def argmax(self, w, feat_idx, training):
        feature_vector = self.get_features().get_feature_vector(feat_idx)
        label = None
        if training == True:
            label = int(
                RealNumber.obtain_from_generic(
                    self.get_labels().get_label(feat_idx)).value)
        ypred = 0
        max_score = -1e10
        for c in xrange(self.n_classes):
            score = 0.0
            for i in xrange(self.n_feats):
                score += w[i + self.n_feats * c] * feature_vector[i]
            if training == True:
                score += (c != label)
            if score > max_score:
                max_score = score
                ypred = c

        res = ResultSet()
        res.score = max_score
        res.psi_pred = RealVector(self.dim)
        res.psi_pred.zero()
        for i in xrange(self.n_feats):
            res.psi_pred[i + self.n_feats * ypred] = feature_vector[i]
        res.argmax = RealNumber(ypred)
        if training == True:
            res.delta = (label != ypred)
            res.psi_truth = RealVector(self.dim)
            res.psi_truth.zero()
            for i in xrange(self.n_feats):
                res.psi_truth[i + self.n_feats * label] = feature_vector[i]
            for i in xrange(self.n_feats):
                res.score -= w[i + self.n_feats * label] * feature_vector[i]
        return res
	def argmax(self,w,feat_idx,training):
		feature_vector = self.get_features().get_feature_vector(feat_idx)
		label = None
		if training == True:
			label = int(RealNumber.obtain_from_generic(self.get_labels().get_label(feat_idx)).value)
		ypred = 0
		max_score = -1e10
		for c in xrange(self.n_classes):
			score = 0.0
			for i in xrange(self.n_feats):
				score += w[i+self.n_feats*c]*feature_vector[i]
			if training == True:
				score += (c!=label)
			if score > max_score:
				max_score = score
				ypred = c

		res = ResultSet()
		res.score = max_score
		res.psi_pred = RealVector(self.dim)
		res.psi_pred.zero()
		for i in xrange(self.n_feats):
			res.psi_pred[i+self.n_feats*ypred] = feature_vector[i]
		res.argmax = RealNumber(ypred)
		if training == True:
			res.delta = (label!=ypred)
			res.psi_truth = RealVector(self.dim)
			res.psi_truth.zero()
			for i in xrange(self.n_feats):
				res.psi_truth[i+self.n_feats*label] = feature_vector[i]
			for i in xrange(self.n_feats):
				res.score -= w[i+self.n_feats*label]*feature_vector[i]
		return res
Exemple #3
0
def so_multiclass (fm_train_real=traindat,label_train_multiclass=label_traindat):
	try:
		from shogun.Features 	import RealFeatures
		from shogun.Loss     	import HingeLoss
		from shogun.Structure	import MulticlassModel, MulticlassSOLabels, PrimalMosekSOSVM, RealNumber
	except ImportError:
		print("Mosek not available")
		return

	labels = MulticlassSOLabels(label_train_multiclass)
	features = RealFeatures(fm_train_real.T)

	model = MulticlassModel(features, labels)
	loss = HingeLoss()
	sosvm = PrimalMosekSOSVM(model, loss, labels)
	sosvm.train()

	out = sosvm.apply()
	count = 0
	for i in xrange(out.get_num_labels()):
		yi_pred = RealNumber.obtain_from_generic(out.get_label(i))
		if yi_pred.value == label_train_multiclass[i]:
			count = count + 1

	print("Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() ))
Exemple #4
0
def so_multiclass(fm_train_real=traindat,
                  label_train_multiclass=label_traindat):
    try:
        from shogun.Features import RealFeatures
        from shogun.Loss import HingeLoss
        from shogun.Structure import MulticlassModel, MulticlassSOLabels, PrimalMosekSOSVM, RealNumber
    except ImportError:
        print("Mosek not available")
        return

    labels = MulticlassSOLabels(label_train_multiclass)
    features = RealFeatures(fm_train_real.T)

