def test_struct_collector():
    modules = {'module': """
struct S:
    member x : S*
    member y : S*
end
""", '__main__': """
from module import S

func foo{z}(a : S, b) -> (c : S):
    struct T:
        member x : S*
    end
    const X = 5
    return (c=a + X)
end
const Y = 1 + 1
"""}

    scope = ScopedName.from_string

    struct_defs = _collect_struct_definitions(modules)

    expected_def = {
        'module.S': StructDefinition(
            full_name=scope('module.S'),
            members={
                'x': MemberDefinition(offset=0, cairo_type=TypePointer(pointee=TypeStruct(
                    scope=scope('module.S'), is_fully_resolved=True))),
                'y': MemberDefinition(offset=1, cairo_type=TypePointer(pointee=TypeStruct(
                    scope=scope('module.S'), is_fully_resolved=True))),
            }, size=2),
        '__main__.S': AliasDefinition(destination=scope('module.S')),
        '__main__.foo.Args': StructDefinition(
            full_name=scope('__main__.foo.Args'),
            members={
                'a': MemberDefinition(offset=0, cairo_type=TypeStruct(
                    scope=scope('module.S'), is_fully_resolved=True)),
                'b': MemberDefinition(offset=2, cairo_type=TypeFelt()),
            }, size=3),
        '__main__.foo.ImplicitArgs': StructDefinition(
            full_name=scope('__main__.foo.ImplicitArgs'),
            members={'z': MemberDefinition(offset=0, cairo_type=TypeFelt())}, size=1),
        '__main__.foo.Return': StructDefinition(
            full_name=scope('__main__.foo.Return'),
            members={
                'c': MemberDefinition(offset=0, cairo_type=TypeStruct(
                    scope=scope('module.S'), is_fully_resolved=True))
            }, size=2),
        '__main__.foo.T': StructDefinition(
            full_name=scope('__main__.foo.T'),
            members={
                'x': MemberDefinition(offset=0, cairo_type=TypePointer(pointee=TypeStruct(
                    scope=scope('module.S'), is_fully_resolved=True))),
            }, size=1)
    }

    assert struct_defs == expected_def
def test_offset_reference_definition_typed_members():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    s_star = TypePointer(
        pointee=TypeStruct(scope=scope('S'), is_fully_resolved=True))
    reference_manager = ReferenceManager()
    identifiers = {
        scope('T'): ScopeDefinition(),
        scope('T.x'): MemberDefinition(offset=3, cairo_type=s_star),
        scope('T.flt'): MemberDefinition(offset=4, cairo_type=TypeFelt()),
        scope('S'): ScopeDefinition(),
        scope('S.x'): MemberDefinition(offset=10, cairo_type=t),
    }
    main_reference = ReferenceDefinition(full_name=scope('a'), references=[])
    references = {
        scope('a'):
        reference_manager.get_id(
            Reference(
                pc=0,
                value=mark_types_in_expr_resolved(parse_expr('cast(ap, T*)')),
                ap_tracking_data=RegTrackingData(group=0, offset=0),
            )),
    }

    flow_tracking_data = FlowTrackingDataActual(
        ap_tracking=RegTrackingData(group=0, offset=1),
        reference_ids=references,
    )

    # Create OffsetReferenceDefinition instances for expressions of the form "a.<member_path>",
    # such as a.x and a.x.x, and check the result of evaluation those expressions.
    for member_path, expected_result in [
        ('x', 'cast([ap - 1 + 3], S*)'),
        ('x.x', 'cast([[ap - 1 + 3] + 10], T)'),
        ('x.x.x', 'cast([&[[ap - 1 + 3] + 10] + 3], S*)'),
        ('x.x.flt', 'cast([&[[ap - 1 + 3] + 10] + 4], felt)')
    ]:
        definition = OffsetReferenceDefinition(parent=main_reference,
                                               identifier_values=identifiers,
                                               member_path=scope(member_path))
        assert definition.eval(
            reference_manager=reference_manager,
            flow_tracking_data=flow_tracking_data).format() == expected_result

