary of (variable name) : (Variable
        instance)) to be used in the expression.

    Returns
    -------
    equation : Equation instance
        The equation that is ready to be evaluated.
    variables : Variables instance
        The variables used in the equation.
    """
    if kwargs is None:
        kwargs = {}

    if regions is not None:
        if isinstance(regions, Region):
            regions = [regions]

        regions = OneTypeList(Region, regions)

    else:
        regions = fields[fields.keys()[0]].domain.regions

    # Create temporary variables.
    aux_vars = Variables(variables)

    if extra_args is None:
        extra_args = kwargs

    else:
        extra_args = copy(extra_args)
        extra_args.update(kwargs)

    equations = Equations.from_conf({'tmp' : expression},
                                    aux_vars, regions, materials, integrals,
                                    setup=False, user=extra_args,
                                    verbose=verbose)
    equations.collect_conn_info()

    # The true variables used in the expression.
    variables = equations.variables
    if auto_init:
        for var in variables:
            var.init_data(step=0)

    if mode == 'weak':
        setup_dof_conns(equations.conn_info)
        equations.time_update(ts, ebcs, epbcs, lcbcs, functions)

    else:
        setup_extra_data(equations.conn_info)

    return equations, variables
Exemple #8
0
def create_evaluable(expression, fields, materials, variables, integrals,
                     regions=None,
                     ebcs=None, epbcs=None, lcbcs=None, ts=None, functions=None,
                     auto_init=False, mode='eval', extra_args=None,
                     verbose=True, kwargs=None):
    """
    Create evaluable object (equations and corresponding variables)
    from the `expression` string.

    Parameters
    ----------
    expression : str
        The expression to evaluate.
    fields : dict
        The dictionary of fields used in `variables`.
    materials : Materials instance
        The materials used in the expression.
    variables : Variables instance
        The variables used in the expression.
    integrals : Integrals instance
        The integrals to be used.
    regions : Region instance or list of Region instances
        The region(s) to be used. If not given, the regions defined
        within the fields domain are used.
    ebcs : Conditions instance, optional
        The essential (Dirichlet) boundary conditions for 'weak'
        mode.
    epbcs : Conditions instance, optional
        The periodic boundary conditions for 'weak'
        mode.
    lcbcs : Conditions instance, optional
        The linear combination boundary conditions for 'weak'
        mode.
    ts : TimeStepper instance, optional
        The time stepper.
    functions : Functions instance, optional
        The user functions for boundary conditions, materials
        etc.
    auto_init : bool
        Set values of all variables to all zeros.
    mode : one of 'eval', 'el_avg', 'qp', 'weak'
        The evaluation mode - 'weak' means the finite element
        assembling, 'qp' requests the values in quadrature points,
        'el_avg' element averages and 'eval' means integration over
        each term region.
    extra_args : dict, optional
        Extra arguments to be passed to terms in the expression.
    verbose : bool
        If False, reduce verbosity.
    kwargs : dict, optional
        The variables (dictionary of (variable name) : (Variable
        instance)) to be used in the expression.

    Returns
    -------
    equation : Equation instance
        The equation that is ready to be evaluated.
    variables : Variables instance
        The variables used in the equation.
    """
    if kwargs is None:
        kwargs = {}

    if regions is not None:
        if isinstance(regions, Region):
            regions = [regions]

        regions = OneTypeList(Region, regions)

    else:
        regions = fields[fields.keys()[0]].domain.regions

    # Create temporary variables.
    aux_vars = Variables(variables)

    if extra_args is None:
        extra_args = kwargs

    else:
        extra_args = copy(extra_args)
        extra_args.update(kwargs)

    if ts is not None:
        extra_args.update({'ts' : ts})

    equations = Equations.from_conf({'tmp' : expression},
                                    aux_vars, regions, materials, integrals,
                                    setup=False, user=extra_args,
                                    verbose=verbose)
    equations.collect_conn_info()

    # The true variables used in the expression.
    variables = equations.variables
    if auto_init:
        for var in variables:
            var.init_data(step=0)

    if mode == 'weak':
        setup_dof_conns(equations.conn_info, verbose=verbose)
        equations.time_update(ts, ebcs, epbcs, lcbcs, functions,
                              verbose=verbose)

    else:
        setup_extra_data(equations.conn_info)

    return equations, variables