Exemple #1
0
        [5, 0],  # Covariance matrix for Gaussian PDF
        [0, 5]
    ]))

# %%
# Check the output is as we expect
measurement_model.matrix()

# %%
measurement_model.covar()

# %%
# Generate the measurements
measurements = []
for state in truth:
    measurement = measurement_model.function(state, noise=True)
    measurements.append(Detection(measurement, timestamp=state.timestamp))

# Plot the result
ax.scatter([state.state_vector[0] for state in measurements],
           [state.state_vector[1] for state in measurements],
           color='b')
fig

# %%
# At this stage you should have a moderately linear ground truth path (dotted line) with a series
# of simulated measurements overplotted (blue circles). Take a moment to fiddle with the numbers in
# :math:`Q` and :math:`R` to see what it does to the path and measurements.

# %%
# Construct a Kalman filter
Exemple #2
0
def generate_scenario_3(seed=1996,
                        permanent_save=True,
                        radar_meas_rate=1,
                        ais_meas_rate=5,
                        sigma_process=0.01,
                        sigma_meas_radar=3,
                        sigma_meas_ais=1,
                        timesteps=20):
    """
    Generates scenario 3. Scenario 3 consists of radar and ais measurements with different sampling rate. The sampling
    rate is specified in the input params. A groundtruth is generated for each second.
    :param seed:
    :param permanent_save:
    :param radar_meas_rate:
    :param ais_meas_rate:
    :param sigma_process:
    :param sigma_meas_radar:
    :param sigma_meas_ais:
    :param timesteps: The amount of measurements from the slowest sensor
    :return: Nothing. Saves the scenario to a specified folder
    """
    start_time = datetime.now()

    # specify seed to be able to repeat the example
    np.random.seed(seed)

    # combine two 1-D CV models to create a 2-D CV model
    transition_model = CombinedLinearGaussianTransitionModel(
        [ConstantVelocity(sigma_process),
         ConstantVelocity(sigma_process)])

    # starting at 0,0 and moving NE
    truth = GroundTruthPath(
        [GroundTruthState([0, 1, 0, 1], timestamp=start_time)])

    # generate truth using transition_model and noise
    end_time = start_time + timedelta(seconds=timesteps *
                                      max(radar_meas_rate, ais_meas_rate))
    time = start_time + timedelta(seconds=1)
    while time < end_time:
        truth.append(
            GroundTruthState(transition_model.function(
                truth[-1], noise=True, time_interval=timedelta(seconds=1)),
                             timestamp=time))
        time += timedelta(seconds=1)

    # Simulate measurements
    # Specify measurement model for radar
    measurement_model_radar = LinearGaussian(
        ndim_state=4,  # number of state dimensions
        mapping=(0, 2),  # mapping measurement vector index to state index
        noise_covar=np.array([
            [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
            [0, sigma_meas_radar]
        ]))

    # Specify measurement model for AIS (Same as for radar)
    measurement_model_ais = LinearGaussian(ndim_state=4,
                                           mapping=(0, 2),
                                           noise_covar=np.array(
                                               [[sigma_meas_ais, 0],
                                                [0, sigma_meas_ais]]))

    # generate "radar" measurements
    measurements_radar = []
    measurements_ais = []
    next_radar_meas_time = start_time
    next_ais_meas_time = start_time
    for state in truth:
        # check whether we want to generate a measurement from this gt
        if state.timestamp == next_radar_meas_time:
            measurement = measurement_model_radar.function(state, noise=True)
            measurements_radar.append(
                Detection(measurement, timestamp=state.timestamp))
            next_radar_meas_time += timedelta(seconds=radar_meas_rate)

        if state.timestamp == next_ais_meas_time:
            measurement = measurement_model_ais.function(state, noise=True)
            measurements_ais.append(
                Detection(measurement, timestamp=state.timestamp))
            next_ais_meas_time += timedelta(seconds=ais_meas_rate)

    if permanent_save:
        save_folder_name = seed.__str__()
    else:
        save_folder_name = "temp"

    save_folder = "../scenarios/scenario3/" + save_folder_name + "/"

    # save the ground truth and the measurements for the radar and the AIS
    store_object.store_object(truth, save_folder, "ground_truth.pk1")
    store_object.store_object(measurements_radar, save_folder,
                              "measurements_radar.pk1")
    store_object.store_object(measurements_ais, save_folder,
                              "measurements_ais.pk1")
    store_object.store_object(start_time, save_folder, "start_time.pk1")
    store_object.store_object(measurement_model_radar, save_folder,
                              "measurement_model_radar.pk1")
    store_object.store_object(measurement_model_ais, save_folder,
                              "measurement_model_ais.pk1")
    store_object.store_object(transition_model, save_folder,
                              "transition_model.pk1")
measurement_model = LinearGaussian(
    ndim_state=4,
    mapping=(0, 2),
    noise_covar=np.array([[0.75, 0],
                          [0, 0.75]])
    )

prob_detect = 0.9  # 90% chance of detection.

for k in range(20):
    measurement_set = set()

    for truth in truths:
        # Generate actual detection from the state with a 10% chance that no detection is received.
        if np.random.rand() <= prob_detect:
            measurement = measurement_model.function(truth[k], noise=True)
            measurement_set.add(TrueDetection(state_vector=measurement,
                                              groundtruth_path=truth,
                                              timestamp=truth[k].timestamp,
                                              measurement_model=measurement_model))