    definition = OffsetReferenceDefinition(parent=main_reference,
                                           identifier_values=identifiers,
                                           member_path=scope('x.x.flt.x'))
    with pytest.raises(
            DefinitionError,
            match='Member access requires a type of the form Struct*.'):
        assert definition.eval(
            reference_manager=reference_manager,
            flow_tracking_data=flow_tracking_data).format() == expected_result
Exemple #3
0
def test_reference_to_structs():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    t_star = TypePointer(pointee=t)
    identifier_values = {
        scope('ref'): ReferenceDefinition(full_name=scope('ref'),
                                          references=[]),
        scope('T.x'): MemberDefinition(offset=3, cairo_type=t_star),
    }
    reference_manager = ReferenceManager()
    flow_tracking_data = FlowTrackingDataActual(ap_tracking=RegTrackingData())
    flow_tracking_data = flow_tracking_data.add_reference(
        reference_manager=reference_manager,
        name=scope('ref'),
        ref=Reference(
            pc=0,
            value=mark_types_in_expr_resolved(parse_expr('cast([100], T)')),
            ap_tracking_data=RegTrackingData(group=0, offset=2),
        ))
    consts = get_vm_consts(identifier_values,
                           reference_manager,
                           flow_tracking_data,
                           memory={103: 200})

    assert consts.ref.address_ == 100
    assert consts.ref.x == 200
Exemple #4
0
def test_offset_reference_definition_typed_members():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    t_star = TypePointer(pointee=t)
    reference_manager = ReferenceManager()

    main_reference = ReferenceDefinition(full_name=scope('a'),
                                         cairo_type=t_star,
                                         references=[])
    references = {
        scope('a'):
        reference_manager.alloc_id(
            Reference(
                pc=0,
                value=mark_types_in_expr_resolved(parse_expr('cast(ap, T*)')),
                ap_tracking_data=RegTrackingData(group=0, offset=0),
            )),
    }

    flow_tracking_data = FlowTrackingDataActual(
        ap_tracking=RegTrackingData(group=0, offset=1),
        reference_ids=references,
    )

    # Create OffsetReferenceDefinition instance for an expression of the form "a.<member_path>",
    # in this case a.x.y.z, and check the result of evaluation of this expression.
    definition = OffsetReferenceDefinition(parent=main_reference,
                                           member_path=scope('x.y.z'))
    assert definition.eval(reference_manager=reference_manager,
                           flow_tracking_data=flow_tracking_data).format(
                           ) == 'cast(ap - 1, T*).x.y.z'
Exemple #5
0
def test_type_visitor():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=False)
    t_star = TypePointer(pointee=t)
    t_star2 = TypePointer(pointee=t_star)
    assert simplify_type_system(
        parse_expr('fp + 3 + [ap]')) == (parse_expr('fp + 3 + [ap]'),
                                         TypeFelt())
    assert simplify_type_system(
        parse_expr('cast(fp + 3 + [ap], T*)')) == (parse_expr('fp + 3 + [ap]'),
                                                   t_star)
    # Two casts.
    assert simplify_type_system(
        parse_expr('cast(cast(fp, T*), felt)')) == (parse_expr('fp'),
                                                    TypeFelt())
    # Cast from T to T.
    assert simplify_type_system(
        parse_expr('cast([cast(fp, T*)], T)')) == (parse_expr('[fp]'), t)
    # Dereference.
    assert simplify_type_system(
        parse_expr('[cast(fp, T**)]')) == (parse_expr('[fp]'), t_star)
    assert simplify_type_system(
        parse_expr('[[cast(fp, T**)]]')) == (parse_expr('[[fp]]'), t)
    # Address of.
    assert simplify_type_system(
        parse_expr('&([[cast(fp, T**)]])')) == (parse_expr('[fp]'), t_star)
    assert simplify_type_system(
        parse_expr('&&[[cast(fp, T**)]]')) == (parse_expr('fp'), t_star2)
def test_type_visitor_pointer_arithmetic():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    t_star = TypePointer(pointee=t)