    model = MulticlassModel(features, labels)
    loss = HingeLoss()
    sosvm = PrimalMosekSOSVM(model, loss, labels)
    sosvm.train()

    out = sosvm.apply()
    count = 0
    for i in xrange(out.get_num_labels()):
        yi_pred = RealNumber.obtain_from_generic(out.get_label(i))
        if yi_pred.value == label_train_multiclass[i]:
            count = count + 1

    print("Correct classification rate: %0.2f" %
          (100.0 * count / out.get_num_labels()))
Exemple #5
0
def so_multiclass(fm_train_real=traindat,
                  label_train_multiclass=label_traindat):
    labels = MulticlassSOLabels(label_train_multiclass)
    features = RealFeatures(fm_train_real.T)

    model = MulticlassModel(features, labels)
    loss = HingeLoss()
    sosvm = PrimalMosekSOSVM(model, loss, labels)
    sosvm.train()

    out = sosvm.apply()
    count = 0
    for i in xrange(out.get_num_labels()):
        yi_pred = RealNumber.obtain_from_generic(out.get_label(i))
        if yi_pred.value == label_train_multiclass[i]:
            count = count + 1

    print "Correct classification rate: %0.2f" % (100.0 * count /
                                                  out.get_num_labels())
def get_so_labels(out):
    N = out.get_num_labels()
    l = np.zeros(N)
    for i in xrange(N):
        l[i] = RealNumber.obtain_from_generic(out.get_label(i)).value
    return l
Exemple #7
0
def get_so_labels(out):
	N = out.get_num_labels()
	l = np.zeros(N)
	for i in xrange(N):
		l[i] = RealNumber.obtain_from_generic(out.get_label(i)).value
	return l
Exemple #8
0
model = MulticlassModel(features, labels)
loss = HingeLoss()

risk = MulticlassRiskFunction()

risk_data = MulticlassRiskData(features, labels, model.get_dim(), features.get_num_vectors())

lambda_ = 1e3
sosvm = DualLibQPBMSOSVM(model, loss, labels, features, lambda_, risk, risk_data)

sosvm.set_cleanAfter(10)	# number of iterations that cutting plane has to be inactive for to be removed
sosvm.set_cleanICP(True)	# enables inactive cutting plane removal feature
sosvm.set_TolRel(0.001)		# set relative tolerance
sosvm.set_verbose(True)		# enables verbosity of the solver
sosvm.set_cp_models(16)		# set number of cutting plane models
sosvm.set_solver(BMRM)		# select training algorithm
#sosvm.set_solver(PPBMRM)
#sosvm.set_solver(P3BMRM)

sosvm.train()

out = sosvm.apply()
count = 0
for i in xrange(out.get_num_labels()):
	yi_pred = RealNumber.obtain_from_generic(out.get_label(i))
	if yi_pred.value == y[i]:
		count = count + 1

print "Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() )

		  np.dot(np.random.randn(N, dim), covs[1]) + np.array([-10, -10]),
		  np.dot(np.random.randn(N, dim), covs[2]) + np.array([10, -10])];
	Y = np.hstack((np.zeros(N), np.ones(N), 2*np.ones(N)))
	return X, Y

# Number of classes
M = 3
# Number of samples of each class
N = 50
# Dimension of the data
dim = 2

X, y = gen_data()

labels = MulticlassSOLabels(y)
features = RealFeatures(X.T)

model = MulticlassModel(features, labels)
loss = HingeLoss()
sosvm = PrimalMosekSOSVM(model, loss, labels, features)
sosvm.train()

out = sosvm.apply()
count = 0
for i in xrange(out.get_num_labels()):
	yi_pred = RealNumber.obtain_from_generic(out.get_label(i))
	if yi_pred.value == y[i]:
		count = count + 1

print "Correct classification rate: %0.2f" % ( 100.0*count/out.get_num_labels() )