        # Generate clutter at this time-step
        truth_x = truth[k].state_vector[0]
        truth_y = truth[k].state_vector[2]
        for _ in range(np.random.randint(10)):
            x = uniform.rvs(truth_x - 10, 20)
            y = uniform.rvs(truth_y - 10, 20)
            measurement_set.add(Clutter(np.array([[x], [y]]), timestamp=truth[k].timestamp,
                                        measurement_model=measurement_model))
    all_measurements.append(measurement_set)
Exemple #4
0
def generate_scenario_1(seed=1996,
                        permanent_save=True,
                        sigma_process=0.01,
                        sigma_meas_radar=3,
                        sigma_meas_ais=1):
    """
    Generates scenario 1. Todo define scenario 1
    :param seed:
    :param permanent_save:
    :param sigma_process:
    :param sigma_meas_radar:
    :param sigma_meas_ais:
    :return:
    """
    # specify seed to be able repeat example
    start_time = datetime.now()

    np.random.seed(seed)

    # combine two 1-D CV models to create a 2-D CV model
    transition_model = CombinedLinearGaussianTransitionModel(
        [ConstantVelocity(sigma_process),
         ConstantVelocity(sigma_process)])

    # starting at 0,0 and moving NE
    truth = GroundTruthPath(
        [GroundTruthState([0, 1, 0, 1], timestamp=start_time)])

    # generate truth using transition_model and noise
    for k in range(1, 21):
        truth.append(
            GroundTruthState(transition_model.function(
                truth[k - 1], noise=True, time_interval=timedelta(seconds=1)),
                             timestamp=start_time + timedelta(seconds=k)))

    # Simulate measurements
    # Specify measurement model for radar
    measurement_model_radar = LinearGaussian(
        ndim_state=4,  # number of state dimensions
        mapping=(0, 2),  # mapping measurement vector index to state index
        noise_covar=np.array([
            [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
            [0, sigma_meas_radar]
        ]))

    # Specify measurement model for AIS
    measurement_model_ais = LinearGaussian(ndim_state=4,
                                           mapping=(0, 2),
                                           noise_covar=np.array(
                                               [[sigma_meas_ais, 0],
                                                [0, sigma_meas_ais]]))

    # generate "radar" measurements
    measurements_radar = []
    for state in truth:
        measurement = measurement_model_radar.function(state, noise=True)
        measurements_radar.append(
            Detection(measurement, timestamp=state.timestamp))

    # generate "AIS" measurements
    measurements_ais = []
    state_num = 0
    for state in truth:
        state_num += 1
        if not state_num % 2:  # measurement every second time step
            measurement = measurement_model_ais.function(state, noise=True)
            measurements_ais.append(
                Detection(measurement, timestamp=state.timestamp))

    if permanent_save:
        save_folder_name = seed.__str__()
    else:
        save_folder_name = "temp"

    save_folder = "../scenarios/scenario1/" + save_folder_name + "/"

    # save the ground truth and the measurements for the radar and the AIS
    store_object.store_object(truth, save_folder, "ground_truth.pk1")
    store_object.store_object(measurements_radar, save_folder,
                              "measurements_radar.pk1")
    store_object.store_object(measurements_ais, save_folder,
                              "measurements_ais.pk1")
    store_object.store_object(start_time, save_folder, "start_time.pk1")
    store_object.store_object(measurement_model_radar, save_folder,
                              "measurement_model_radar.pk1")
    store_object.store_object(measurement_model_ais, save_folder,
                              "measurement_model_ais.pk1")
    store_object.store_object(transition_model, save_folder,
                              "transition_model.pk1")
    noise_covar=np.array([[1, 0],  # covariance matrix for Gaussian PDF
                          [0, 1]])
)

# Specify measurement model for AIS (Same as for radar)
measurement_model_ais = LinearGaussian(
    ndim_state=4,
    mapping=(0, 2),
    noise_covar=np.array([[1, 0],
                          [0, 1]])
)

# generate "radar" measurements
measurements_radar = []
for state in truth:
    measurement = measurement_model_radar.function(state, noise=True)
    measurements_radar.append(Detection(measurement, timestamp=state.timestamp))

# generate "AIS" measurements
measurements_AIS = []
for state in truth:
    measurement = measurement_model_ais.function(state, noise=True)
    measurements_AIS.append(Detection(measurement, timestamp=state.timestamp))

# save the ground truth and the measurements for the radar and the AIS
store_object.store_object(truth, "../scenarios/scenario2/ground_truth.pk1")
store_object.store_object(measurements_radar, "../scenarios/scenario2/measurements_radar.pk1")
store_object.store_object(measurements_AIS, "../scenarios/scenario2/measurements_ais.pk1")
store_object.store_object(start_time, "../scenarios/scenario2/start_time.pk1")
store_object.store_object(measurement_model_radar, "../scenarios/scenario2/measurement_model_radar.pk1")
store_object.store_object(measurement_model_ais, "../scenarios/scenario2/measurement_model_ais.pk1")