    simplify_type_system_test('cast(fp, T*) + 3', 'fp + 3', t_star)
    simplify_type_system_test('cast(fp, T*) - 3', 'fp - 3', t_star)
    simplify_type_system_test('cast(fp, T*) - cast(3, T*)', 'fp - 3',
                              TypeFelt())
Exemple #7
0
def test_type_visitor_pointer_arithmetic():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=False)
    t_star = TypePointer(pointee=t)
    assert simplify_type_system(parse_expr('cast(fp, T*) + 3')) == (
        parse_expr('fp + 3'), t_star)
    assert simplify_type_system(parse_expr('cast(fp, T*) - 3')) == (
        parse_expr('fp - 3'), t_star)
    assert simplify_type_system(parse_expr('cast(fp, T*) - cast(3, T*)')) == (
        parse_expr('fp - 3'), TypeFelt())
    def visit_ExprFuncCall(self, expr: ExprFuncCall):
        # Convert ExprFuncCall to ExprCast.
        rvalue = expr.rvalue
        if rvalue.implicit_arguments is not None:
            raise CairoTypeError(
                'Implicit arguments cannot be used with struct constructors.',
                location=rvalue.implicit_arguments.location)

        struct_type = self.resolve_type_callback(
            TypeStruct(scope=ScopedName.from_string(rvalue.func_ident.name),
                       is_fully_resolved=False,
                       location=expr.location))

        return self.visit(
            ExprCast(expr=ExprTuple(rvalue.arguments, location=expr.location),
                     dest_type=struct_type,
                     location=expr.location))
def test_type_tuples():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    t_star = TypePointer(pointee=t)

    # Simple tuple.
    simplify_type_system_test('(fp, [cast(fp, T*)], cast(fp,T*))',
                              '(fp, [fp], fp)',
                              TypeTuple(members=[TypeFelt(), t, t_star], ))

    # Nested.
    simplify_type_system_test(
        '(fp, (), ([cast(fp, T*)],))', '(fp, (), ([fp],))',
        TypeTuple(members=[
            TypeFelt(),
            TypeTuple(members=[]),
            TypeTuple(members=[t])
        ], ))
Exemple #10
0
def test_type_tuples():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=False)
    t_star = TypePointer(pointee=t)

    # Simple tuple.
    assert simplify_type_system(parse_expr('(fp, [cast(fp, T*)], cast(fp,T*))')) == (
        parse_expr('(fp, [fp], fp)'), TypeTuple(members=[TypeFelt(), t, t_star],)
    )

    # Nested.
    assert simplify_type_system(parse_expr('(fp, (), ([cast(fp, T*)],))')) == (
        parse_expr('(fp, (), ([fp],))'), TypeTuple(
            members=[
                TypeFelt(),
                TypeTuple(members=[]),
                TypeTuple(members=[t])],
        )
    )
def test_type_visitor():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    t_star = TypePointer(pointee=t)
    t_star2 = TypePointer(pointee=t_star)

    simplify_type_system_test('fp + 3 + [ap]', 'fp + 3 + [ap]', TypeFelt())
    simplify_type_system_test('cast(fp + 3 + [ap], T*)', 'fp + 3 + [ap]',
                              t_star)
    # Two casts.
    simplify_type_system_test('cast(cast(fp, T*), felt)', 'fp', TypeFelt())
    # Cast from T to T.
    simplify_type_system_test('cast([cast(fp, T*)], T)', '[fp]', t)
    # Dereference.
    simplify_type_system_test('[cast(fp, T**)]', '[fp]', t_star)
    simplify_type_system_test('[[cast(fp, T**)]]', '[[fp]]', t)
    # Address of.
    simplify_type_system_test('&([[cast(fp, T**)]])', '[fp]', t_star)
    simplify_type_system_test('&&[[cast(fp, T**)]]', 'fp', t_star2)
def test_reference_to_structs():
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    t_star = TypePointer(pointee=t)
    identifier_values = {
        scope('ref'): ReferenceDefinition(
            full_name=scope('ref'), cairo_type=t, references=[]
        ),
        scope('T'): StructDefinition(
            full_name=scope('T'),
            members={
                'x': MemberDefinition(offset=3, cairo_type=t_star),
            },
            size=4,
        ),
    }
    reference_manager = ReferenceManager()
    flow_tracking_data = FlowTrackingDataActual(ap_tracking=RegTrackingData())
    flow_tracking_data = flow_tracking_data.add_reference(
        reference_manager=reference_manager,
        name=scope('ref'),
        ref=Reference(
            pc=0,
            value=mark_types_in_expr_resolved(parse_expr('[cast(100, T*)]')),
            ap_tracking_data=RegTrackingData(group=0, offset=2),
        ),
    )
    memory = {103: 200}
    consts = get_vm_consts(
        identifier_values, reference_manager, flow_tracking_data, memory=memory)

    assert consts.ref.address_ == 100
    assert consts.ref.x.address_ == 200
    # Set the pointer ref.x.x to 300.
    consts.ref.x.x = 300
    assert memory[203] == 300
    assert consts.ref.x.x.address_ == 300

    assert consts.ref.type_ == consts.T
Exemple #13
0
def test_references():
    reference_manager = ReferenceManager()
    references = {
        scope('x.ref'):
        reference_manager.alloc_id(
            Reference(
                pc=0,
                value=parse_expr('[ap + 1]'),
                ap_tracking_data=RegTrackingData(group=0, offset=2),
            )),
        scope('x.ref2'):
        reference_manager.alloc_id(
            Reference(
                pc=0,
                value=parse_expr('[ap + 1] + 0'),
                ap_tracking_data=RegTrackingData(group=0, offset=2),
            )),
        scope('x.ref3'):
        reference_manager.alloc_id(
            Reference(
                pc=0,
                value=parse_expr('ap + 1'),
                ap_tracking_data=RegTrackingData(group=0, offset=2),
            )),
        scope('x.typeref'):
        reference_manager.alloc_id(
            Reference(
                pc=0,
                value=mark_types_in_expr_resolved(
                    parse_expr('cast(ap + 1, MyStruct*)')),
                ap_tracking_data=RegTrackingData(group=0, offset=3),
            )),
        scope('x.typeref2'):
        reference_manager.alloc_id(
            Reference(
                pc=0,
                value=mark_types_in_expr_resolved(
                    parse_expr('cast([ap + 1], MyStruct*)')),
                ap_tracking_data=RegTrackingData(group=0, offset=3),
            )),
    }
    my_struct_star = TypePointer(
        pointee=TypeStruct(scope=scope('MyStruct'), is_fully_resolved=True))
    identifier_values = {
        scope('x.ref'):
        ReferenceDefinition(full_name=scope('x.ref'),
                            cairo_type=TypeFelt(),
                            references=[]),
        scope('x.ref2'):
        ReferenceDefinition(full_name=scope('x.ref2'),
                            cairo_type=TypeFelt(),
                            references=[]),
        scope('x.ref3'):
        ReferenceDefinition(full_name=scope('x.ref3'),
                            cairo_type=TypeFelt(),
                            references=[]),
        scope('x.typeref'):
        ReferenceDefinition(full_name=scope('x.typeref'),
                            cairo_type=my_struct_star,
                            references=[]),
        scope('x.typeref2'):
        ReferenceDefinition(full_name=scope('x.typeref2'),
                            cairo_type=my_struct_star,
                            references=[]),
        scope('MyStruct'):
        StructDefinition(
            full_name=scope('MyStruct'),
            members={
                'member': MemberDefinition(offset=10, cairo_type=TypeFelt()),
            },
            size=11,
        ),
    }
    prime = 2**64 + 13
    ap = 100
    fp = 200
    memory = {
        (ap - 2) + 1: 1234,
        (ap - 1) + 1: 1000,
        (ap - 1) + 1 + 2: 13,
        (ap - 1) + 1 + 10: 17,
    }

    flow_tracking_data = FlowTrackingDataActual(
        ap_tracking=RegTrackingData(group=0, offset=4),
        reference_ids=references,
    )
    context = VmConstsContext(
        identifiers=IdentifierManager.from_dict(identifier_values),
        evaluator=ExpressionEvaluator(prime, ap, fp, memory).eval,
        reference_manager=reference_manager,
        flow_tracking_data=flow_tracking_data,
        memory=memory,
        pc=0)
    consts = VmConsts(context=context, accessible_scopes=[ScopedName()])

    assert consts.x.ref == memory[(ap - 2) + 1]
    assert consts.x.typeref.address_ == (ap - 1) + 1
    assert consts.x.typeref.member == memory[(ap - 1) + 1 + 10]
    with pytest.raises(IdentifierError,
                       match="'abc' is not a member of 'MyStruct'."):
        consts.x.typeref.abc

    with pytest.raises(IdentifierError,
                       match="'SIZE' is not a member of 'MyStruct'."):
        consts.x.typeref.SIZE

    with pytest.raises(
            AssertionError,
            match='Cannot change the value of a struct definition.'):
        consts.MyStruct = 13

    assert consts.MyStruct.member == 10
    with pytest.raises(AssertionError,
                       match='Cannot change the value of a constant.'):
        consts.MyStruct.member = 13

    assert consts.MyStruct.SIZE == 11
    with pytest.raises(AssertionError,
                       match='Cannot change the value of a constant.'):
        consts.MyStruct.SIZE = 13

    with pytest.raises(IdentifierError,
                       match="'abc' is not a member of 'MyStruct'."):
        consts.MyStruct.abc

    # Test that VmConsts can be used to assign values to references of the form '[...]'.
    memory.clear()

    consts.x.ref = 1234
    assert memory == {(ap - 2) + 1: 1234}

    memory.clear()
    consts.x.typeref.member = 1001
    assert memory == {(ap - 1) + 1 + 10: 1001}

    memory.clear()
    consts.x.typeref2 = 4321
    assert memory == {(ap - 1) + 1: 4321}

    consts.x.typeref2.member = 1
    assert memory == {
        (ap - 1) + 1: 4321,
        4321 + 10: 1,
    }

    with pytest.raises(AssertionError,
                       match='Cannot change the value of a scope definition'):
        consts.x = 1000
    with pytest.raises(
            AssertionError,
            match=
            r'x.ref2 \(= \[ap \+ 1\] \+ 0\) does not reference memory and cannot be assigned.',
    ):
        consts.x.ref2 = 1000
    with pytest.raises(
            AssertionError,
            match=
            r'x.typeref \(= ap \+ 1\) does not reference memory and cannot be assigned.',
    ):
        consts.x.typeref = 1000
def test_type_subscript_op():
    felt_star_star = TypePointer(pointee=TypePointer(pointee=TypeFelt()))
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    t_star = TypePointer(pointee=t)

    identifier_dict = {
        scope('T'): StructDefinition(full_name=scope('T'), members={}, size=7)
    }
    identifiers = IdentifierManager.from_dict(identifier_dict)

    simplify_type_system_test('cast(fp, felt*)[3]', '[fp + 3 * 1]', TypeFelt())
    simplify_type_system_test('cast(fp, felt***)[0]', '[fp + 0 * 1]',
                              felt_star_star)
    simplify_type_system_test('[cast(fp, T****)][ap][ap]',
                              '[[[fp] + ap * 1] + ap * 1]', t_star)
    simplify_type_system_test('cast(fp, T**)[1][2]',
                              '[[fp + 1 * 1] + 2 * 7]',
                              t,
                              identifiers=identifiers)

    # Test that 'cast(fp, T*)[2 * ap + 3]' simplifies into '[fp + (2 * ap + 3) * 7]', but without
    # the parentheses.
    assert simplify_type_system(
        mark_types_in_expr_resolved(parse_expr('cast(fp, T*)[2 * ap + 3]')),
        identifiers=identifiers) == (remove_parentheses(
            parse_expr('[fp + (2 * ap + 3) * 7]')), t)

    # Test subscript operator for tuples.
    simplify_type_system_test('(cast(fp, felt**), fp, cast(fp, T*))[2]', 'fp',
                              t_star)
    simplify_type_system_test('(cast(fp, felt**), fp, cast(fp, T*))[0]', 'fp',
                              felt_star_star)
    simplify_type_system_test('(cast(fp, felt**), ap, cast(fp, T*))[3*4 - 11]',
                              'ap', TypeFelt())
    simplify_type_system_test('[cast(ap, (felt, felt)*)][0]', '[ap + 0]',
                              TypeFelt())
    simplify_type_system_test('[cast(ap, (T*, T, felt, T*, felt*)*)][3]',
                              '[ap + 9]',
                              t_star,
                              identifiers=identifiers)

    # Test failures.

    verify_exception(
        '(fp, fp, fp)[cast(ap, felt*)]', """
file:?:?: Cannot apply subscript-operator with offset of non-felt type 'felt*'.
(fp, fp, fp)[cast(ap, felt*)]
             ^*************^
""")

    verify_exception(
        '(fp, fp, fp)[[ap]]', """
file:?:?: Subscript-operator for tuples supports only constant offsets, found 'ExprDeref'.
(fp, fp, fp)[[ap]]
             ^**^
""")

    # The simplifier in TypeSystemVisitor cannot access PRIME, so PyConsts are unsimplified.
    verify_exception(
        '(fp, fp, fp)[%[1%]]', """
file:?:?: Subscript-operator for tuples supports only constant offsets, found 'ExprPyConst'.
(fp, fp, fp)[%[1%]]
             ^***^
""")

    verify_exception(
        '(fp, fp, fp)[3]', """
file:?:?: Tuple index 3 is out of range [0, 3).
(fp, fp, fp)[3]
^*************^
""")

    verify_exception(
        '[cast(fp, (T*, T, felt)*)][-1]', """
file:?:?: Tuple index -1 is out of range [0, 3).
[cast(fp, (T*, T, felt)*)][-1]
^****************************^
""")

    verify_exception(
        'cast(fp, felt)[0]', """
file:?:?: Cannot apply subscript-operator to non-pointer, non-tuple type 'felt'.
cast(fp, felt)[0]
^***************^
""")

    verify_exception(
        '[cast(fp, T*)][0]', """
file:?:?: Cannot apply subscript-operator to non-pointer, non-tuple type 'T'.
[cast(fp, T*)][0]
^***************^
""")

    verify_exception(
        'cast(fp, felt*)[[cast(ap, T*)]]', """
file:?:?: Cannot apply subscript-operator with offset of non-felt type 'T'.
cast(fp, felt*)[[cast(ap, T*)]]
                ^************^
""")

    verify_exception('cast(fp, Z*)[0]',
                     """
file:?:?: Unknown identifier 'Z'.
cast(fp, Z*)[0]
^*************^
""",
                     identifiers=identifiers)

    verify_exception('cast(fp, T*)[0]',
                     """
file:?:?: Unknown identifier 'T'.
cast(fp, T*)[0]
^*************^
""",
                     identifiers=None)
    def create_func_wrapper(self, elm: CodeElementFunction, func_alias_name: str):
        """
        Generates a wrapper that converts between the StarkNet contract ABI and the
        Cairo calling convention.

        Arguments:
        elm - the CodeElementFunction of the wrapped function.
        func_alias_name - an alias for the FunctionDefention in the current scope.
        """

        os_context = self.get_os_context()

        func_location = elm.identifier.location
        assert func_location is not None

        # We expect the call stack to look as follows:
        # pointer to os_context struct.
        # calldata size.
        # pointer to the call data array.
        # ret_fp.
        # ret_pc.
        os_context_ptr = ExprDeref(
            addr=ExprOperator(
                ExprReg(reg=Register.FP, location=func_location),
                '+',
                ExprConst(-5, location=func_location),
                location=func_location),
            location=func_location)

        calldata_size = ExprDeref(
            addr=ExprOperator(
                ExprReg(reg=Register.FP, location=func_location),
                '+',
                ExprConst(-4, location=func_location),
                location=func_location),
            location=func_location)

        calldata_ptr = ExprDeref(
            addr=ExprOperator(
                ExprReg(reg=Register.FP, location=func_location),
                '+',
                ExprConst(-3, location=func_location),
                location=func_location),
            location=func_location)

        implicit_arguments = None

        implicit_arguments_identifiers: Dict[str, TypedIdentifier] = {}
        if elm.implicit_arguments is not None:
            args = []
            for typed_identifier in elm.implicit_arguments.identifiers:
                ptr_name = typed_identifier.name
                if ptr_name not in os_context:
                    raise PreprocessorError(
                        f"Unexpected implicit argument '{ptr_name}' in an external function.",
                        location=typed_identifier.identifier.location)

                implicit_arguments_identifiers[ptr_name] = typed_identifier

                # Add the assignment expression 'ptr_name = ptr_name' to the implicit arg list.
                args.append(ExprAssignment(
                    identifier=typed_identifier.identifier,
                    expr=typed_identifier.identifier,
                    location=typed_identifier.location,
                ))

            implicit_arguments = ArgList(
                args=args, notes=[], has_trailing_comma=True,
                location=elm.implicit_arguments.location)

        return_args_exprs: List[Expression] = []

        # Create references.
        for ptr_name, index in os_context.items():
            ref_name = self.current_scope + ptr_name

            arg_identifier = implicit_arguments_identifiers.get(ptr_name)
            if arg_identifier is None:
                location: Optional[Location] = func_location
                cairo_type: CairoType = TypeFelt(location=location)
            else:
                location = arg_identifier.location
                cairo_type = self.resolve_type(arg_identifier.get_type())

            # Add a reference of the form
            # 'let ref_name = [cast(os_context_ptr + index, cairo_type*)]'.
            self.add_reference(
                name=ref_name,
                value=ExprDeref(
                    addr=ExprCast(
                        ExprOperator(
                            os_context_ptr, '+', ExprConst(index, location=location),
                            location=location),
                        dest_type=TypePointer(pointee=cairo_type, location=cairo_type.location),
                        location=cairo_type.location),
                    location=location),
                cairo_type=cairo_type,
                location=location,
                require_future_definition=False)

            assert index == len(return_args_exprs), 'Unexpected index.'

            return_args_exprs.append(ExprIdentifier(name=ptr_name, location=func_location))

        arg_struct_def = self.get_struct_definition(
            name=ScopedName.from_string(func_alias_name) + CodeElementFunction.ARGUMENT_SCOPE,
            location=func_location)

        code_elements, call_args = process_calldata(
            calldata_ptr=calldata_ptr,
            calldata_size=calldata_size,
            identifiers=self.identifiers,
            struct_def=arg_struct_def,
            has_range_check_builtin='range_check_ptr' in os_context,
            location=func_location,
        )

        for code_element in code_elements:
            self.visit(code_element)

        self.visit(CodeElementFuncCall(
            func_call=RvalueFuncCall(
                func_ident=ExprIdentifier(name=func_alias_name, location=func_location),
                arguments=call_args,
                implicit_arguments=implicit_arguments,
                location=func_location)))

        ret_struct_name = ScopedName.from_string(func_alias_name) + CodeElementFunction.RETURN_SCOPE
        ret_struct_type = self.resolve_type(TypeStruct(ret_struct_name, False))
        ret_struct_def = self.get_struct_definition(
            name=ret_struct_name,
            location=func_location)
        ret_struct_expr = create_simple_ref_expr(
            reg=Register.AP, offset=-ret_struct_def.size, cairo_type=ret_struct_type,
            location=func_location)
        self.add_reference(
            name=self.current_scope + 'ret_struct',
            value=ret_struct_expr,
            cairo_type=ret_struct_type,
            require_future_definition=False,
            location=func_location)

        # Add function return values.
        retdata_size, retdata_ptr = self.process_retdata(
            ret_struct_ptr=ExprIdentifier(name='ret_struct'),
            ret_struct_type=ret_struct_type, struct_def=ret_struct_def,
            location=func_location,
        )
        return_args_exprs += [retdata_size, retdata_ptr]

        # Push the return values.
        self.push_compound_expressions(
            compound_expressions=[self.simplify_expr_as_felt(expr) for expr in return_args_exprs],
            location=func_location,
        )

        # Add a ret instruction.
        self.visit(CodeElementInstruction(
            instruction=InstructionAst(
                body=RetInstruction(),
                inc_ap=False,
                location=func_location)))

        # Add an entry to the ABI.
        external_decorator = self.get_external_decorator(elm)
        assert external_decorator is not None
        is_view = external_decorator.name == 'view'

        if external_decorator.name == L1_HANDLER_DECORATOR:
            entry_type = 'l1_handler'
        elif external_decorator.name in [EXTERNAL_DECORATOR, VIEW_DECORATOR]:
            entry_type = 'function'
        else:
            raise NotImplementedError(f'Unsupported decorator {external_decorator.name}')

        entry_type = (
            'function' if external_decorator.name != L1_HANDLER_DECORATOR else L1_HANDLER_DECORATOR)
        self.add_abi_entry(
            name=elm.name, arg_struct_def=arg_struct_def, ret_struct_def=ret_struct_def,
            is_view=is_view, entry_type=entry_type)
 def type_struct(self, value):
     assert len(value) == 1 and isinstance(value[0], ExprIdentifier)
     return TypeStruct(scope=ScopedName.from_string(value[0].name),
                       is_fully_resolved=False,
                       location=value[0].location)
def test_type_dot_op():
    """
    Tests type_system_visitor for ExprDot-s, in the following struct architecture:

    struct S:
        member x : felt
        member y : felt
    end

    struct T:
        member t : felt
        member s : S
        member sp : S*
    end

    struct R:
        member r : R*
    end
    """
    t = TypeStruct(scope=scope('T'), is_fully_resolved=True)
    s = TypeStruct(scope=scope('S'), is_fully_resolved=True)
    s_star = TypePointer(pointee=s)
    r = TypeStruct(scope=scope('R'), is_fully_resolved=True)
    r_star = TypePointer(pointee=r)

    identifier_dict = {
        scope('T'):
        StructDefinition(
            full_name=scope('T'),
            members={
                't': MemberDefinition(offset=0, cairo_type=TypeFelt()),
                's': MemberDefinition(offset=1, cairo_type=s),
                'sp': MemberDefinition(offset=3, cairo_type=s_star),
            },
            size=4,
        ),
        scope('S'):
        StructDefinition(
            full_name=scope('S'),
            members={
                'x': MemberDefinition(offset=0, cairo_type=TypeFelt()),
                'y': MemberDefinition(offset=1, cairo_type=TypeFelt()),
            },
            size=2,
        ),
        scope('R'):
        StructDefinition(
            full_name=scope('R'),
            members={
                'r': MemberDefinition(offset=0, cairo_type=r_star),
            },
            size=1,
        ),
    }

    identifiers = IdentifierManager.from_dict(identifier_dict)

    for (orig_expr, simplified_expr, simplified_type) in [
        ('[cast(fp, T*)].t', '[fp]', TypeFelt()),
        ('[cast(fp, T*)].s', '[fp + 1]', s),
        ('[cast(fp, T*)].sp', '[fp + 3]', s_star),
        ('[cast(fp, T*)].s.x', '[fp + 1]', TypeFelt()),
        ('[cast(fp, T*)].s.y', '[fp + 1 + 1]', TypeFelt()),
        ('[[cast(fp, T*)].sp].x', '[[fp + 3]]', TypeFelt()),
        ('[cast(fp, R*)]', '[fp]', r),
        ('[cast(fp, R*)].r', '[fp]', r_star),
        ('[[[cast(fp, R*)].r].r].r', '[[[fp]]]', r_star),
            # Test . as ->
        ('cast(fp, T*).t', '[fp]', TypeFelt()),
        ('cast(fp, T*).sp.y', '[[fp + 3] + 1]', TypeFelt()),
        ('cast(fp, R*).r.r.r', '[[[fp]]]', r_star),
            # More tests.
        ('(cast(fp, T*).s)', '[fp + 1]', s),
        ('(cast(fp, T*).s).x', '[fp + 1]', TypeFelt()),
        ('(&(cast(fp, T*).s)).x', '[fp + 1]', TypeFelt())
    ]:
        simplify_type_system_test(orig_expr,
                                  simplified_expr,
                                  simplified_type,
                                  identifiers=identifiers)

    # Test failures.

    verify_exception('cast(fp, felt).x',
                     """
file:?:?: Cannot apply dot-operator to non-struct type 'felt'.
cast(fp, felt).x
^**************^
""",
                     identifiers=identifiers)

    verify_exception('cast(fp, felt*).x',
                     """
file:?:?: Cannot apply dot-operator to pointer-to-non-struct type 'felt*'.
cast(fp, felt*).x
^***************^
""",
                     identifiers=identifiers)

    verify_exception('cast(fp, T*).x',
                     """
file:?:?: Member 'x' does not appear in definition of struct 'T'.
cast(fp, T*).x
^************^
""",
                     identifiers=identifiers)

    verify_exception('cast(fp, Z*).x',
                     """
file:?:?: Unknown identifier 'Z'.
cast(fp, Z*).x
^************^
""",
                     identifiers=identifiers)

    verify_exception('cast(fp, T*).x',
                     """
file:?:?: Identifiers must be initialized for type-simplification of dot-operator expressions.
cast(fp, T*).x
^************^
""",
                     identifiers=None)

    verify_exception('cast(fp, Z*).x',
                     """
file:?:?: Type is expected to be fully resolved at this point.
cast(fp, Z*).x
^************^
""",
                     identifiers=identifiers,
                     resolve_types=False)